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Abstract

Image co-segmentation is a challenging computer vision task that aims to segment
all pixels of the common objects in an image set. In real-world cases, however, the com-
mon objects often vary greatly in poses, locations and scales, making their global shapes
highly inconsistent across images and difficult to be segmented. To address this problem,
this paper proposes a novel co-segmentation approach that transfers patch-level local ob-
ject shapes, which appear more consistently across different images. In our approach, we
first employ dense correspondences to construct a patch neighbourhood system, which is
refined using Locally Linear Embedding. Based on the patch relationships, an efficient
algorithm is developed to jointly segment the objects in each image while transferring
their local shapes across different images. Experiments show that our approach performs
comparably with or better than the state-of-the-arts on iCoseg dataset [2], while achiev-
ing more than 31% relative improvements on a challenging benchmark Fashionista [31].

1 Introduction

Image co-segmentation is a young yet widely pursued topic in computer vision. In a word,
it aims to segment all pixels of the common objects from a collection of images. With this
tool, many high-level visual understanding tasks would be greatly facilitated, such as visual
concept discovery [5] and fine-grained object recognition [14].

To extract the common objects, existing studies have explored various object cues. Among
them, appearance cues such as color and texture are most popular due to their effectiveness
for separating the foreground from the background. After extracting appearance descriptors
in each image, the common objects can be discovered by either learning a shared descriptor
distribution [10] or building correspondences among the descriptors in different images [28].
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Figure 1: The motivation of this paper. The common objects in these images have differ-
ent poses, rendering their global shapes inconsistent. However, the local object shapes in
different images are highly consistent and provide important cues for co-segmentation.

Despite the successes, appearance cues may fail to distinguish between the visually similar
foreground and background regions, and often have difficulties in handling object categories
with complex appearances.

To address these issues, some works explored shape cues for image co-segmentation, as
they are reliable for removing foreground/background ambiguities [32]. In these works, the
common objects in different images are assumed to be “generated” by a single shape model,
which can take the form of shape priors [1, 16] or deformable shape templates [6]. However,
due to the large variance of viewpoints, scales and object poses, global shapes of the common
objects are often inconsistent and difficult to capture. As a result, template-based approaches
may work less well in such scenario.

We observe that although the common objects may have inconsistent global shapes, their
local shapes are often highly consistent and thus transferable (see Fig. 1). Based on this
observation, this paper proposes a novel framework for image co-segmentation that transfers
patch-level object shapes across different images. For each image patch, our approach seeks
for transferable patch neighbours through image correspondences. To prune out unreliable
matches, we further learn a sparser neighbourhood system for the image set using Locally
Linear Embedding [22]. Given the patch correspondences, an efficient algorithm is proposed
to incorporate patch-level consistencies into graph-cut based energy for jointly segmenting
the common objects in each image.

The main contributions of this paper include 1) a novel framework that introduces local
shape transfer for image co-segmentation, 2) a strategy for refining patch correspondences
in an image set through Locally Linear Embedding, and 3) an algorithm that integrates patch
consistencies into graph-cut based energy. Experiments show that our approach performs
comparably or better than the state-of-the-arts on iCoseg [2] dataset. On challenging Fasion-
ista [31] dataset with complex object appearance and pose, the proposed approach achieves
more than 26% relative improvements over the leading co-segmentation approaches.

2 Related Work

Existing studies for image co-segmentation can be roughly categorized into matching-based
and template-based groups. We briefly review them, while also discuss some tightly corre-
lated shape transfer methods.
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Template-based group assumes that there exists a single model that generalizes to rep-
resent all common objects in different images. Following this idea, some works proposed to
learn shared distributions of appearance features. For example, Jolin et al. [10] learned linear
models jointly for foreground and background based on color and texture features. Russell
et al. [25] treated foreground objects as latent topics sharing similar visual words. Kim et
al. [12] founds the latent foreground representations with a diffusion process. However,
these models are often insufficient to capture object categories with complex appearances.
To address this issue, several works [1, 6, 16] advocated using shape models to facilitate
co-segmentation. A common practice is to learn shape prior maps, which indicates the like-
lihoods of the common objects appearing at different image locations. As object shapes are
actually unknown in co-segmentation, the shape priors were iteratively refined using the cur-
rent segmentations [1, 16]. In [6], a sophisticated model was designed to jointly segment the
common objects and learn their deformable shape templates.

