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Abstract 

Modern research has demonstrated that many eye-catching images can be 

generated by style transfer via deep neural network. There is, however, a dearth of 

research on content-aware style transfer. In this paper, we generalize the neural 

algorithm for style transfer from two perspectives: where to transfer and what to 

transfer. To specify where to transfer, we propose a simple yet effective strategy, 

named masking out, to constrain the transfer layout. To illustrate what to transfer, we 

define a new style feature by high-order statistics to better characterize content 

coherency. Without resorting to additional local matching or MRF models, the 

proposed method embeds the desired content information, either semantic-aware or 

saliency-aware, into the original framework seamlessly. Experimental results show 

that our method is applicable to various types of style transfers and can be extended 

to image inpainting. 

1 Introduction 

Exampler-based image editing has been applied to a wide range of research, including 

image analogy, texture synthesis, color transfer, image retargeting, content/style separation, 

and so on. In this paper, we are interested in image style transfer, which aims to synthesize 

an image with its “style” similar to the exemplar from several aspects, e.g., by distorting 

texture, deviating color tone, adjusting visual contrast, or generating irregular patterns. 

Existing methods can be categorized into parametric [1, 2, 3] and non-parametric [4, 5, 6, 7] 

approaches. Most parametric methods were developed only for specific source images (e.g., 

faces or objects) because developing a comprehensive model is almost intractable. By 

contrast, non-parametric methods relying on patch-based synthesis is model-free, and they 

therefore usually outperform parametric models in terms of both quality and applicability. 

Recently, it has been shown that one can invert a deep convolutional neural network 

originally trained for classification tasks to generate visually plausible images [8]. The 

impressive results inspire broader change in image generation [9, 10, 11] as well as image 

synthesis [12, 13, 14, 15, 16, 17, 18, 19]. Gatys et al. [12] first applied this technique to 

image style transfer and successfully reproduced famous painting styles on natural images. 

A series of following work was subsequently proposed to improve neural algorithms for 

style transfer. For example, [13] and [14] proposed to speed up the computation by training 

a one-pass feed-forward network to circumvent the iterative network evaluation. Gardner 
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et al. [15] extended the original method to support the exemplar from one image to a data-

driven manifold defined by two image sets; and Lin et al. [16] further trained a linear 

classifier to enable attribute-based transfer. Moreover, because the algorithm proposed by 

Gatys et al. transfers style features globally, the method tends to spoil local image 

plausibility. A few methods hence devoted to content-aware style transfer by either using 

region segmentation [17] or including patch-based MRF priors [18] and semantic maps 

[19]. 

In this paper, we delve into the style transfer algorithm [12] and propose a generalized 

formulation to address content-aware style transfer (see Fig. 1 for an example). In contrast 

to [17, 18, 19], we include no advanced image processing techniques and merely introduce 

a simple yet effective concept named masking out to achieve the content-aware style 

transfer. We will show that our method can seamlessly embed the desired content 

information, either semantic-aware or saliency-aware, into the original formulation. In 

order to better characterize content coherency, we propose a new style feature encoding 

high-order statistics, and further show that this new feature can also be unified by our 

formulation. 

2 Method 

2.1 Review of Neural Algorithms for Style Transfer 

We first briefly review the style transfer algorithm proposed by Gatys et al. [12]. Given a 

source image (or content image) � and a target image (or style image) �, the method aims 

to synthesize an image � which simultaneously shares the visual content of � and the style 

representation of �. Specifically, the authors model the image rendering as an optimization 

problem by minimizing the difference between � and � and the difference between � and � 

in terms of content and style features, respectively. They characterize both features by the 

deep convolutional neural network VGG19 trained on the ImageNet dataset [20].  

The VGG19 model was composed of a series of convolution layers, pooling layers, and 

activation layers. In [12], neither re-training nor fine-tuning was required to use the deep 

model for style transfer. Although the VGG19 model was trained for image classification, 

because of its top-down representability, it has also been adapted to many image 

generation tasks. Given an input image � ∈ ℝ�×�, let 	
(�) ∈ ℝ�
×�
×�
 be the set of �
 
feature maps at the ��� layer. For simplicity’s sake, we ignore the color channel here and 

reshape 	
(�)  as a �
�
 × �
  matrix in the following content. Gatys et al. proposed to 

represent the content feature by the upper layers’ response 	
(�)and represent the style 

feature by the Gram matrix �
(�) = 	
(�)
T	
(�) at multiple layers. The desired image was 

obtained by 

Fig. 1. An example of content-aware style transfer. The face appearance of two different 

breeds of dogs, Maltese and Yorkshire terrier, are exchanged by our method. 
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�� = arg min
�

�f!"#�$#�(�) + f&�'($(�) + )Γ(�) 

= arg min� � ∑ ,	
(�) − 	
(�),
.


