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Abstract

There are many ways of building collision-detecting systems. In this paper, we pro-
pose a novel collision selective visual neural network inspired by LGMD2 neurons in the
juvenile locusts. Such collision-sensitive neuron matures early in the first-aged or even
hatching locusts, and is only selective to detect looming dark objects against bright back-
ground in depth, represents swooping predators, a situation which is similar to ground
robots or vehicles. However, little has been done on modeling LGMD2, let alone its
potential applications in robotics and other vision-based areas.

Compared to other collision detectors, our major contributions are first, enhancing the
collision selectivity in a bio-inspired way, via constructing a computing efficient visual
sensor, and realizing the revealed specific characteristics of LGMD2. Second, we applied
the neural network to help near range path navigation of an autonomous ground miniature
robot in an arena. We also examined its neural properties through systematic experiments
challenged against image streams from a visual sensor of the micro-robot.

1 Introduction
The ability to quickly and robustly detect collisions is vital for both animals and robots
to initiate proper behaviors, navigate in dynamic environments, and interact with humans.
Autonomous robots have applied several kinds of sensors for object detection, such as vision,
ultrasound, infra-red, laser, and mini-radar [1, 4, 11, 24]. However, it is still very difficult for
a robot to perform well for collision-detecting without human intervention [9, 20]. Visual
sensors have evolved as crucial components for the survival of robots exploiting plentiful
image cues in the real physical world. Nevertheless, artificial robot vision systems have not
yet been able to quickly and cheaply extract wealthy visual information [9, 20, 27].

Nature has provided abundant source of inspirations for artificial visual system. The abil-
ity of extracting useful motion cues in real-time should be indispensable for a practical visual
system. The images of approaching stimuli always signify danger to an animal. As the result
of hundreds-millions-years evolution, the insects, such as the locusts are so brilliant to very
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quickly react to emergent danger even in very complex environments. Several decades have
witnessed much progress in understanding of cellular mechanisms underlie motion detection
circuit [6, 7, 10, 14, 18, 32, 33]. In insects, it is intriguing that many different specialized
visual nervous systems incorporate to extract and fuse motion information from dynamic
scenes. In the third visual neuropile stack, the lobula region, there are several Lobula Giant
Movement Detectors (LGMDs); however, only two among them, the LGMD1 and LGMD2,
have been identified so far [22, 25, 26, 29, 31]. Both of them selectively respond to loom-
ing objects in depth rigorously with high firing rates. Although LGMD2 shares most neural
properties with LGMD1, they have been demonstrated the different collision selectivity [29].
Compared to LGMD1, LGMD2 matures very early in juvenile locusts which mainly live on
the ground whereas already represent evasive responses to predators from the sky [31]. Like
LGMD1, LGMD2 contributes intrinsically as a piece in the complex vision system.

In last decade, some LGMD1-based neural networks have been successfully utilized in
vehicles and robotics helping imminent collision-detecting for paths exploring [5, 28, 30, 34,
35, 36, 37, 38, 39, 40]. Nevertheless, two main defects exist in LGMD1 modeling works:
first, the approaching and receding stimulus are not properly distinguished in depth; second,
the translating stimulus regularly leads to collision mis-detection. With regard to the LGMD2
research [29], the revealed neural characteristics make it ideal to handle those defects for
ground mobile robots and other vision-based platforms. Moreover, since little modeling
works have been done on LGMD2 [13], we are prospective to fill this gap via systematically
investigation and experiments. Compared to some state-of-the-art collision detectors, such
bio-inspired computational models can cope with unpredictable environments without using
specific object recognition algorithms.

Some relevant works are presented in Section 2. The neural network description with
detailed formulations and parameters setting are illustrated in Section 3. Followed are the
robotic experiments. Finally, we give a conclusion.

