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Abstract

In this paper we present a novel method to increase the spatial resolution of depth
images. We combine a deep fully convolutional network with a non-local variational
method in a deep primal-dual network. The joint network computes a noise-free, high-
resolution estimate from a noisy, low-resolution input depth map. Additionally, a high-
resolution intensity image is used to guide the reconstruction in the network. By un-
rolling the optimization steps of a first-order primal-dual algorithm and formulating it as
a network, we can train our joint method end-to-end. This not only enables us to learn
the weights of the fully convolutional network, but also to optimize all parameters of the
variational method and its optimization procedure. The training of such a deep network
requires a large dataset for supervision. Therefore, we generate high-quality depth maps
and corresponding color images with a physically based renderer. In an exhaustive evalu-
ation we show that our method outperforms the state-of-the-art on multiple benchmarks.

1 Introduction
In the last decade, a large range of affordable depth sensors became available on the mass
market. This has pushed research to develop a variety of different applications based on
these sensors. Especially active sensors based on structured light, or Time-of-Flight (ToF)
measurements, enabled novel computer vision applications such as robot navigation [1],
human pose estimation [13, 33], and hand pose estimation [35, 36]. Despite their success,
these sensors suffer from a low spatial resolution and a high acquisition noise due to the
physical limitations of the measurement principles. Even very recent ToF sensors have a
spatial resolution of only 120×160 pixels [26]. Therefore, more and more approaches are
proposed to improve the resolution and to suppress the noise of these depth cameras. Usually
these depth cameras are equipped with an additional intensity camera of higher resolution.
Hence, a very common practice [7, 25, 41] is to utilize the high resolution (HR) intensity
image as guidance. These approaches build upon the observation that depth discontinuities
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Figure 1: Our deep primal-dual network consists of two networks. A fully-convolutional
network that computes a first HR estimate and weighting coefficients. Both outputs are
then used in our primal-dual network, where we unroll the optimization steps of a non-local
variational method that incorporates prior knowledge about the data modalities.

often occur at high intensity variations and that homogeneous areas in intensity images are
also more likely to represent homogeneous areas in depth.

While the classical single image super-resolution for color images is dominated by ma-
chine learning approaches, e.g. [20, 30, 37], the field of depth super-resolution still mainly
relies on Markov Random Field formulations [7], adaptive filters [41], or variational meth-
ods [10]. This is due to the lack of high quality training data in larger quantities, which is es-
sential for large-scale machine learning methods. While it is quite easy to get a huge database
of color image examples, e.g. from the web, there exists no equivalent source for depth data.
One workaround [9, 23] is to densely reconstruct a 3D scene with KinectFusion [19] and
facilitate these reconstructions as ground-truth. However, this also introduces artifacts in
the training data, such as smoothed edges and the loss of fine details. Further, the scene
preparation for reconstruction and the recording process itself are very time-consuming.

In this work we present a novel method based on machine learning for guided depth
super-resolution, which combines the advantages of deep convolutional networks and varia-
tional methods. The training of this novel combination is enabled by creating a large corpus
of high quality training data, which are automatically generated by rendering depth maps
and corresponding color images from randomly placed and textured 3D objects in a virtual
scene. This data is used to train our deep primal-dual network that maps low resolution (LR)
and noisy depth maps to accurate HR estimates. The first part of the network consists of a
series of fully convolutional layers to produce a guidance and rough super-resolved depth.
This guidance and depth is used in a novel non-local variational model to optimize the final
result. By unrolling the computation steps of a primal-dual algorithm [3] we formulate the
variational optimization as a primal-dual network, where each numerical operation in this
algorithm is defined as a layer in the network. In this way, our deep primal-dual network
enables a joint optimization of all convolutional filter weights, the trade-off parameter of the
variational cost function, and all hyper-parameters of the primal-dual algorithm.