Template-based approaches are powerful since they output not only the segmented ob-
jects but also the learned foreground/background/shape models. However, the used models
are often simple for tractability during learning or inference, thus may not adequately capture
real-world object categories with various appearances and structures.

Matching-based group builds the region correspondences among different images. Some
works enforced the matching constraint at object-level, assuming that the foreground feature
histograms aggregated on different images are similar [21, 29]. However, this strategy may
have difficulty applying to object categories with large variabilities. Another idea is to se-
lect the object proposals in each image that match consistently as the common objects [27],
but with the cost of supervised training. More recent works adopted local region correspon-
dences for image co-segmentation. For example, Wang et al. [28] proposed to match regions
in functional space. Rubio et al. [24] proposed a MRF formulation to jointly address object
co-segmentation and region matching. After obtaining the correspondences, they transfer the
foreground/background labels among the matched pixels/superpixels. Faktor and Irani [7]
adopted structured matching to detect the common object parts in different images, through
which “co-saliency” maps were generated to guide segmentation in each image. However,
this strategy may suppress object parts that are not “co-salient” in the whole image set.

Our approach is also based on local region matching. However, we differ from [24, 28]
in transferring labels at patch-level rather than point-level. In this manner, structured con-
sistency is imposed to preserve the local object shapes during transfer. Compared with [7],
our approach does not assume the “co-saliency” of the common objects in the whole image
set. In contrast, we only assume the co-occurrence of a common object part in a sparse set
of neighbouring image patches. As a result, the proposed approach can effectively identify
the whole foreground objects, as confirmed by the experiments.

Shape transfer is widely adopted for data-driven foreground/background segmentation.
Most existing works proposed to transfer the masks of pre-segmented objects to the testing
images, e.g., [26] and [15]. Beyond global object shapes, several works proposed to transfer
local shape masks by sparse reconstruction [30] and non-parametric MRF [32] to handle
local deformations. Our work is inspired by these successes, but operates in unsupervised
manner without assuming pre-segmented images at hand.
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Figure 2: The framework of our approach. The initial foreground/background segmentation
for each input image is estimated using [33]. Meanwhile, we construct a weighted graph
among the patches sampled from different images using [13], where weights are learned by
Locally Linear Embedding [22]. Finally, we optimize intra-image object segmentation and
inter-image local shape transfer jointly while preserving the patch weights in label space.

3 Our Co-segmentation Framework

The pipeline of our approach is shown in Fig. 2. Given a set of M images, our framework
first estimates coarse initial foreground segmentations by thresholding saliency maps [33].
Meanwhile, we build inter-image connections by constructing a weighted graph on patches,
which implements local shape transfer. With the patch graph, the segmentations in all im-
ages are refined jointly. In the rest of this section, we first explain how local shape transfer
helps image co-segmentation and the patch graph implementation, and then present the co-
segmentation algorithm.

3.1 Local Shape Transfer for Image Co-segmentation

From the machine learning perspective, the global shapes of the common objects under dif-
ferent real-world conditions lie in high-dimensional space. In existing works, such shape
spaces were often learned with sophisticated non-linear models (e.g., random forests [18]).
Our observation, however, is that the local object shapes can be well represented by their
sparse neighbours in a linear and low-dimensional space. To implement this idea, we con-
struct a neighbourhood system on image patches by finding dense pixel correspondences
across images [13]. For the ith patch in a set of M images, the algorithm in [13] returns
M — 1 neighbouring patches, one in each different image. We denote the indices of these
neighbours with ;.

Let y; concatenate the binary segmentation labels in the ith patch, where 1 and O repre-
sents the foreground and background, respectively. Based on our assumption, the segmenta-
tion in the ith patch should be well reconstructed by its neighbours, i.e., y; ~ Aﬁ Yien; Y-
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Figure 3: Illustration of local shape transfer. For the patches sampled from an image (left),
we illustrate the neighbouring patches on different images (middle). Different colors repre-
sent different patches and their neighbours. The transferred segmentation mask using aver-
age pooling and Locally Linear Embedding are shown on the right. The learned weights at
the bottom-left of each neighbouring patch show that Locally Linear Embedding is effective
to suppress incorrect matches, which leads to more reliable shape transfer results.