2 Related Work
Revealed Neural Properties: An important and unique feature of the LGMD2 neuron is its
looming sense is only for light-to-dark luminance change. It is able to detect dark looming
objects embedded in the bright background selectively whilst not responding to light objects
against the dark background [29]. In comparison with LGMD1, LGMD2 has a firing pref-
erence which is for approaching versus recession of dark targets [29]. This trait could be
mapped to solve the former mentioned defect. In addition, when stimulated by translating
stimulus, both LGMDs neurons were demonstrated to be activated for a short while then
inhibited very soon, even early before the end of movement [25, 29]. Nevertheless, LGMD1
computational models likely signal high firing rates resembling the situation of an object
approaching, which is not suitable for a practical collision detector.
ON and OFF Visual Pathways: Some smart methods were proposed to account for the
former defect, e.g. statistically monitoring the membrane potential change gradient to dis-
criminate approach from recession [17]. However, it dose not reflect the internal physical
mechanism in motion detection circuitry. Instead, we propose a biophysical structure to
achieve the specific collision selectivity of LGMD2 via investigating ON and OFF visual
pathways [7, 8, 10, 33]. As early in 1970s, LGMDs were put forth to be fed by a homo-
geneous population of afferent ON and OFF polarity cells [23]. And very recently, a case
study of LGMD1 exploiting a similar mechanism was modeled and applied in robotic appli-
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cation [5]. As a matter of fact, such a circuit has attracted biologist much interest, whereby
its foundation remains elusive. It has been demonstrated to play an irreplaceable role in the
internal structure of insects underlie motion detection routes, and reveal the fundamental
principle of splitting visual signals downstream into parallel channels encoding brightness
increments, decrements in ON, OFF pathways respectively [7, 8, 10, 14, 33].
Signals Competition: The signal processing within LGMDs neurons depicts a critical race
between excitatory and inhibitory flows, which shapes the looming selectivity of such collision-
sensitive neurons [15, 16, 25, 29]. Concretely, the brightness increments activate ON cells to
elicit onset events, implying the excitation is time-advanced relative to the inhibition; on the
contrary, the excitation is assumed to be time-delayed relative to the inhibition, when OFF
cells generate offset responses by luminance decrements [5, 16]. Two kinds of inhibitions
coexist in the circuitry to compete with excitations: the activation of lateral inhibition is able
to cut down the excitation early during the object growing up in the retina; whereas the acti-
vation of feed forward inhibition (FFI) contributes tremendously at curtailing the excitation
when the object exceeding an angular size [15, 25]. It has been argued the multiplicative
computation playing a crucial role in neural sensory processing systems [14, 15], e.g. a
dominant model for decades is the Elementary Movement Detectors [6]. Such multiplicative
operations have been clarified in biological experiments, while its biophysical mechanisms
are still unknown. With respect to the relevant experimental and theoretical results [5, 15], in
this network, we were consistent with a multiplication being implemented by a subtraction
of two logarithmic terms of excitatory and inhibitory streams followed by an exponentiation
via activating the firing rate.

3 Model Description

In this section, we present the network description with formulations and parameter setting.
The core of this framework is the architecture of biased ON and OFF dual-channel, each of
which comprises a multiple layers (Fig. 1). The visual input retrieved by each photoreceptor
is split into two separated pathways depending on brightness change: the increments flow
into ON channels whilst the decrements into OFF channels. We put forth the bias in all
ON channels rigorously suppressing them to achieve the particular collision selectivity of
LGMD2. In comparison with other vision-based collision-detectors, it is worth emphasizing
here the proposed network detects potential collision via reacting to expansion of the object
edges, rather than the strategy of recognizing the target or analyzing the scene.

3.1 Network Architecture and Algorithms

Photoreceptors: The first layer consists of photoreceptors arranged in a 2-D matrix form.
The number of them corresponds to the resolution of receptive field. Each photoreceptor
retrieves the luminance change of gray-scale between every two continuous frames:

Px,y(t) = (Lx,y(t)−Lx,y(t−1))+∑
i

ai ·Lx,y(t− i) (1)

where Px,y(t) is the change of luminance corresponds each pixel at frame t, subscripts x and
y are the 2-D coordinates. L(t) and L(t − 1) are the original brightness of two successive
frames with t denoting the current frame and so on. The persistence of luminance change
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Figure 1: The schematic overview of LGMD2 vision system: Model notations are illustrat-
ed in green-box. The convolution illustrations are in red-box. Only two photoreceptors are
shown, each of which connects with an ON and OFF cell respectively. ON/OFF units have
adjacent gray-cells indicating the center signal is convoluted by the periphery ones (gray),
which corresponds to the convolving in red-box. To compute the membrane potential, the
FFE pathway integrate all S cells through ON/OFF channels, whereas the FFI pathway re-
trieves the mean luminance change from all P. More details are presented in Section 3.

