BMVC 2016 Tutorial: Measurement Based Appearance Modelling

Abhijeet Ghosh Imperial College London

Material reflectance capture techniques

BRDF

SVBRDF

Surface appearance

- Bidirectional Reflectance Distribution Function (BRDF)
 - 4D general case, 3D isotropic
 - Surface reflection at one surface point
- Spatially Varying BRDF (SVBRDF)
 - 6D, BRDF per surface point
- Bidirectional Texture Function (BTF)
 - 6D, more general includes inter-reflection & scattering
 - Data-driven representation of reflectance functions

BRDF

• Defined as the ratio of reflected radiance to incident irradiance:

$$f_r(\mathbf{x}, \omega_r, \omega_i) = dL_r(\mathbf{x}, \omega_r)/dE_i(\mathbf{x}, \omega_i)$$
$$= dL_r(\mathbf{x}, \omega_r)/(L_i(\mathbf{x}, \omega_i) \cos\theta \, d\omega_i)$$

- the units of a BRDF are inverse steradian [1/sr].

BRDF

• Physically based BRDFs have 2 important properties: Helmholtz Reciprocity: $f_r(x, \omega_r, \omega_j) = f_r(x, \omega_j, \omega_r)$. and

Energy Conservation: $\int_{\Omega} f_r(\mathbf{x}, \omega_r, \omega_i) \cos\theta_i d\omega_i \leq 1$, for all ω_r in Ω .

Reflection Models

- Mathematical representation a class of BRDFs
 - typically with a small number of parameters
- Types of BRDF models
 - Phenomenological
 - Physically based
- Parameter fitting
 - Measured data

Phenomenological Models

- Equations that describe the "qualitative behavior" of surfaces
 - matte, glossy or plastic, roughness
- Examples
 - Lambertian diffuse reflection
 - Phong specular reflection [Phong75]

Lambertian Reflection

- $f_r(\omega_r, \omega_i) = \rho_d / \pi$
 - $-\rho_d$ is the diffuse reflection coefficient [0,1]
 - $\pi = \int_{\Omega} \cos\theta \, d\omega$, is the normalization constant!
 - Well suited for measurements

Glossy and Retro-reflective

- Glossy surfaces plastic, high gloss paints, polished wood
- Retro-reflective velvet, moon's surface, road signs, bike reflectors

Blinn-Phong Model

 $\omega_{\rm h} = (\omega_{\rm i} + \omega_{\rm o})/||\omega_{\rm i} + \omega_{\rm o}||$

•
$$f_r(\omega_o, \omega_i) = \rho_d / \pi + \rho_s (n \cdot \omega_h)^s / (n \cdot \omega_i)$$

= $\rho_d / \pi + \rho_s (\cos\theta)^s / (n \cdot \omega_i)$

Lafortune Generalized Cosine Lobe

Fits to measured data

- $f_r(\omega_{r,}\omega_{i}) = \rho_d/\pi + \sum_j [C_{x,j}(\omega_{i,x}\cdot\omega_{r,x}) + C_{y,j}(\omega_{i,y}\cdot\omega_{r,y}) + C_{z,j}(\omega_{i,z}\cdot\omega_{r,y})]^{s,j}$
 - Off-specularity, retro-reflection, anisotropy
 - Well suited for measured data!

Ward Anisotropic Model

Generlization of microfacet model to account for anisotropy!