∈
� + ∑ ,�
(�) − �
(�),
.


∈
� + )Γ(�),          (1) 

where Γ(�) denotes any regularization term to enforce smoothness constraints between 

neighbouring pixels. With a reasonably initialized �, Equation (1) can be minimized by 

gradient descent with back-propagation to generate a style-transfer output.  

The impressive results in [12] show that the success of this method mainly benefits 

from the style features �
(�), which successfully (i) encodes cross-feature dependencies 

and (ii) captures robust statistics by aggregating pixel-wise responses globally. Recently, 

this bilinear feature (i.e., Gram matrix) has also been proven to achieve state-of-the-art 

accuracy in texture recognition [16]. Despite the success in capturing global statistics, the 

style feature �
(�) tends to produce visible artifacts in synthesized images because it only 

matches the global style without imposing any spatial layout constraints. 

To include spatial layout constraints, Li et al. [18] proposed a patch-based MRF prior 

and defined the style loss function in terms of a new style feature Φ0(	
(�)) by 

f&�'($(�) = ∑ ∑ ,Φ0(	
(�)) − Φ11(0)(	
(�)),
.

0
∈
� ,                           (2) 

where Φ0(∙) denotes a sampling function of the 3�� local patch, and Φ11(0)(	
(�)) denotes 

the most similar patch of Φ0(	
(�)) matched in 	
(�) by nearest neighbor search. Although 

including the patch-based MRF prior improves the content-aware synthesis at the expense 

of extra complexity, this method, like most patch-based synthesis, does not always yield 

plausible results unless �  can be well-reconstructed by the MRF prior defined by � . 

Therefore, Equation (2) is less adaptive to the content image in comparison with Equation 

(1). In addition, the quality of style transfer now depends on the quality of patch matching, 

which would inevitably lose large-scale feature statistics because of the limited patch size. 

In [19], Champandard noticed that the MRF prior implemented by naïve patch 

matching may distort original contents due to mismatched patches; the author then 

proposed to use semantic maps to guide nearest neighbour search. With the aid of semantic 

maps, their method is able to find similar patches from semantic-aware regions. However, 

the rendered images shown in [19] usually looks oversmoothed under the strong MRF 

prior. 

2.2 Generalized Style Transfer 

Inspired by the idea of semantic-guided transfer [19], we propose to develop a generalized 

style transfer method which involves spatial constraint in the transfer process. Unlike [18] 

and [19], we mean to formulate the style transfer based on Equation (1) under two 

additional constraints: where to transfer and what to transfer. 

We first clarify that the style features �
(�) [12] capture global feature statistics through: 

i. Inner products of cross-feature correlation to aggregate information across the 

whole image plane (or feature map); and 

ii. Back-propagation of the gradients in each layer to every pixel of the previous 

layer. 

Therefore, to constrain where to transfer, we propose a masking out process to specify 

the spatial correspondence during the cross-feature aggregation and the layerwise back-

propagation. To constrain what to transfer, we propose new high-order feature statistics to 

better capture and match the style representation. Below we detail how to unify both the 

two constraints by a general formulation. 
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A. Spatially Constrained Transfer by Masking Out 

Assume a pair of predefined masks (e.g., semantic maps) is given at the ��� layer, we 

introduce a masking out process into the original formulation to constrain the spatial 

correspondence between source and target images. Let 4
(�) ∈ ℝ�
�
×�
�
 be a diagonal 

matrix whose (3, 3)�� entry 60 	(0 ≤ 60 ≤ 1) is a soft indictor of aggregation; for example, 

60 = 1 indicates that the 3�� pixel of 	
(�) should be fully aggregated in the cross-feature 

dependency and then back-propagated to previous layers, and 60 = 0 implies that the 3�� 

pixel should be filtered out from the transfer process. We then define the style loss by: 

f&�'($(�) = ∑ ,�;
(�) − �;
(�)/�
,
.


