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Figure 1: Our deep primal-dual network consists of two main parts. A fully-convolutional network (FCN) that computes a first HR estimate and
weighting coefficients. These outputs are then feed to our primal-dual network (PDN), where we unroll the optimization steps of a non-local
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variational method that incorporates prior knowledge about the data modalities. The complete network is trained end-to-end.

Sensors that measure pixel-wise depth information have become increas-
ingly popular since they are available in the consumer market and enabled
a broad range of novel computer vision applications, for example in robot
navigation, human pose estimation, and hand pose estimation. Despite
their success, these sensors suffer from a low spatial resolution and depth
noise due to physical limitations of the measurement principles.

In this paper we present a novel method to increase the spatial and
lateral resolution of noisy depth images. For this purpose, we combine
a deep fully convolutional network (FCN) with a non-local variational
method in a deep primal-dual network (see Fig. 1) and extend our work
presented in [6]. The input to our method is a low resolution, noisy depth
map d™ and a high-resolution intensity image g that is used as guidance
in the upsampling process. This guidance image is essential for higher
upsampling factors, as we show in our experiments. The input of the
fully convolutional network is a upscaled low resolution depth map using
bilinear interpolation. The network is trained to compute only the resid-
ual (high frequency parts) to the upscaled low resolution input. Further,
the second output of the FCN are non-local weighting terms, which are
utilized in the subsequent primal-dual network (PDN) as weighting coef-
ficients and correspond to discontinuities in the high resolution depth.

In the primal-dual network we compute the optimizer u; of a varia-
tional energy functional given in (1) by unrolling the computation steps
of the first-order primal-dual scheme by [1].

up = argminlD(u,fcn(d)) +R(u, fcngf)) .
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D is the data term that penalizes the deviation from the initial solution, R
is the regularization term that encodes smoothness assumptions, and A is
a trade-off parameter. We evaluate in this work several popular choices of
regularization terms, which are especially suited for depth data and found
that a non-local Huber regularization, as given by

R = [ [ el —uedxay,

in combination with a ¢, data term yields the best trade-off between ac-
curacy and computational requirements. Q is the image domain, N (x)
defines the neighborhood of x in which the regularization term should
be evaluated, |- |¢ is the Huber norm, and w are weighting coefficients
derived from the fully convolutional network fcn®). The benefit of un-
rolling the optimization algorithm in the network are that we can learn all
parameters of the variational method, as well as, all hyper-parameter of
the optimization scheme itself. Further, the fully-convolutional network
adapts in the joint training to the subsequent primal-dual network.
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The training of such a deep network requires of course a large train-
ing set for supervision. Therefore, we generate high-quality depth maps
and corresponding color images with a physically based renderer in large
quantities. The training procedure is then two-fold: First, we pre-train the
fully-convolutional network and subsequently train the complete model
end-to-end using an Euclidean loss, as it relates to our evaluation metric.

In our experimental evaluation we show the influence of the energy
functional and the non-local neighborhood size on the performance of our

Figure 2: Qualitative results for the Shark dataset from the ToFMark
benchmark [2]. The first row shows the input and the output of our
method, respectively. In the second row we present the ground-truth depth
and the error of our method.

method. Further, we compare our method on two standard benchmarks for
depth super-resolution to other recent approaches: On the noisy Middle-
bury images as proposed by [5] and on the realistic ToFMark dataset [2].
For an excerpt of our quantitative and qualitative results see Tab. 1 and
Fig. 2, respectively. With this novel combination we are able create visu-
ally appealing results and outperform state-of-the-art on both datasets.

Books Devil Shark
NN 3046 2753 3821
Bilinear 29.11 25.34 36.34
Kopf et al. [4] 2782 2430 3479
He et al. [3] 27.11 2345 3326
Ferstl et al. [2] 2400 2319  29.89
FCN-PDN (d(™) & g) 2307402047 2881

Table 1: Quantitative results on the ToFMark benchmark [2].
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