The contribution of our work is three-fold and can be summarized as follows: (i) We
extend our work of [31] by combining a deep fully convolutional network with a non-local
primal-dual network that is trained end-to-end, shown in Section 3. Hence, we map a noisy,
LR depth map along with a HR guidance image to an accurate HR estimate. (ii) We propose
a framework based on the physically based Mitsuba renderer [39] to automatically generate
high-quality depth maps with corresponding color images in large quantities which are used
to train our model, shown in Section 4. (iii) The evaluations presented in Section 5 demon-
strate the effectiveness of our method by outperforming state-of-the-art results on a set of
standard synthetic and real-world benchmarks.
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2 Related Work
Single-image super-resolution, i.e. enhancing the spatial resolution of an image, is a funda-
mental problem in low-level computer vision. It is inherently ill-posed, as several different
HR images can map to the very same LR image. The field can be mainly divided into meth-
ods where an edge-preserving smoothness term is utilized [38], co-occurrences of patches
within the same image are exploited [14], or, currently most successful, a mapping from LR
to HR image patches is learned [8, 32, 37, 42].

Although the approaches for single-image super-resolution are quite general, models to
increase the spatial resolution of depth maps differ. First, the modalities of depth maps are
different than those in color images. While color images are characterized by high frequent
textures and shading effects, depth data contains more noise, and consists of piece-wise affine
regions and sharp edges at depth discontinuities. Second, training data for color images can
be easily obtained, explaining the recent success of learning based approaches for single
image super-resolution. Hence, several specific models have been proposed for depth super-
resolution. In the seminal work of Diebel & Thrun [7] the super-resolution is formulated as
a Markov Random Field (MRF) optimization, where the smoothness prior is weighted by
the gradient magnitude of a guidance image. Park et al. [25] extend this MRF functional by
incorporating a non-local means term to better preserve local structures of noisy data. In [41]
Yang et al. propose an approach that builds upon the assumptions that surfaces are piecewise
smooth and pixels with similar color have a similar depth. From this they derive a bilateral
filter that is iteratively applied to the input depth map. Similarly, Chan et al. [4] present
a modified bilateral filter to reduce artifacts in areas where a standard bilateral upsampling
would cause a texture copy. A variational approach for guided depth super-resolution is
proposed by Ferstl et al. [10]. They formulate the energy functional with an anisotropic Total
Generalized Variation prior, which is weighted by the gradients in the guidance intensity
image. Yang et al. [40] formulate the depth upsampling as a minimization of an adaptive
color-guided auto-regressive model. One of the few learning based approaches is proposed
by Kwon et al. [23]. They apply a multi-scale sparse coding approach to iteratively refine
the LR depth map, and the HR data for training is acquired with KinectFusion [19].

While the approaches discussed above all utilize a HR guidance image, there exist also
a few approaches that estimate the HR depth map without guidance. Aodha et al. [2] and
Hornáček et al. [17] both utilize a MRF to fit HR candidate patches and differ in the search
strategy to find similar patches. Aodha et al. exploit an external database of a few synthetic
depth maps and Hornáček et al. search the 3D patches within the same depth map. A varia-
tional depth super-resolution model is presented by Ferstl et al. [11], where they use sparse
coding to estimate the depth discontinuities in the HR depth map.

The integration of energy minimization models, like MRFs or variational methods, into
deep networks recently gains a lot of interest. Chen et al. [5] show how to integrate a MRF
on top of a deep network and train it with back-propagation. Similarly, Zheng et al. [43]
unroll the computation steps of the mean field approximation [22] to optimize MRFs on
top of a network for semantic segmentation. They show that the individual computation
steps can be realised by operations in a convolutional network. One of the first integrations
of variational models into convolutional networks is proposed by Ranftl & Pock [27] for
foreground-background segmentation via implicit differentiation of the energy functional.
Riegler et al. [29] use this formulation for guided depth denoising and super-resolution.

Our method is in the spirit of machine learning based approaches, especially it is related
to the very deep network of [20]. To create a feasible amount of training data, we render
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high quality depth maps and color images of randomly generated scenes in large quantities.
Like [29], we combine the deep network with a variational approach, with the crucial differ-
ence that we do not implicitly differentiate the variational method, which drastically limits
the choice of energy functionals, but unroll the steps of a fast optimization algorithm, as
shown in [43] for MRFs. Finally, this work presents several improvments of our method
presented in [31]. We demonstrate, how to incoorporate an additional guidance image in
our method and show that this is crucial for higher upsampling factors. Gathering training
data for this scenario becomes also more difficult. We solve this problem by using a physi-
cally based renderer that produces hiqh quality depth maps along wtih textured color images.
Further, we evaluate different energy functionals for our method and show that a non-local
Huber regularation term yields the best trade-off between accuracy and computational re-
quirements for this task.