This formulation assumes that the neighbouring patches are all good surrogates of the origi-
nal image patch, which would be too ideal. As shown on the right of Fig. 3, aggregating the
local shapes in many patches with inconsistent structures may confuse the shape transfer. To
address this issue, we propose to learn a sparser but more reliable neighbouring relationships
for each patch using Locally Linear Embedding [22]:

2

, st Vi, Y wij=1, (1)
JEN;

P
minZ )?,'- Z W,'j)?j
w=0.3 JEN;

where P is the total number of patches sampled from the image set, X; is the SIFT feature
extracted from the ith patch. The simplex constraint imposes sparsity for neighbour selec-
tion. Given the learned neighbours, the local shapes are thus transferred by y; ~ ¥ jc . WiV ;-
Fig. 3 shows that this strategy leads to more consistent shape transfer results.

3.2 Co-segmentation with Local Shape Transfer

Given the patch graph, we refine the initial segmentation in each image by transferring the
local shapes among different images. During transfer, the weights learned in the patch feature
space are preserved when optimizing the label space. Formally, we minimize the objective

2

M P
min Z Eseg(y[’]) + aZ
Yoz i=1 JEN;

where y concatenates the foreground/background labels of all pixels in the image set, y[i] is
the part from the ith image. The energy Ese, implements intra-image foreground/background
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segmentation, for which we use the popular Markov Random Field (MRF) energy, see [3]
for details. The problem (2) is NP-hard and usually large scale as it operates on pixels. We
propose an efficent algorithm to approximately solve it by half quadratic splitting [9].

Optimization algorithm. The core idea is to substitute the pixel labels y with auxiliary
variable z, while introducing additional constraints on patches as 7; = y;. Relaxing this hard
constraint, we have

Zi— Z WiiZj

2
P
+A ) 1z =%, st y,ze {0, 13 3)
JEN; i—1

M P
mind Fre0) + @)
=1 i=1

By iteratively solving y and z while keeping one of the them fixed, the original problem is
decoupled into two simpler sub-problems. When z is fixed, the expanded sub-problem is

M P
min}" Egy) + 2 Y (I ~2G)"5) , 5.y € {0,137 4)
i=1 i=1

Note that ||¥||* = ||3%|| as the patch labels are binary. Thus, the second term in (4) takes linear
form w.r.t. y, and can be directly merged into the unary potentials of the MRF energy. The
remaining part is highly efficient by performing graph-cut [3] in each image in parallel.

The step of optimizing z requires solving a large-scale quadratic program. We discard the
binary constraint, which results in closed-form solution of a quadratic program by solving a
linear system. For efficiency, we approximate this solution by a sequence of label diffusions.
In a diffusion step, the pixel labels Z; in the ith patch are optimized by fixing the labels of all
other pixels. By setting the derivation w.r.t. Z; to zero, we obtain the following update rule

L, ¢ [ZjGM WijZj+ Ljien; Wji (zj — YkeN; kA W jkzkﬂ + A -
7= ,
l O‘"‘A“‘Zj:ieNjW?i

which can be written in compact form
7/ = {AY + o [W+ W' — WTW + Diag(W™W)] Z} [(a + A)I + Diag(W™W)] "', (6)

where the matrices Z, Z’ and Y concatenate in a row the column vectors Z;, Z; and ¥, re-
spectively, W is a P X P pairwise matrix of patch-wise neighbouring weights, and I is the
identical matrix. The operator Diag(+) creates a diagonal matrix by picking out the diagonal
elements of the input matrix. We found 15 iterations of (6) to be adequate in practice. After
diffusion, we normalize the soft labels z into [0, 1] separately for each image.

The two steps are repeated until near-convergence. Empirically, we terminate the opti-
mization in 10 iterations and take the last discrete labels y as the final segmentations.