- $f_r(\omega_r, \omega_i) = \rho_d / \pi + \rho_s$ 1 $exp[-tan^2\delta(cos^2\phi/\alpha_x^2 + sin^2\phi/\alpha_y^2)]$ $\sqrt{cos\theta_i cos\theta_r}$ $4\pi\alpha_x\alpha_y$
 - elliptical Gaussians, $\alpha_x \& \alpha_y$ control standard deviation in x & y
 - energy preserving & reciprocal

Physically Based: Microfacet Model

- $f_r(\omega_r, \omega_j) = \frac{D(\omega_h) G(\omega_r, \omega_j) F_r(\omega_h)}{4 (n \cdot \omega_j) (n \cdot \omega_r)}$
 - D, the distribution term
 - G, the geometric term
 - F, the Fresnel term

Torrance-Sparrow Model

- $D(\omega_h) = \exp[\tan \delta/m]^2$ Beckman distribution $m^2 \cos^4 \delta$
 - $-\delta$, angle between n and ω_h
 - m, root-mean-square slope of microfacets

•
$$G(\omega_r, \omega_i) = \min\{1, 2 (n \cdot \omega_h) (n \cdot \omega_r), 2 (n \cdot \omega_h) (n \cdot \omega_i)\}$$

 $(\omega_r \cdot \omega_h) (\omega_r \cdot \omega_h)$

V-shaped grooves

Fresnel Reflectance

- Reflection from a surface is view dependent
- Fresnel equations
 - Maxwell's equations at smooth surfaces nt
 - index of refraction and polarization!
- Two kinds of Fresnel equations:
 - Dielectric materials (insulators) reflection & transmission
 - Conductors (metals) only reflection & some absorption

ηi

Dielectric Fresnel

• Fresnel reflectance for parallel polarized light r₁:

 $\mathsf{R}_{\scriptscriptstyle \parallel} = \left| \frac{\mathsf{\eta}_{\mathsf{t}} \cos \theta_i - \mathsf{\eta}_{\mathsf{i}} \cos \theta_t}{\mathsf{\eta}_{\mathsf{t}} \cos \theta_i + \mathsf{\eta}_{\mathsf{i}} \cos \theta_t} \right|^2$

• Fresnel reflectance for perpendicular polarized light r.:

$$\mathsf{R}_{\perp} = \left| \frac{\eta_{\mathrm{i}} \cos \theta_{\mathrm{i}} - \eta_{\mathrm{t}} \cos \theta_{\mathrm{t}}}{\eta_{\mathrm{i}} \cos \theta_{\mathrm{i}} + \eta_{\mathrm{t}} \cos \theta_{\mathrm{t}}} \right|^{2}$$

- Unpolarized reflectance $F_r = \frac{1}{2}(R_{\parallel} + R_{\perp})$.
 - Transmittance $T_r = 1 F_r$.

- R_p parallel polarized, R_s perpendicular polarized
- Schlick approximation given reflectance R₀

Conductors Fresnel

And

• No transmission, but some absorption k:

 $R_{II} = \frac{(\eta^2 + k^2) \cos\theta_i^2 - 2\eta \cos\theta_i + 1}{(\eta^2 + k^2) \cos\theta_i^2 + 2\eta \cos\theta_i + 1}$

 $\mathsf{R}_{\scriptscriptstyle \perp} = \frac{(\eta^2 + k^2) - 2\eta \cos\theta_i + \cos\theta_i^2}{(\eta^2 + k^2) + 2\eta \cos\theta_i + \cos\theta_i^2}$

Conductors Fresnel

- No transmission, complex index of refraction: η, k
- High reflectance across angles of incidence

BRDF Measurement

- Analytical models have limitations
 - describe specific kinds of surfaces
 - appropriate parameters not easy to obtain!
- Measurement of BRDFs a solution
 - direct usage as tabulated data
 - fit to analytic models or basis functions

Dense Measurements

- Gonioreflectometer
 - Cornell, CUReT, NIST
 - Missing measurements interpolation!

