RIEGLER, FERSTL, RUTHER, BISCHOF: A DEEP PRIMAL-DUAL NETWORK 1

Supplemental Material:
A Deep Primal-Dual Network
for Guided Depth Super-Resolution

Gernot Riegler Institute for Computer Graphics and
riegler@icg.tugraz.at Vision

David Ferstl Graz University of Technology
ferstl@icg.tugraz.at Austria

Matthias Rither
ruether@icg.tugraz.at

Horst Bischof
bischof@icg.tugraz.at

1 Introduction

The supplementary material of our BMVC 2016 submission provides the qualitative results
of our evaluations. In Section 2 we compare our results on the images Art, Books, and Moe-
bius of the noisy Middlebury dataset as proposed by [6] to other state-of-the-art approaches.
Namely, we show results of bilinear upsampling, Yang et al. [8], He et al. [4], Diebel &
Thrun [2], Chan et al. [1], Park et al. [6], Ferstl et al. [3], and of our fully-convolutional
network (FCN) only, as well as of our deep primal-dual network (FCN-PDN).

Similarly, in Section 3 we present our high resolution (HR) depth estimates on the im-
ages Books, Devil, and Shark of the challenging Time-of-Flight dataset ToFMark [3], where
we compare our deep primal-dual network (FCN-PDN) to nearest neighbor and bilinear in-
terpolation, as well as to the approaches by Kopf et al. [5], He et al. [4], and Ferstl et al. [3].
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2 Noisy Middlebury

(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(m)) (j) FCN-PDN(d(™)) (k) FCN(s) (1) FCN-PDN(s)

Figure 1: Qualitative results for the image Arz from the noisy Middlebury dataset [6] and a
scale factor of x2. The first image in (a) shows the ground-truth HR depth and the second
image depicts the input sample. In (b)-(l) we present the HR estimates of various methods
and the corresponding error maps.



RIEGLER, FERSTL, RUTHER, BISCHOF: A DEEP PRIMAL-DUAL NETWORK 3

= -
(a) éT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(™)) (j) FCN-PDN(d(™)) (k) FCN(s) (1) FCN-PDN(s)

Figure 2: Qualitative results for the image Books from the noisy Middlebury dataset [6] and
a scale factor of x2. The first image in (a) shows the ground-truth HR depth and the second
image depicts the input sample. In (b)-(1) we present the HR estimates of various methods
and the corresponding error maps.
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Figure 3: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]
and a scale factor of x2. The first image in (a) shows the ground-truth HR depth and the
second image depicts the input sample. In (b)-(I) we present the HR estimates of various
methods and the corresponding error maps.
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(a) GT and Input

(b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(™)) (j) FCN-PDN(d(™)) (k) FCN(s) (1) FCN-PDN(s)

Figure 4: Qualitative results for the image Art from the noisy Middlebury dataset [6] and a
scale factor of x4. The first image in (a) shows the ground-truth HR depth and the second
image depicts the input sample. In (b)-(1) we present the HR estimates of various methods
and the corresponding error maps.
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(a) GT and Input

(b) Bilinear (c) Yang et al. [7] (d) He et al. [4]
(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(™)) () FCN-PDN(d (™)) (k) FCN(s) (1) FCN-PDN(s)

Figure 5: Qualitative results for the image Books from the noisy Middlebury dataset [6] and
a scale factor of x4. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(1) we present the HR estimates of various methods
and the corresponding error maps.
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(a) GT and Input

(b) Bilinear (c) Yang et al. [7] (d) He et al. [4]
(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]
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Figure 6: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]
and a scale factor of x4. The first image in (a) shows the ground-truth HR depth and the
second image depicts the input sample. In (b)-(1) we present the HR estimates of various
methods and the corresponding error maps.
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(i) FCN(d(™)) (j) FCN-PDN(d (™)) (k) FCN(s) (1) FCN-PDN(s)

Figure 7: Qualitative results for the image Art from the noisy Middlebury dataset [6] and a
scale factor of x8. The first image in (a) shows the ground-truth HR depth and the second
image depicts the input sample. In (b)-(1) we present the HR estimates of various methods
and the corresponding error maps.
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(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]
(i) FCN(d(™)) (j) FCN-PDN(d(™)) (k) FCN(s) (1) FCN-PDN(s)

Figure 8: Qualitative results for the image Books from the noisy Middlebury dataset [6] and
a scale factor of x8. The first image in (a) shows the ground-truth HR depth and the second
image depicts the input sample. In (b)-(1) we present the HR estimates of various methods
and the corresponding error maps.
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(b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]
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Figure 9: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]
and a scale factor of x8. The first image in (a) shows the ground-truth HR depth and the
second image depicts the input sample. In (b)-(I) we present the HR estimates of various
methods and the corresponding error maps.
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(i) FCN(d™)) (j) FCN-PDN(d(™)) (k) FCN(s)
Figure 10: Qualitative results for the image Art from the noisy Middlebury dataset [6] and a
scale factor of x16. The first image in (a) shows the ground-truth HR depth and the second
image depicts the input sample. In (b)-(1) we present the HR estimates of various methods
and the corresponding error maps.

(1) FCN-PDN(s)
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Figure 11: Qualitative results for the image Books from the noisy Middlebury dataset [6]
and a scale factor of x16. The first image in (a) shows the ground-truth HR depth and the
second image depicts the input sample. In (b)-(I) we present the HR estimates of various
methods and the corresponding error maps.
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Figure 12: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]
and a scale factor of x16. The first image in (a) shows the ground-truth HR depth and the
second image depicts the input sample. In (b)-(1) we present the HR estimates of various
methods and the corresponding error maps.
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3 ToFMark

(a) GT and Input (b) Nearest (¢) Bilinear (d) Kopf et al. [5]
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(e) He et al. [4] (f) Ferstl et al. [3] (2) FCN(s) (h) FCN-PDN(s)
Figure 13: Qualitative results for image Books from the ToFMark dataset [3]. The first
image in (a) shows the ground-truth HR depth and the second image depicts the input. In
(b)-(h) we present the HR estimates of various methods and the corresponding error maps.
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Figure 14: Qualitative results for image Devil from the ToFMark dataset [3]. The first image
in (a) shows the ground-truth HR depth and the second image depicts the input. In (b)-(h)
we present the HR estimates of various methods and the corresponding error maps.
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(a) GT and Input (b) Nearest (c) Bilinear (d) Kopf et al. [5]
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Figure 15: Qualitative results for image Shark from the ToFMark dataset [3]. The first
image in (a) shows the ground-truth HR depth and the second image depicts the input. In
(b)-(h) we present the HR estimates of various methods and the corresponding error maps.
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