Implementation details. Input images are resized to have around 60000 pixels, on which
we sample 17 x 17 patches uniformly with a stride of 5 pixels. The unary term of the MRF
energy Eg, is the (log-negative) foreground/background color likelihoods generated by 12-
components GMM models. Initially, the GMMs are learned on saliency-based segmenta-
tions. In each iteration, we update them using the latest segmentations. We follow [4] to
define the pairwise term, which models color contrasts between adjacent pixels. Parameters
o and A are empirically set to 1 and 0.3, respectively.
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[ iCoseg | Ours | [8] | [28] | 1241 | [271 | (091 | [10] |
Alaska Bear | 0.861 | 0.935 [ 0.904 | 0.864 | 0.900 | - | 0.748
Red Sox Players | 0.972 | 0.965 | 0.942 | 0.905 | 0.909 | 0.957 | 0.730
Stonehengel | 0.936 | 0.930 | 0.925 | 0.873 | 0.633 | 0.927 | 0.566
Stonehenge2 | 0.844 | 0.835 | 0.872 | 0.884 | 0.888 | 0.849 | 0.860
Liverpool | 0.905 | 0.921 | 0.894 | 0.826 | 0.875 | - | 0.764
Ferrari 0.892 | 0.917 | 0.956 | 0.843 | 0.899 | 0.900 | 0.850
Taj Mahal | 0.878 | 0.887 | 0.926 | 0.887 | 0.911 | 0.941 | 0.737
Elephants | 0.961 | 0.904 | 0.867 | 0.750 | 0.431 | 0.877 | 0.701
Pandas 0.835 | 0.812 | 0.886 | 0.600 | 0.927 | 0.928 | 0.840
Kite 0.980 | 0.966 | 0.939 | 0.898 | 0.903 | 0.946 | 0.870
Kite panda | 0.905 | 0.838 | 0.931 | 0.783 | 0.902 | 0.934 | 0.732
Gymnastics | 0.984 | 0.954 | 0.904 | 0.871 | 0.917 | 0.922 | 0.909
Skating 0.893 | 0.817 | 0.787 | 0.768 | 0.775 | 0.966 | 0.821
Hot Balloons | 0.969 | 0.965 | 0.904 | 0.890 | 0.901 | 0.952 | 0.852
Liberty Statue | 0.966 | 0.927 | 0.968 | 0.916 | 0.938 | 0.966 | 0.906
Brown bear | 0.938 | 0.948 | 0.881 | 0.804 | 0.953 | 0.885 | 0.740
Average 0.920 | 0.907 | 0.905 | 0.839 | 0.853 | - | 0.789

Table 1: Comparison with leading co-segmentation approaches of correctly classified pixels
on iCoseg dataset. All the numbers are taken from the original papers except [10], which is
taken form [28].

4 Experimental Results

We evaluate the proposed approach on two public benchmarks:

The iCoseg dataset [2] contains 643 images of 38 object classes with pixel-level anno-
tations. In each class, images have similar color but varying locations and scales. We test
on a subset of 16 classes which are widely used by the leading co-segmentation approaches.
For each class, all images are used for co-segmentation.

The Fashionista dataset [31] contains 685 street photographs of fashion models. In
contrast to conventional co-segmentation datasets, it is extremely challenging with various
human poses, background clutters and complex appearances. As existing co-segmentation
approaches may have difficulty handling large amounts of images, we randomly partition the
dataset into 23 groups with nearly 30 images per group. Evaluations are averaged over 10
random partitions.

We use two evaluation protocols: the ratio of correctly classified pixels for iCoseg, and
the Intersection-over-Union overlap ratio for Fashionista. The former is chosen for through-
out comparison with previous approaches, although the latter is more preferred as it was
shown unbiased to the object size [17].

4.1 Comparison with State-of-the-Arts

The results are summarized in Table 1, 2 and 3, respectively. In Table 1, our approach
obtains the best overall performance with leading accuracies on 6/16 categories. We improve
remarkably on challenging categories elephants and gymnastics, on which most previous
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| Ours | [7] | (6] | [23] | | Ours | [7] | [6] | [10] | [20] |

| 0.920 | 0.944 | 0.895 | 0.896 | | 0.756 | 0.501 | 0.576 | 0.358 | 0.642 |
Table 2: Percentages of correctly classi- Table 3: Intersection-over-Union overlap ra-
fied pixels on iCoseg dataset. tios on Fashionista dataset.

approaches work less well. As these object categories have large pose variance, the proposed
local shape transfer strategy may handle them better.