Goneo-reflectometer

DMS 803 6 motorised axis

SOC210-BDR

LED-based Measurement

[Ben-Ezra et al. 08]

- LEDs as emitters as well as sensors!
- Parallel measurements with point sampling

Image-based Measurements

[Marschner et al. 00]

[Matusik et al. 03]

100 BRDFs MERL database

Spherical Sample (Isotropic BRDF = 3D function)

More than 100 different BRDFs

20-80M Reflectance Measurements per Material

Standard

Standard

Incident: $\omega_i = (\theta_i, \Phi_i)$

Standard

Incident: $\omega_i = (\theta_i, \Phi_i)$ Exitant: $\omega_o = (\theta_o, \Phi_o)$

Standard

Incident: $\omega_i = (\theta_i, \Phi_i)$ Exitant: $\omega_o = (\theta_o, \Phi_o)$

Rusinkiewicz

Halfway: $\omega_h = (\theta_h, \Phi_h)$

Standard

Incident: $\omega_i = (\theta_i, \Phi_i)$ Exitant: $\omega_o = (\theta_o, \Phi_o)$

Rusinkiewicz

Halfway: $\omega_h = (\theta_h, \Phi_h)$ Difference: $\omega_d = (\theta_d, \Phi_d)$

Advantage:

Specular highlight Around halfway vector

Rusinkiewicz

Halfway: $\omega_h = (\theta_h, \Phi_h)$ Difference: $\omega_d = (\theta_d, \Phi_d)$

Standard

Reparameterization ω_i

Full Rank!

Low Rank!

Reparameterization ω_{d} 1.5 1 0.5 0 1.5 ω_h 1 0.5 0 -0.5 1.5 -1 0.5 0 -0.5 -1.5 -1 -1.5 Sample Densely Rusinkiewicz

Reparameterized data

Tabulated: 90 (θ_h) x 90 (θ_d) x 360 (ϕ_d)

• Easy to use in rendering system

Disadvantages:

- Requires 17Mb / BRDF
- 12 Hours to capture

Direct Visualization (Tabulated)

Data-driven BRDF Representations

Data-driven Analysis

- Linear Data Analysis (PCA)
- Non-linear Data Analysis
- BRDFs as data driven basis

[Matusik et al. 2003]

Linear Data Analysis (PCA)

- Linearize each BRDF in a (long) vector
- Apply PCA on all these vectors
- Keep n largest principal vectors

Linear Data Analysis (PCA)

- Linearize each BRDF in a (long) vector
- Apply PCA on all these vectors
- Keep n largest principal vectors

PCA space exploration

Problem: non-physical BRDFs

45D space contains non-physical BRDFs

Measured BRDF

(point A in 45D space)

Non-physical BRDF

(point close to A in 45D space)

Move a little => fall outside measured space

Only move over manifold!

Non-linear Data Analysis

Local Linear Embedding

Non-linear Data Analysis

Non-linear Data Analysis

Charter Method [Brand 2003]: kernel-based mixtures of projections that minimizes distortions of local neighborhoods

Non-linear manifold exploration

BRDFs as Basis Functions

Representing a new BRDF as a linear combination of the 100 measured BRDFs

Solution

Linear equation: b = Pa

```
b = linearized BRDF (4M \times 1) (new data)
```

P = matrix of all BRDFs (4M x 100) (MERL database)

a = unknowns (100 x 1)

Hugely over-constrained (many more knowns than unknowns)

Alternate randomized solution

• 800 rows from the original P (randomly selected)

b' = P'a

- b' = 800 x 1 vector
- P' = 800 x 100 vector
- $a = 100 \times 1 \text{ vector}$

• 800 (ω_i , ω_o) samples (measurements)

BRDFs as Basis Functions

BRDFs based on 800 samples

Optimal BRDF sampling

[Neilson et al. 15]

- Up to 5 views sufficient for spherical samples
- Fitting based on projection to space spanned by 100 MERL BRDFs

Optimal BRDF sampling

[Neilson et al. 15]

Material	n=1 $n=2$		n=5	Refe	Reference	
black-soft-plastic						
blue-acrylic					-	
blue-metallic-paint2						
green-fabric						
cayman [Cornell]						
garnet-red [Cornell]						
krylon-blue [Cornell]						