3 A Deep Primal-Dual Network

The proposed method consists of two main parts that are jointly trained end-to-end. The
first one is a fully-convolutional network (FCN), which computes a HR estimate of the
input depth map and input dependent weighting terms that are utilized in the subsequent
primal-dual network (PDN). In the PDN we unroll the optimization procedure of a non-local
variational model, namely of the first-order primal-dual algorithm [3]. The unrolling of the
optimization steps enables us the integration of the variational model on top of the FCN and
a joint training of both networks. A visual representation of our method is depicted in Fig. 1.

Let d(lr) be the LR input depth map with d(lr) ∈Rρ−1M×ρ−1N , where ρ is the scale factor.
The only pre-processing step of our method is an upsampling of d(lr) via bilinear interpola-
tion to the target resolution. This yields the mid-resolution input depth map d(mr) ∈ RM×N .
As an additional input we have an intensity image g as guidance that is given in the target
resolution, g ∈ RM×N . For brevity we will condense the mid-resolution depth map and the
guidance image to an input sample denoted as s = (d(mr),g)∈R2×M×N . To train our method,
we require a dataset {(sk, tk)}K

k=1 of K input samples sk and corresponding HR depth maps
as targets tk = d(hr)

k ∈RM×N . The goal of the model training is to find the optimal parameters
w∗ = (w∗fcn,w

∗
pdn) of our model f = pdn(fcn(s;wfcn);wpdn) that minimize a loss function L

over all K training samples:

w∗ = argmin
w

K

∑
k=1

L( f (sk,w), tk) . (1)

3.1 Fully Convolution Network

Inspired by [8, 20] we use a deep convolutional network to compute an initial high-resolution
depth estimate given a noisy, LR input depth map d(lr) together with a corresponding guid-
ance image g. The network consists of 10 convolutional layers and rectified linear units
(ReLU) [24] as activation functions. For the convolutional layers we use 3×3 filter kernels
for the benefits discussed in [34] and in each convolutional layer we employ 64 feature maps,
which results in a receptive field of 21×21 pixels of our FCN.

An important aspect of this network is that it does not directly compute the high-resolution
depth map d(hr), but the residual r = d(hr)−d(mr) to the mid-resolution input d(mr) as shown
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in Fig. 1. After addition of the mid-resolution depth to the residual, the network’s high-
resolution estimate is given by fcn(d)(sk,wfcn) = d(mr)

k + rk. For an uncluttered notation we

will denote fcn(d)(sk,wfcn) simply as fcn(d)sk . The calculation of a residual is especially bene-
ficial for convolutional networks, since it omits the need for the intermediate layers to carry
the input information through the whole network, as shown in [20, 32, 37]. This is also
related to the recently proposed residual networks for image classification [16].

Additional to the residual output, our network computes weighting coefficients fcn(A)sk for
the subsequent PDN. In short, they represent information about depth discontinuities in the
HR domain, but we will discuss this in more detail in the next Section.

3.2 Primal-Dual Network

As we will show in our evaluations, a FCN already delivers quite satisfying HR estimates for
smaller scaling factors. However, depth dependent noise is still apparent in homogeneous
regions. In this case variational methods are an ideal solution, since they introduce prior
knowledge about the data modalities. In our method we combine both a FCN and a varia-
tional method to estimate sharp and noise-free results all over the image. This Section gives
the insights into the variational model, how we realize this model as a network and how we
combine it with the FCN into our complete deep primal-dual network.