could last for a while: i indicates the number of frames constitute the luminance duration;
the coefficient ai is defined by ai = (1+ eu·i)−1 and u ∈ (−∞,+∞).
ON and OFF Cells: There are sufficient densities with an identical quantity as photore-
ceptors of either ON or OFF afferent cells, arranged to cover the intact retina, respectively
eliciting onset and offset events depending on brightness change in each local pixel. As
shown in Fig. 1, each photoreceptor corresponds to a pair-wise polarity units. ON cells are
activated by the brightness increments, whilst OFF cells by the decrements:

PON
x,y (t) = (Px,y(t)+ |Px,y(t)|)/2, POFF

x,y (t) = |(Px,y(t)−|Px,y(t)|)|/2 (2)

where PON denotes the ON cell value and similarity for the OFF cell value POFF .
Multi-layers in ON and OFF Pathways: With respect to the ON and OFF biophysical
mechanism, the visual signals are separated into parallel pathways. First, in ON channels,
the output from ON cells forms the input to two individual flows in next Inhibition (I) and
Excitation (E) layers (Fig. 1). ON cells elicit onset responses, so that the excitatory flow goes
directly to E-Layer and the counterpart cell in the following Summation (S) layer; while the
inhibitory flow passes to I-Layer after being convoluted by surrounded delayed excitations:

EON
x,y (t) = PON

x,y (t), ION
x,y (t) =

r

∑
i=−r

r

∑
j=−r

EON
x+i,y+ j(t−1) ·W (i, j),(i 6= j, i f i = 0) (3)
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where W indicates the local weight matrix as shown in Fig. 1, and r denotes the kernel
radius. It is also clear to notice from Eq. 3, the delayed information are only allowed to
spread out to their neighboring cells rather than to their direct counterparts. Similarity for
the signal interactions in OFF channels. While comparing to the delayed information in ON
pathway, the excitatory flows herein are time delayed relative to the inhibitory flows:

IOFF
x,y (t) = POFF

x,y (t), EOFF
x,y (t) =

r

∑
i=−r

r

∑
j=−r

IOFF
x+i,y+ j(t−1) ·W (i, j),(i 6= j, i f i = 0) (4)

Followed by are the local summations in S-Layer of polarity channels. The pre-synaptic
excitatory and inhibitory flows depict a linear summation:

SON
x,y (t) =WE ·EON

x,y (t)− ION
x,y (t), SOFF

x,y (t) = EOFF
x,y (t)−WI · IOFF

x,y (t) (5)

where WE and WI are two crucial local bias in the LGMD2 modeling work, which could be
used to optionally suppress the direct excitatory and inhibitory flows in different pathways.
To realize the specific collision selectivity of LGMD2 neurons, we preferred a smaller bias
in ON channels rigorously inhibiting the direct excitations. Appropriately adjusting either
bias has potential to form an un-biased or even inverse-biased mechanism of the ON and
OFF dual-channel.
Exponential Membrane Potential: After local summations, as illustrated in Fig. 1, the
membrane potential in LGMD2 cell is calculated by two flows. First is the feed forward
excitation (FFE) linearly pooling all local cells in S-Layer:

FFE(t) =
row

∑
x=1

col

∑
y=1

Sx,y(t) (6)

where Sx,y represents all S cells in the dual-channel. row and col are the rows and columns of
S-Layer. Another flow is the feed forward inhibition (FFI) computed via taking the average
luminance change of last time step:

FFI(t) =
row

∑
x=1

col

∑
y=1
|Px,y(t−1)| ·N−1 (7)

where N = row · col. The two feed forward flows depict a logarithmic combination to form
the membrane potential which is later exponentially mapped as the model output to invoke
the spikes:

MP(t) = log(FFE(t))− log(FFI(t) ·Coe f f i), EMP(t) = exp(MP(t)) (8)

where Coe f f i denotes a coefficient adjusting the FFI contribution. In the spiking mechanism,
different number of spikes could be elicited in an identical discrete time interval, depending
on the exponential distribution of membrane potential:

Sspike
t =





0, i f EMP(t)< Tsp

1, i f Tsp ≤ EMP(t)< θ1 ·Tsp

2, i f θ1 ·Tsp ≤ EMP(t)< θ2 ·Tsp

4, else

(9)
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Parameters: Name, Value

Name Value Name Value Name Value

col,row adaptable Tsp 200∼ 400 θ1 2.5
Nts 4 W 0∼ 0.25 θ2 5
Nsp 4∼ 8 WE 0.1∼ 0.5 Coe f f i 1∼ 10
N col · row WI 0.3∼ 1.0 r 1

Table 1: The Parameter setting of LGMD2 Vision System

where Tsp denotes the potential threshold level to fire the neuron. θ1 and θ2 are two constants
to partition the potential over threshold into sections. One could allocate higher grades in
order to produce more spikes each time. We defined that Nsp numbers of continuous spikes
invoked in Nts successive frames indicates the collision recognition. Due to such a spiking
mechanism, the neuron could be activated even in a one-frame step. Finally, the spikes are
conveyed to the motion system leading to collision avoidance behaviors (Fig. 1).