∈
� ,                                        (3) 

where�;
(�) = (4
(�)	
(�))T(4
(�)	
(�)) , and �
  is a normalization factor to balance the 

effective fields of the two masks: 

�
 = trace(4
(�)
@ 4
(�))/trace(4
(�)

@ 4
(�)).                              (4) 

In Equation (3), the correspondence between two image styles are now associated with 

their predefined layerwise masks 4
(�) and 4
(�). Note that �;
(�) can be pre-calculated and 

only the pixelwise product between 	
(�)  and 4
(�)  is additionally required during 

optimization. Accordingly, we derive the layerwise gradient of style loss: 

∇	
(�)= 4
(�)
@ (4
(�)	
(�))(�;
(�) − �;
(�)/�
).                               (5) 

The masking out term 4
(�)  in Equation (5) provides a simple way to guide where to 

transfer with the aggregated feature statistics �;
(�). 
Equation (5) can be further extended to general scenarios when there areB  region 

correspondences between images � and �. In this case, each region has its own semantic 

label, either an object class or a scene segment. Hence we have 2B binary masks at the 

original image resolution � × �. To apply the masking out process, we downsample the 

binary masks to �
 × �
  by bilinear interpolation at the ���  layer and aggregate the B 

objective costs of style matching. The value of layer-wise masks thus ranges from 0 to 1 

and blends the rendering effects of style transfer at object boundaries. Consequently, we 

derive the layerwise gradient of style feature: 

Fig. 2. Given in (a), a desired style image (a flat background) and its initial content (left 

corner), we show the transferred results without and with high-order feature statistics in 

(b) and (c), respectively. The zero-order and high-order Gram matrices at conv1_1 layer 

of (a)-(c) are given in (d)-(e), (f)-(g), and (h)-(i) for visualization. 

(a)                                           (b)                                        (c) 

(d)                   (e)                       (f)                   (g)                   (h)                 (i) 
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∇	
(�)= ∑ 4
(�)
(D) @E4
(�)

(D) 	
(�)FE�;
(�)
(D) − �;
(�)

(D) /�

(D)FG

DHI ,  where                    

�;
(�)
(D) = (4
(�)

(D) 	
(�))T(4
(�)
(D) 	
(�)).               (6) 

B. High-order Statistics of Style Feature 

Although the proposed masking out process effectively constrains the transfer layout, 

we may still obtain implausible results if the source and target images are extremely 

different. We use Fig. 2 to demonstrate the limitation of the original style features. In Fig. 

2 (a), we attempt to smooth the texture by transferring the style from a flat background. 

Undesired patterns (Fig. 2(b)) are shown after the style transfer, although both the style 

features look very similar (Fig. 2(d) and (f)). This example shows that cross-correlation of 

feature maps alone is far from enough to match the style of images. 

Rather than using zero-order feature maps 	
(�) only, we resort to high-order feature 

statistics to characterize consistent style representation. We propose a new style feature 

�;
(�) = (J
(�)	
(�))T(J
(�)	
(�))  by introducing a convolutional matrix J
 , where J
(�) 
denotes a Toeplitz matrix constructed by high-order filter coefficients. When J
  is an 

identity matrix, the new style features is the same as the original representation. In the 

following experiments, we use the Laplacian of Gaussian (LoG) filter to construct high-

order J
 on account of its noise-resilient property. As shown in Fig. 2(c), a consistent and 

more plausible result is obtained when including the proposed high-order statistics; the 

high-order Gram matrices also shows striking similarity between Fig. 2 (e) and (i) than that 

between Fig. 2 (e) and (g). 

Moreover, we can represent the proposed high-order style features together with the 

masking out process into one single formulation. Assuming that we utilize K  filters to 

characterize feature statistics, we combine the new style features into Equation (6) and 

derive the layerwise gradient in a general form: 

∇	
(�)= ∑ ∑ J

(L)@4
(�)

(D) @E4
(�)
(D) J


(L)	
(�)FE�;
(�)
(D) − �;
(�)

(D) /�

(D)FG

DHI
M
LHI ,  where 

�;
(�)
(D) = (4
(�)

(D) J

(L)	
(�))T(4
(�)

(D) J

(L)	
(�)).        (7) 

Equation (7) formally describes our method. 