The cost function of a variational method typically consists of a data term D, which
penalizes the deviation from the initial solution and a regularization term R, where we can
formulate smoothness assumptions. Hence, our variational model is given by

u∗k = argmin
u

λD(u, fcn(d)sk )+R(u, fcn(A)sk ) , (2)

where D and R are parametrized by the outputs of the FCN, λ ∈ R+ steers the weighting
between the two terms and u∗ is the minimizer of the cost function. The data term in our
model penalizes the deviations from the FCN depth output and is defined as

D(u, fcn(d)sk ) =
1
2

∫

Ω
(u(x)− fcn

(d)
sk (x))2 dx . (3)

Most regularization terms are based on first order smoothness assumptions, e.g. the Total
Variation (TV) semi norm, R(u) =

∫
Ω ‖∇u‖1 dx. Although the TV model is able to estimate

sharp object discontinuities in the depth map, it has two major disadvantages: (i) the `1 norm
favors piecewise constant solutions resulting in piecewise fronto-parallel depth reconstruc-
tions. (ii) the ∇-operator is not suitable to preserve small scale structures because it only
penalizes the forward differences to its direct neighbors.

In our work we model the regularization as TV in a “larger” (non-local) neighborhood
N and further choose a more robust norm. The idea of a non-local regularization [12] is
to incorporate a low level segmentation process into the variational model. This non-local
regularization is defined as

R(u) =
∫

Ω

∫

N (x)
w(x,y)|u(x)−u(y)|ε dxdy, where |x|ε = [x≤ ε] |x|

2

2ε +[x > ε]
(
|x|− ε

2

)
,

(4)

where the operator | · |ε denotes the Huber norm [18]. The parameter ε ∈ R+ defines the
threshold between the quadratic `2 and linear `1 norm. In contrast to the TV this allows
smooth depth reconstruction while preserving sharp edges. We further call it non-local Huber
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(NLH) regularization. One crucial part of this non-local regularization is the weighting factor
w(x,y) ∈ R|N |×Ω, which sets the penalty influence of every pixel y ∈ N (x) to the center x.
The support weight w(x,y) combines the value-similarities and the spatial distances

w(x,y) = exp
(
−∆d

σd
− ∆a

σv

)
, (5)

where ∆d denotes the Euclidean proximity ‖x− y‖2, which means with increasing distance
to x the influence of the penalty decreases. ∆a denotes the Euclidean affinity for example to
a given guidance image, i.e. with increasing homogeneity in the guidance also the regular-
ization increases. The scalars σv,σd ∈ R+ define the influence of each term.

In traditional non-local methods the affinity ∆a is given by an intensity image g and
results in ∆a = ‖g(x)−g(y)‖2. It has been shown that this is beneficial since high gradients in
the intensity image and high depth disparities are likely to co-occur. The main disadvantage
of this approach is that textured surfaces violate this assumption which subsequently leads
to erroneous results. Obviously, the optimal guidance would be the high resolution depth
image d(hr). Therefore, we use our FCN to directly train for the optimal support weights w.
Further, since the proximity ∆d is constant we only have to train for the affinity term which
is defined by the FCN output ∆a = fcn(A). In Fig. 2 the difference between the non-local
weight from an intensity image and from our learned FCN guidance is shown.

To optimize the variational model (2) we use the primal-dual scheme as proposed in [3].
After discretization of the continuous image space on a Cartesian grid Ω 7→RM×N the derived
convex-concave saddle-point problem with dual variable p is given by

min
u∈RM×N

max
p∈P

{
∑

x∈RM×N
∑

y∈N (x)
(u(x)−u(y)) p(x,y)+

λ
2
‖u− fcn(d)‖2

2−
ε
2
‖p‖2

2

}
(6)

s.t. p ∈ P =
{

p : RM×N 7→ R
∣∣|p(x,y)| ≤ w(x,y), ∀x ∈ RM×N ,y ∈N (x)

}
. (7)

The iterations of the primal-dual scheme are then given by




pn+1(x,y) = max
(
−w(x,y),min

(
w(x,y),

pn(x,y)+σp(ū(x)− ūn(y))
1+σpε

))

un+1(x) =
un(x)− τu

(
∑y∈N (x) pn+1(x,y)− pn+1(y,x)+λ fcn(d)(x)

)

1+ τuλ
ūn+1(x) = 2un+1(x)−un(x)

. (8)

In traditional primal-dual optimization (8) is solved iteratively, the time-steps τu,σp are
set to be Lipschitz continuous, and the parameters λ ,σd ,σv,ε in the model are searched
empirically. In contrast, we formulate the whole variational primal-dual optimization as our
primal-dual network. Hence, each operation in the optimization (addition, multiplication,
division, etc.) is defined as a network layer and a fixed number of iterations is unrolled,
similar as in recurrent neural networks. Compared to standard primal-dual optimization our
PDN has the advantages that it not only optimizes each parameter of the model in each
iteration separately, but also trains separate time-steps for each iteration which are not tied
to conservative Lipschitz boundaries.