Image-based Measurements

Catadioptric Measurements

[Kuthirummal&Nayar 06]

Mirrors

Catadioptric Measurements

Catadioptric Measurements

- Mukaigawa et al. point sample the BRDF
- Ghosh et al. project basis functions

[Mukaigawa et al. 07]

Basis Illumination

$$\hat{f}_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) \cos \theta_i \approx \sum_k Z_k(\boldsymbol{\omega}_i) z_k(\boldsymbol{\omega}_o),$$

$$z_k(\omega_o) = \int_{\mathbf{Z}} Z_k(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i \, d\omega_i.$$

- Zonal basis functions (related to spherical harmonics)
- Coefficients of BRDF in the basis recorded

Basis Illumination

- Zonal basis functions (related to spherical harmonics)
- Coefficients of BRDF in the basis recorded

SVBRDF (Spatially Varying BRDFs)

SVBRDF

- •6D function (Surface position, incident, exitant)
- •Planar surfaces
- Many independent surface points with different BRDFs
- •Not a simple texture!

Question

- •How to efficiently capture and model?
 - Analytic
 - Data-driven
 - Statistical/Frequency domain modeling

Linear Light Source Reflectometry

Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul Debevec, SIGGRAPH 2003

Linear Light Source Reflectometry

EOS-1 Ds

DIGITAL

SVBRDF sample

Linear light source

Legos
SVBRDF Parameters

Diffuse Intensity

Specular Intensity

Specular Roughness

Translucency

Normals (X & Y gradients)

Displacement

Motivation: Linear Light Source

- Fewer images needed to cover planar samples with linear light source
- Dynamic range compression compared to point light source
 - can be photographed with single exposure instead of HDR
- Simple machinery of linear 1D translation to cover entire sample

Capture

Reflectance trace for each pixel

X-axis: time (light motion)

Y-axis: reflectance

Diffuse peak td coincides with light aligned with surface normal

Specular peak tm coincides with light aligned with mirror reflection

- 1. Fit diffuse
- 2. Subtract diffuse
- **3.** Estimate mean and variance of specular
- 4. Look-up specular parameters

- 1. Fit diffuse
- 2. Subtract diffuse
- **3.** Estimate mean and variance of specular
- 4. Look-up specular parameters

- 1. Fit diffuse
- 2. Subtract diffuse
- **3.** Estimate mean and variance of specular
- 4. Look-up specular parameters

- 1. Fit diffuse
- 2. Subtract diffuse
- 3. Estimate mean and variance of specular

4. Look-up specular parameters

- 1. Fit diffuse
- 2. Subtract diffuse
- 3. Estimate mean and variance of specular

Results

Pocket Reflectometry

Ren et al. SIGGRAPH 2011

Pocket Reflectometry

BRDF chart

plaster	sliver paint	rubber	polished acrylic	aluminium	fluorescent paint
matte tape	black paper	polished resin	bronze	bronze metallic paint	acrylic
plastic	brass	coated metallic paint	polyethylene	red metallic paint	alumina
80% Spectralon	leather	matte golden paint	alum-bronze	tinfoil	lactoprene

Pocket Reflectometry

Time-shift compensation

- Different surface points will have their peaks at different time (frame)
- Reflectance trace of BRDF chart cannot be directly compared with sample

Dynamic time warping

Frame #

Frame #

Frame #

Frame #

Frame #

900

900

900

900

900

800

800

800

800

800

Alignment of reflectance traces of BRDF chart with sample

Reflectance estimation from chart

$$\mathbf{r} = d \, \mathbf{a} + s \, \mathbf{b},$$

$$a(t) = \int_{\Omega^+} L_t(\mathbf{i}) \,\alpha(\mathbf{i}, \mathbf{o}) \,(\mathbf{n} \cdot \mathbf{i}) \,\mathrm{d}\mathbf{i}, \quad b(t) = \int_{\Omega^+} L_t(\mathbf{i}) \,\beta(\mathbf{i}, \mathbf{o}) \,(\mathbf{n} \cdot \mathbf{i}) \,\mathrm{d}\mathbf{i},$$

$$\min_{u_0,u_1,\cdots,u_k} \left\| \mathbf{r} - u_0 \, \mathbf{a} - \sum_{j=1}^k u_j \, \mathbf{b}_j \right\|, \quad u_j \ge 0, \ \mathbf{b}_j \in \Phi(\mathbf{r})$$