Our approach outperforms other approaches based on local region matching [24, 28]. We
believe that it is the patch-level structured consistency that makes difference. We also obtain
better results than [8, 27, 29], although they used external training data. Note that [19] per-
forms quite well on the reported 14 classes, achieving 92.49% average accuracy, while our
approach obtains 92.52%. However, they also rely on training images to learn dictionaries
while our approach is unsupervised. In Table 2, our approach performs better than [6, 23]
and comparably with [7], which reports the best performance so far on iCoseg dataset. How-
ever, all of [6, 7, 23, 28] and our approach can locate the common objects quite well on this
dataset, while the main differences are mainly due to finer localization of object boundaries.
Some effective practices for co-segmentation that are missing in our current implementation
(e.g., multi-scale reasoning and joint GrabCut [7, 16]) may further improve our results on
several categories, e.g. Alaska bear and panda, where the objects exhibit extremely incon-
sistent scales and viewpoints but similar colors.

To show the weaknesses of existing co-segmentation approaches and clarify our contri-
butions, we apply the state-of-the-arts [6, 7, 10] on the Fashionista [31] dataset using the
released codes. We also compare with a GrabCut [20] baseline using a bounding box with
8 pixels margin from the image borders. Evaluations are summarized in Table 3, where the
numbers of [6, 7, 10] and our approach are averaged on all groups, while the number of the
GrabCut baseline is directly taken from [32].

Table 3 shows that the leading co-segmentation approaches have difficulty generalizing
well to this dataset. Our approach obtains promising performance on both iCoseg and Fash-
ionista datasets. Notably, we obtain 51%, 31% and 111% relative improvements over [7], [6]
and [10] on Fashionista, respectively. Due to the complexity and large variance of object ap-
pearance and pose, the template-based approaches [6, 10] may have difficulty learning a
proper template to represent the object category, while [7] often detects incomplete object
shapes and misses important object details. On the contrary, the proposed local shape trans-
fer strategy can well handle the appearance and pose variances on this dataset. See Fig. 4 for
visual comparisons.

Running time. Our approach takes around 50 minutes to process 30 images with res-
olution 300 x 200. Saliency estimation can be done in a few seconds. Building correspon-
dences, learning graph weights and optimization take 40, 0.5 and 7 minutes, respectively.
Thus, large speed improvement can be expected when integrating faster image matching
algorithms. Empirical comparisons show that the current implementation runs faster than
several state-of-the-arts [6, 7], which take more than one hour.

4.2 Sensitiveness Analysis

To study the sensitiveness of our approach, we conduct two additional experiments on Fash-
ionista dataset. In the first experiment, we evaluate the effects of local shape transfer for
image co-segmentation by sampling the weight o (see (2)) uniformly in log scale, and sum-
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Figure 4: (a) Representative segmentations of our approach on iCoseg dataset. (b) Visual
comparisons among different co-segmentaion approaches on Fashionista dataset.

marize the results in Fig. 5 (a). Note that when o = 0, no shape transfer is employed and this
variant can be seen as grab-cut with saliency cues. It is observed that non-zero assignment
of o significantly improves the results, confirming the effectiveness of local shape transfer.
It also shows that the results are relatively stable when o > 1.

In the second experiment, we investigate the segmentation accuracy as a function of the
number of images. To this end, we randomly select 10 images from a 50-image subset
of Fashionista, and incrementally adds images at random to see the performance when the
number of images increases. We repeat this step for 20 times and summarize the averaged
accuracies at each number of images in Fig. 5 (b). As expected, the accuracy increases
with more images, which provide more collective cues for co-segmentation. Note that the
accuracy converges fast when N > 20, suggesting that a smaller number of images already
enables our approach to effectively capture the inter-image relationships on this subset.

5 Conclusions

This paper proposes a novel approach for image co-segmentation. Compared with exist-
ing approaches, it does not assume a global model to represent the common objects but
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Figure 5: Sensitive analysis of the proposed approach. We show the segmentation accuracy
as a function the weight for shape transfer o (left) and the number of images N (right).

transfer their local shapes among different images. To this end, our approach constructs a
reliable patch neighbourhood system, and incorporates label consistencies among neighbour-
ing patches in different images. Compared with the state-of-the-arts, our approach performs
better or comparably on 1Coseg dataset [2], while substantially better on the challenging
Fashionista [31] dataset. For improvement, it is interesting to integrate multi-scale strategy
into our approach, or extend it for multi-foreground object co-segmentation [11].
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