3.3 Training

In general, we train our method by stochastic gradient descent with an additional momentum
term. It is possible to randomly initialize the weights of our model and then train it from
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(c) ∆a (d) ∆d

=

(e) w
Figure 2: NL-support weights. In (a) the input image is shown. (b-e) depict the NL weight
calculation. The 1st row shows the traditional calculation from the intensity image and the
2nd row shows the calculation from the trained FCN output. In detail (b) depicts the image
neighborhoodN from which w is estimated. (c) shows the corresponding affinity part ∆a and
(d) the proximity part ∆d . In (e) the final NL-weight matrix w is shown and the advantage of
the fcn output is clearly visible.

Figure 3: Using a physically based renderer we automatically generate 3D scenes of random
objects varying in position, size and texture. We also randomly change the lighting directions
and intensities. Each sample consists of a noisy LR depth, a HR guidance and a HR target.

scratch. However, in practice we observed faster convergence and increased accuracy, if we
pre-train the FCN in advance. Therefore, we train the FCN for 25 epochs with a constant
learning rate of 10−3 and momentum term set to 0.9 minimizing

K

∑
k=1

∑
x∈RM×N

||fcn(d)sk (x)− tk(x)||22 + ∑
y∈N (x)

||fcn(A)sk (x,y)− (tk(x)− tk(y))||ε . (9)

After the pre-training step, we plug 20 iterations of our PDN on top of the FCN and train
both networks jointly for 10 epochs at a learning rate of 10−4, minimizing the Euclidean
loss. We note that the loss function can easily be changed, to evaluate different metrics than
the Root Mean Squared Error (RMSE). In this joint training the parameters of the FCN adapt
to the PDN, i.e. the outputs fcn(d) and fcn(A) get optimized to increase the overall accuracy.
Additionally, all parameters of the PDN improve as well. This includes the trade-off param-
eter λ and all hyper-parameters of the primal-dual algorithm. Especially, the parameters get
tuned for each iteration individually, yielding an optimal convergence for a fixed number of
PDN iterations.

4 Training Data
In this Section we show how we automatically generate our training data. Each training
sample (sk, tk) is generated using the open source Mitsuba Render Software [39]. In this
physically based renderer a scene is defined by placing objects, light sources and sensors
freely in an environment defined by a configuration file. Using this file, the renderer gener-
ates an intensity- and a depth-map of the scene in definable quality and size.
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×8
Art Books Moebius

FCN 4.7362 2.6099 2.8844
+ aTV-`2 4.7185 2.5878 2.8685
+ aTGV-`2 4.6503 2.5116 2.8072
+ NLTV-`2 4.6250 2.2446 2.6201
+ NLH-`2 4.6244 2.2446 2.6193
+ NLH-`1 4.6244 2.2447 2.6193
+ NLTGV-`2 4.6462 2.5189 2.8015
+ NLTGV-`1 4.6461 2.5190 2.8020

(a)
3 5 7 9 11 13 15

3.2

3.25

3.3

√
|N |

R
M

SE

RMSE ×8

(b)
Figure 4: Influence of the variational model (a) and the non-local neighborhood size N (b)
on the RMSE. Best results highlighted in orange and second best in yellow.