2.3 Extension to Image Inpainting 

The proposed masking out process is essentially one of the layout priors in many other 

image editing problems. For example, we may consider image inpainting as transferring 

image features (either content or style) from the surrounding regions into the target region. 

Most state-of-the-art inpainting approaches are based on patch-synthesis framework [21, 

22]. In this section, we aim to investigate whether our method can generalize to this 

application as well. 

In image inpainting, the single input image serves as both the content and style images; 

for example, we can assign the style masks of 	
(�) and 	
(�) to be pixels inside and outside 

the target region, respectively. However, before we recast the inpainting problem as style 

transfer, we need to address three major differences between the two problems. First, 

because there is no layout constraint (i.e., to exclude the target region) on the content 

image, the inpainting result tends to be random texture. Second, only the pixels inside the 

target region should be updated during the optimization process, whereas the other pixels 

should not be changed. Third, the surrounding pixels which are closer to the target region 

should contribute more in the inpainting process. Considering these issues, we propose 

three modifications to generalize the proposed method to image inpainting: 



6 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 
 

 

i. We use existing inpainting baseline method to initialize the content image, and 

update the content features every twenty iterations. 

ii. We additionally mask out the gradient derived in the original image space using 

the content mask smoothed by a 7x7 average filter. 

iii. As shown in Fig. 3, we restrict the style mask to the surrounding boundary of 

target region with twenty-pixel width. 

3 Experiments 

We first detail our parameter settings. Following [12], we use one single layer (conv4_2) 

and five layers (conv1_1, conv2_1, conv3_1, conv4_1, conv5_1) to characterize content 

and style features, respectively. Total variation (TV) with quadratic penalty is used for the 

regularization function Γ(�)  as widely used in image generation tasks [10]. In all the 

experiments, we set (�, ))  as (0.02,5 × 10PQ)  for style transfer and (0.2,5 × 10PR)  for 

image inpainting. For optimization, we minimize Equation (3) by Adam [23] with learning 

rate equal to two and stop Adam until 100 iterations. We implement the proposed 

algorithm using the public matlab library MatConvNet [24]. Without GPU support, a 

230x300 image requires about eight minutes to conduct the style transfer. 

3.1 Semantic-Aware Style Transfer 

We use two images Gogh and Seth released by [19] for style transfer. Note that both 

images share similar semantic contents (portrait) but contain very different artistic styles 

(painting vs. photo). If no spatial layout is constrained, undesired background features 

could be transferred to foreground objects and vice versa. 

We show the results in Fig. 4 and also compare our algorithm with the original style 

transfer method [12] and the one combining MRF prior and semantic maps [19]. We 

implement the method of [12] as a special case of our algorithm. On the other hand, the 

results of [19] as well as the two semantic maps are both downloaded from the author’s 

project website. As shown in Fig. 4 (e) and (i), [12] propagates the style features globally 

across the whole image. From Fig. 4 (f) and (j), although [19] preserved semantic 

correspondence between the input images, the rendered results look oversmoothed under 

the strong MRF prior. In contrast, by leveraging the proposed masking out process, our 

method achieves content-aware style transfer in accordance with the semantic mapping. 

Moreover, the undesired background patterns (in Fig. 4(g)), which result from utilizing 

zero-order style features only, are readily removed once we include the high-order 

statistics as style features (Fig. 4(h)). Note that how the blurry eyes of Gogh in Fig. 4(g) 

become sharper in Fig. 4(h) and how the semantic structures are better characterised. 

Another example for real-life photo transfer is shown in Fig. 1. Using the semantic masks 

Fig. 3. Two images bungee and elephant as well as their content masks (missing pixels) 

and style masks (reference pixels) used for our image inpainting. 
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estimated by image matting [25], our method successfully transfers the dogs’ appearance 

without noticeable artifacts. 