- a diffuse BRDF with albedo d
- b specular BRDF with parameters s
- Instead of direction estimation of s, estimate a linear combination of k exemplar BRDFs in BRDF chart

Bumpy surface estimation

- Compute surface normal as intersection of two orthogonal passes of light source to estimate X & Y components of surface normals
- Assumption mostly flat surface, so no need to estimate z component

Bumpy surface results

Flat surface results

Real Photo in Incandescent Bulb

Rendering Result in Incandescent Bulb

Rendering Results in Natural Environmental Lighting

Measure and fit

- Analytic BRDF models
 - albedo
 - specular roughness
 - normal and tangent directions

• Is **DIRECT** estimate possible?

2nd order statistics of reflectance [Ghosh et al. 09]

- Specular reflection
 - measure of variance σ² about
 mean μ
 - reflection vector and specular roughness
 - computational illumination for optical measurement of reflectance statistics!

0th, 1st & 2nd moments

- In 1D, the moments of f(x):
 - total energy a
 - mean µ
 - variance σ^2

$$\alpha = \int \mathbf{f}(x) \, dx = L_0,$$

$$\mu = \int x \frac{\mathbf{f}(x)}{\alpha} \, dx,$$

$$= \frac{1}{\alpha} \int x \, \mathbf{f}(x) \, dx = \frac{L_1}{L_0},$$

$$\sigma^2 = \int (x - \mu)^2 \frac{\mathbf{f}(x)}{\alpha} \, dx,$$

$$= \frac{L_2}{L_0} - \frac{L_1^2}{L_0^2}.$$

Oth spherical moment

1st spherical moment

2nd spherical moment

Need to compute statistics in local shading frame!

Isotropic material

• Anisotropic material

normal tangent bitangent

Spherical harmonics

- Steerable spherical basis
 - SH basis can be rotated over the 3D sphere
- Capture reflectance with fixed SH patterns
 - Computation steering in post-process for rotations

normal tangent bitangent

Spherical harmonics

- Anisotropic material
 - σ_x^2 and σ_y^2

Isotropic reflectance

spec. normal

spec. albedo

spec. roughness

rendering

photograph

Anisotropic reflectance

spec. normal

spec. albedo

anisotropy

 (σ_x / σ_y)

tangent

bitangent

rendering

photograph

Flat sample

- Project 2nd order gradients from LCD screen
 - Sufficient to cover specular lobe of flat samples
- Screen is already polarized
 - Diffuse specular separation

Flat sample

- Project 2nd order gradients from LCD screen
 - Sufficient to cover specular lobe of flat samples
- Screen is already polarized
 - Diffuse specular separation

Specular materials!

Specular materials!

LED sphere

Continuous spherical harmonic illumination

[Tunwattanpong et al. 2013]

Hardware setup

continuous illumination

SH illumination

Diffuse-specular separation

Specular response only!

Diffuse-specular separation

Oth order energy

1st order energy

2nd order energy

3rd order energy!

5th order energy!