×2 ×4 ×8 ×16

Art Books Moebius Art Books Moebius Art Books Moebius Art Books Moebius

NN 6.55 6.16 6.59 7.48 6.31 6.78 9.02 6.62 7.00 11.45 7.33 7.52
Bilinear 4.58 3.95 4.20 5.62 4.31 4.56 7.14 4.71 4.87 9.72 5.38 5.43
Yang et al. [41] 3.01 1.87 1.92 4.02 2.38 2.42 4.99 2.88 2.98 7.85 4.27 4.40
He et al. [15] 3.55 2.37 2.48 4.41 2.74 2.83 5.72 3.42 3.57 8.49 4.53 4.58
Diebel & Thrun [7] 3.49 2.06 2.13 4.51 3.00 3.11 6.39 4.05 4.18 9.39 5.13 5.17
Chan et al. [4] 3.44 2.09 2.08 4.46 2.77 2.76 6.12 3.78 3.87 8.68 5.45 5.57
Park et al. [25] 3.76 1.95 1.96 4.56 2.61 2.51 5.93 3.31 3.22 9.32 4.85 4.48
Ferstl et al. [10] 3.19 1.52 1.47 4.06 2.21 2.03 5.08 2.47 2.58 7.61 3.54 3.50

FCN(d(mr)) 1.83 1.10 1.26 3.03 1.73 1.99 5.39 2.65 3.08 9.31 4.34 4.40
FCN+NLH(d(mr)) 2.10 1.25 1.38 2.95 1.63 1.88 5.31 2.40 2.91 9.29 4.08 4.18
FCN-PDN(d(mr)) 1.81 1.05 1.21 2.85 1.53 1.74 5.20 2.26 2.68 8.68 3.70 3.99

FCN(s) 1.99 1.20 1.37 3.25 1.78 1.96 4.74 2.61 2.88 7.80 4.08 4.16
FCN+NLH(s) 2.00 1.18 1.31 3.26 1.62 1.83 4.63 2.25 2.62 7.60 3.59 3.84
FCN-PDN(s) 1.87 1.01 1.16 3.11 1.56 1.68 4.48 2.24 2.48 7.35 3.46 3.62

Table 1: Quantitative results on noisy Middlebury data: We present our results on the
disparity maps of the noisy Middlebury dataset [25] as RMSE of the disparity values. Best
results highlighted in orange and second best in yellow.

In our case, the automatic dataset generation is scripted by randomly placing different
objects (cubes, spheres and planes) in varying poses and dimensions in the scene. Further,
the objects are randomly textured using samples from the publicly available Describable
Textures Dataset [6]. The light intensity and position is also slightly varied during the data
generation. We depict two such generated samples in Fig. 3. The output intensity image is
used as HR guidance image g, the clean depth output defines the HR target depth tk, and by
downsampling tk and adding noise we generate the LR depth input d(lr).

5 Evaluation
In the following Section we present a comprehensive evaluation of our deep primal-dual
network. First, we demonstrate the influence of different energy functionals and the non-
local window size on our PDN. Then, we compare our method to state-of-the-art approaches
for guided depth super-resolution on the Middlebury dataset as proposed by Park et al. [25].
Finally, we present our results on the challenging ToFMark benchmark [10] for real Time-
of-Flight data.

5.1 Influence of Energy Functional and Non-Local Window Sizes
In this evaluation we show the influence of the variational model and non-local window size
on the accuracy of our model. First, we optimize a variety of different variational models
without joint training on top of the FCN output. The RMSE accuracy is shown in Fig. 4(a)
evaluated on the noisy Middlebury data [25] (×8) for 20 iterations. We compare two local
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(a) GT and Input (b) Ferstl et al. [10] (c) FCN(s) (d) FCN-PDN(s)
Figure 5: Qualitative results for the image Art from the noisy Middlebury dataset [25] and
a scale factor of ×8. The first image in (a) shows the ground-truth HR depth and the second
image depicts the input sample. In (b)-(c) we present in the first row the HR estimates
of a state-of-the-art method, as well as our results, and in the second row we show the
corresponding error maps.

models, the anisotropic TV and the anisotropic Total Generalized Variation (TGV) with `2
data term [10], and the non-local models with TV, Huber and the recently proposed non-local
TGV regularization [28] with `1 and `2 data term. The neighborhood size N is set to 7×7.
We can observe that all variational models increase the final accuracy. While the influence
of the data penalization is not very significant, the non-local regularization has a superior
performance over the local models. Overall, the non-local Huber regularization gives the
best results. Second, we evaluate the influence of the non-local window size on the accuracy
in Fig. 4(b). The error decreases with a larger neighborhood N , but also the computational
complexity and memory requirements increase dramatically. Hence, we use a 7×7 window
size since it provides the best trade-off between accuracy and computational resources.