3.2 Network Parameter Setting
All the free parameters of the proposed LGMD2 visual neural network are based on both
empirical and experimental experiences to balance computing and optimize model imple-
mentation. No parameter training and learning methods are currently included. The weights
of convolution matrix W in four nearest neighbor positions are higher than those in the diag-
onal pixels: 0 for the center pixel, 0.25 for the four nearest and 0.125 for the four diagonal
ones, pertaining to kernel radius setting at 1. Table 1 lists the major parameters setting-up.
The adaptable ones regard to the physical properties of input visual stimulus.

4 Experiments and Results
In this section, we move on representing the systematical robotic experiments in real time,
along with results and analysis. The main objective is to verify the feasibility and robust-
ness of LGMD2 vision system in robotic applications. An autonomous miniature robot was
applied in arena tests, and other sorts of comparative investigations.

4.1 Hardware Setting
Both LGMDs vision systems were respectively set up in the ground mobile robot, named
’Colias’ (Fig. 2). It is an open-hardware modular micro robot which is developed to be used
in swarm robotic applications [3, 12]. Basically the robot platform consists of two main
parts. One is the motion actuator with diameter of 4cm, which is deployed on the bottom of
robot to provide power and motion controls. Two micro DC motors and two diameter 2.2cm
wheels are employed to actuate Colias [2]. Another one is the extension vision module
placed on the top of Colias [19]. A miniature camera is the ’eye’ of robot, which is essential
in the vision-based control. Such a low-cost camera is able to operate up to 30 frames per
second (fps). The angle of view could reach approximately 70 degrees. All these features
make the camera suitable for using in micro-robots. We chose a resolution of 72 ·99 pixels
at 30 fps with the output format of 8-bit YUV422. Its 192 Kbyte internal SRAM supports
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Figure 2: The prototype of Colias: Upper board – vision module, Bottom – motion actuator.

MD – Miss Detection, CD – Correct Detection
Success Rate – SR = [CD/(MD+CD)]%

Tsp MD CD SR

320 7 58 89.2%
300 3 61 95.3%
280 6 60 90.9%
260 10 55 84.6%

Table 2: Success rate of arena tests under four candidate firing thresholds (Tsp).

the image buffering and computing. There is a digital camera interface (DCMI) which is an
embedded interface for transmitting of the captured images. With the help of a full-duplex
serial port, Colias can very quickly send image samples and model data to the hosts.

4.2 Arena Tests

We tested the basic collision recognition ability of LGMD2 neural network in an arena with
10∼ 20 obstacles 1. The arena was built with inside size of 105cm ·105cm in area. The inter-
nal walls and the body of obstacles were drawn with dark patterns. There are also particular
patterns on top of the robot and obstacles for the purpose of running a practical multi-robots
localization system, rigorously getting the overtime trajectories [21] (Fig. 3). A portable
camera was fixed to form a top-down view to capture and record the performances of Colias
in arena. The time window was fixed in approximately 60 seconds for each round. Colias
autonomously ran in arena and circumvented potential collisions via turning behaviors. We
could manually assign avoidance behaviors for Colias, or shut down all of them, depending
on experimental requirements. In arena tests, we gave half-half opportunities for Colias to
turn a large angle to either direction. The proposed collision detector performed quickly and
robustly in the vision-based miniature robot for near range path exploring (Fig. 3); moreover,
the model processing with decision making timing of each turn is within 30 milliseconds,
which is very suitable to be implemented in real time, shedding light on helping navigation
of other ground robots and vehicles.

Since no data training is included in current network, we also statistically investigated
the success rate of collision detection under four candidate firing thresholds (Table 2). Each
test of a specific threshold was held within a time window of approximately three-minutes.
The results demonstrate that although this work is strict with parameter setting, it performed
well in all situations – the success rates stayed close to the optimal one (95.3%).