3.2 Saliency-Aware Style Transfer 

To investigate the significance of salient features in style transfer, we study to include a 

saliency-aware mask into the proposed method. Recent advance in deep learning-based 

vision tasks have shown that larger responses at upper convolutional layers relate to salient 

objects. This property has been utilized for fast object classification and object detection 

[26]. We therefore propose to determine the saliency-aware mask by preserving the top S% 

Fig. 4. Semantic-aware style transfer, where (a)-(d) shows the source images and the 

corresponding semantic maps. We display the transferred results in (e)-(h) and (i)-(l), 

which are obtained by [12], [19], and our method without and with high-order feature 

statistics, respectively. See the enlarged regions for detailed comparison. 

(a)                              (b)                                 (c)                                   (d) 

(e)                                (f)                                 (g)                                (h) 

(i)                                (j)                                 (k)                                (l) 
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feature responses in terms of the absolute values at each layer and eliminating all the other 

responses. Before passing this mask to the masking out process, we conduct Gaussian 

smoothing on the saliency-aware mask, which results in a soft binarized mask with values 

ranging from 0 to 1, to suppress noisy feature responses. 

Fig. 5. Saliency-aware style transfer, where (a) and (b) shows the content and style 

images. We display the transferred results without and with high-order feature statistics 

in (c)-(g) and (h)-(l), when keeping 0.1%, 1%, 10%, 50%, 100% salient feature response

from top to bottom, respectively. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 

(l) 
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Fig. 5 shows the results of saliency-aware style transfer. Because our goal here is to 

analyze what salient features are transferred, we only constrain the style image with 

salient-aware mask but allow the style features to transfer to the whole resultant image. In 

Fig. 5, we keep 0.1%, 1%, 10%, 50%, and 100% feature responses with or without using 

high-order feature statistics for comparison. As shown in Fig. 5(c)-(g), the zero-order style 

features first characterize color tone, then distort textures and edges, and finally render 

high-level patterns. When including high-order style features, we observe that textures and 

small patterns are transferred in priori, while color tone changes smoothly along with the 

increased percentage of feature responses (see Fig. 5(h)-(l)). The rendered results 

empirically demonstrate what the so-called visual style is composed of. In addition, this 

example also illustrates how different features reveal different visual saliency in a photo or 

an artistic painting. 

3.3 Image Inpainting by Style Transfer 

We use two images bungee and elephant (see Fig. 3) to validate our method. We apply two 

baseline methods, PDE-based inpainting [27] and exemplar-based inpainting [28], to 

initialize the target region of content image. As shown in Fig. 6(a)-(b), exemplar-based 

method obtains plausible region filling but generates visible artifacts due to imperfect 

filling priority; by contrast, PDE-based method fails to recover the large hole but simply 

diffuses pixels from region boundary. Nevertheless, after conducting the proposed style 

transfer, our method characterizes the underlying scene structure more accurately. Note 

that how our method unveils the rock in Fig. 6(c) and removes the grass in Fig. 6(d) in 

comparison with Fig. 6(a) and Fig. 6(b) for the image bungee. We attribute the success in 

structure transfer to the hierarchical scene understanding inherited from the VGG19 model. 

Note that we do not claim that the proposed framework outperforms state-of-the-art 

image inpainting methods; in fact, as shown in Fig. 6(c)-(d), there remain some artificial 

patterns produced during the optimization process. Instead, we expect the preliminary 

results can stimulate new thinking for image editing problems. 

Fig. 6. Extension to image inpainting. The results are obtained by (a) [27], (b) [28], (c) 

[27] + our method, and (d) [28] + our method. 

(a)                               (b)                                 (c)                              (d) 
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4 Conclusion 

In this paper, we propose to generalize the recently impressive work style transfer [12] 

and focus on addressing content-aware style transfer. Instead of combining any complex 

technique (e.g., MRF prior) with extra costs, we seamlessly embed two key components, 

masking out process and high-order feature statistics, into the original formulation and 

show that this unified formulation enables different variations of content-aware style 

transfer. The proposed masking out process is adaptive to different applications, objectives, 

and user constraints. In addition, transferring high-order feature statistics significantly 

improves content coherency as well as subjective quality. The experiments demonstrate 

that our method is widely applicable to various style transfers and show its potential in 

image inpainting. The preliminary results suggest some interesting directions. For future 

work, we plan to investigate the relation between: 1) the salient feature maps and the 

semantic content mapping so as to automate semantic-aware style transfer; and 2) the 

choice of high-order filter and the subjective image quality so as to improve the visual 

plausibility. 
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