5.2 Noisy Middlebury
In the following experiment we evaluate our method on the noisy Middlebury dataset as pro-
posed by Park et al. [25]. According to [25] we interpret the disparity values as depth. The
disparity maps are corrupted by multiplicative Gaussian noise η(x) =N (0,651 ·d(lr)(x)−1).
The same noise is added to our training data. In Tab. 1 we compare our method to stan-
dard interpolation methods and a variety of state-of-the-art methods for guided depth super-
resolution. Further, we compare our method once trained solely on the depth maps as input
(d(mr)) and once with the additional guidance image as input (s). In this comparison we also
show the results of the FCN output only (FCN), the results after applying the variational
NLH-`2 on top of the FCN (FCN+NLH), and after joint training of our deep primal-dual
network (FCN-PDN). For smaller upsampling factors (×2, ×4) the FCN alone already out-
performs all other state-of-the-art methods on this dataset, and our complete method after
joint training performs best. At smaller upsampling factors the additional guidance input
is not beneficial to the accuracy, but this changes drastically for higher upsampling factors
(×8,×16). There, we can observe a significant boost in performance by adding the guidance
input. In those cases the PDN clearly improves the results over the FCN alone. In Fig. 5 we
show a example of the qualitative results. We refer to the supplemental material for more
visualizations.
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Books Devil Shark

NN 30.46 27.53 38.21
Bilinear 29.11 25.34 36.34
Kopf et al. [21] 27.82 24.30 34.79
He et al. [15] 27.11 23.45 33.26
Ferstl et al. [10] 24.00 23.19 29.89

FCN-PDN (d(mr) & g) 23.74 20.47 28.81

(a) (b) FCN(s) (c) FCN-PDN(s) (d) d(hr)

Figure 6: Quantitative and qualitative results on the ToFMark [10] benchmark. In (a) we
present our quantitative results as RMSE in mm. Best results highlighted in orange and
second best in yellow. In (b) and (c) we show the results of the FCN and the full model,
respectively. For comparison, we also show in (d) the ground-truth HR depth.

5.3 ToFMark

In our final evaluation we compare our method on the challenging real-world ToFMark
dataset [10]. The dataset consists of three different scenes. For each scene it provides a
noisy, LR ToF image, a HR depth map, generated with a structure light scanner, and a HR
intensity image. The intensity image and the HR depth map are in the same camera coordi-
nate system, however, the HR depth map is given in its own system. Therefore, the depth
pixels are mapped to the LR coordinate system of the intensity image via the provided pro-
jection matrix. This yields a sparse depth map which we fill with bilinear interpolation to
generate the mid-resolution input. In the training data we simulated this projection. First,
the HR training depth maps are mapped in the LR ToF coordinate system via the inverse
projection matrix. Since multiple HR points can map onto the same LR pixel, we compute
the mean over the corresponding depth values. Second, we apply depth dependent noise on
the LR depth from which the mid-resolution input is generated. In Tab. 6a we compare the
results of our method with state-of-the-art guided depth super-resolution methods, where we
can observe a significant improvement in terms of the root mean squared error over previous
approaches. A qualitative result is depicted in Fig. 6b-d. Again, we refer to the supplemental
material for more visualizations.

6 Conclusion
We presented a novel method that combines the advantages of deep fully convolutional net-
works and variational methods for guided depth super-resolution. We formulated the non-
local variational model as a network which is placed on top of a fully convolutional network
by unrolling the optimization steps of a primal-dual algorithm. In a complete end-to-end
training our deep primal-dual network is able to learn an efficient parameterization of the
model including the convolutional filters, and all hyper-parameter and step-sizes of the vari-
ational optimization. We created the necessary training data with a physically based renderer
in high quality and large quantities. In our evaluations we have shown that this novel combi-
nation significantly outperforms state-of-the-art results on different synthetic and real-world
benchmarks.
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