1Two video demos of arena tests are in attached supplementary data.
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COLIAS
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COLIASCOLIAS

COLIAS

COLIAS

Figure 3: Top-down arena views and example results of Colias overtime-trajectories (dark
lines). Red circles indicate obstacles varied in layouts. Blue ones denote the start position of
Colias. There are four obstacles standing at corners of arena with regard to run a localization
system [21].

4.3 Comparative Experiments

In order to clarify the advantages of this network, we did model comparison with a LGMD1
collision detector regarding to the modeling work in [36]. Both LGMDs vision systems
were challenged by approach, recession and translation stimuli which constitute the general
occasions in the daytime navigation of ground robots.

Firstly, when challenged against looming object, all collision-avoidance behaviors were
shut down. We received the model outputs via the DCMI of robot connecting with the hosts.
Colias was initiated to approach a same fixed dark object in the bright environment, at three
constant speed levels – 5, 15 and 30 cm/s respectively, from an initial distance of 50cm
(Fig. 4(a)). The results illustrate that both LGMDs neurons elicit vigorous potentials when
closing in the target with varied time windows pertaining to different speeds. As the speed-
level increased, the responses of both LGMDs climb up more significantly, especially the
exponentially mapped membrane potential of LGMD2. On the other hand, at the beginning
of receding from the object, LGMD1-Colias was read out ramping up potentials resembling
an approach-level. Nevertheless, the sparse and low-level EMPs were witnessed from the
readouts of LGMD2-Colias (Fig. 4(b)).

Moreover, we examined the relevance of speed and distance to collision-detecting (DTC).
The statistical results in Fig. 5 represent that the collected DTC data of both vision systems
rise along with speed increasing. Compared to LGMD1, the error-curve (information with
variance and mean) of LGMD2 grows much more steeply which reveals a better speed re-
sponse to potential collision in the case of LGMD2 framework. The proposed network was
also challenged by varied-shaped objects in approaching-trials respectively. The DTC results
demonstrate an invariance of LGMD2 framework to the shape of targets (Fig. 5).

At the final step, we inspected the model response against X-Y planes movements. The
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Figure 4: Neural responses of LGMDs networks with snapshots sent back by Colias. X-axis
denotes the time course in frames and Y-axis indicates the scaled potential and FFI (dashed)
for LGMD1, the scaled EMP and potential (dashed) for LGMD2 respectively.

Figure 5: Statistic DTC error-curves. Both kinds of tests included 5 speeds, each of which
repeated 3 times.

experimental setting is shown in Fig. 6(a) – we let the ball automatically roll down along
a slot, forming the horizontal translating stimulus. The two LGMDs vision systems were
alternately challenged. In the first situation, the gradient was fixed (12cm in height), leading
to nearly the same translating speed. The observing distance varied in 15, 30 and 60cm.
The results illustrate LGMD1 neuron elicits lower-level potentials along with the monitoring
distance increasing (Fig. 6(b)). And it could also be quiet at the distance of 60cm which is
far enough for the micro-robot. Whereas LGMD2 neuron keeps quiet in almost situations,
except that object translating at the distance of 15cm which rigorously activating LGMD2
detector. In the second case, the monitoring distance was fixed at 30cm with gradually
increasing gradients (8, 12, 16cm), corresponding faster translating speed. It is not surprise
that the LGMD2 response are not brisker, while the LGMD1 detector depicted more steeply
increasing potentials as the stimulus speeding up (Fig. 6(c)).

Through comparative investigations, the advantages of LGMD2 collision detector have
been pinpointed: it represents better speed response to possible collision and convincible per-
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Figure 6: LGMDs vision system challenged against systematic translation trials

formances coping with recession and translation of dark objects against bright environment
in robotic vision system.

5 Conclusion

In this paper, we propose a bio-inspired collision detector based on the juvenile locust visual
pathway. Compared to other computer vision techniques, this computational framework on-
ly involves low-level image processing methods, which performs quickly and robustly in a
vision-based ground miniature robot. And in comparison with a related neural collision de-
tector, we have two main contributions. First, the collision selectivity to dark objects against
bright background is enhanced which makes it ideal for ground mobile robots. Second, the
selectivity to approaching objects versus translation has been shaped which is expected for a
practical collision-detecting system.

In the future work, we are interested in learning methods for network training. Our hope
is this work will provide help toward our understanding of more complex functions of the
visual nervous system and bring benefit to vision-based applications.
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