Constant illumination

Diffuse albedo

Reflectometry from SH

Harmonics

Specular roughness

Stereo reconstruction

diffuse albedo

specular albedo

reflection vector

5 cameras = 5 views

Stereo reconstruction

diffuse albedo

specular albedo

reflection vector

5 cameras × 5 rotations = 25 views

Stereo reconstruction

photograph

reconstructed geometry

Rendering with geometry & reflectance

Validation

photograph

Fourier basis measurement [Aitalla et al. 2013]

- Fourier basis illumination
 - Spectrum decay measure of glossiness

Fourier basis measurement [Aitalla et al. 2013]

- Fourier basis illumination
 - Spectrum decay measure of glossiness
 - Surface normal inferred from position (phase of Fourier basis) on screen

Fourier basis measurement [Aitalla et al. 2013]

0

0

 $egin{aligned} S_0 &= I \ S_1 &= Ip\cos 2\psi\cos 2\chi \ S_2 &= Ip\sin 2\psi\cos 2\chi \ S_3 &= Ip\sin 2\chi \end{aligned}$

Poincare sphere

Right-hand circularly polarized

- Stokes reflectance field
 - Mueller calculus

$$\mathbf{s}' = \mathbf{C}(\phi)\mathbf{D}(\delta;\mathbf{n})\mathbf{R}(\theta;\mathbf{n})\mathbf{C}(-\phi)\mathbf{s}$$

$$\mathbf{C} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\phi & -\sin 2\phi & 0 \\ 0 & \sin 2\phi & \cos 2\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R} = \begin{pmatrix} \frac{\mathbf{R}_{\parallel} + \mathbf{R}_{\perp}}{2} & \frac{\mathbf{R}_{\parallel} - \mathbf{R}_{\perp}}{2} & 0 & 0\\ \frac{\mathbf{R}_{\parallel} - \mathbf{R}_{\perp}}{2} & \frac{\mathbf{R}_{\parallel} + \mathbf{R}_{\perp}}{2} & 0 & 0\\ 0 & 0 & \sqrt{\mathbf{R}_{\parallel} \mathbf{R}_{\perp}} & 0\\ 0 & 0 & 0 & \sqrt{\mathbf{R}_{\parallel} \mathbf{R}_{\perp}} \end{pmatrix}$$

• Stokes reflectance field

$$\mathbf{s}' = \mathbf{C}(\phi)\mathbf{D}(\delta;\mathbf{n})\mathbf{R}(\theta;\mathbf{n})\mathbf{C}(-\phi)\mathbf{s}$$

- Mueller calculus

Mobile camera-flash measurements!

Stationary materials [Aittala et al. 15]

Isotropic SVBRDFs [Riviere et al. 16]

Stationary materials [Aitalla et al. 2015]

- Two shot capture!
 - Ambient + flash image
 - Repeating texture/material
 - Statistical appearance sharing

SVBRDF Decomposition

Stationary materials [Aitalla et al. 2015]

Stationary materials [Aitalla et al. 2015]

	Diffuse	Specular	Anisotropy	Glossiness	Normals	Photo	Relit master	Photo	Relit master
	albedo	albedo	Anisouopy	Clossificss	INOTIMAIS	(center)	(center illum.)	(side)	(side illum.)
mge	a distant	Tarka	Liphi	的复数	10 20	RUM.	Lutri	hah	Lut
-OFa	Jaho II	3 TEM	9.4.47	國和中的	1. 2.	A Inc	differ 1	1. 1. 1.	444
Tabric	1 al a la a la	小型是				i film	Parts 1	山為村	444
dark				北林		111	進品		
000M						4.4	16 It	推。	
UMO.									
ok-bi	1132					法不会			
pq	134:01					和自然的		ANT AT PP	
lack				The state of the s					
						an ^{den} an 12			
b		Little A Table 2				And a second sec			
OOL		秋日 臣				411		作性局	用有非
p-poo	PP ()	a fi				TT		目計門	
Ň	湖沿中的	1.1.17			t de de		1116.74	新学校	招助任 者。
atches	The second	SA I				N K PK			
u_scra		1 sty		3 12 24			1 Mar	THE REAL	TALF
neta	A CARE					The second		en la	

Mobile surface reflectometry

0

[Riviere et al. 16]

- backscatter measurements
- rough specular BRDFs

Data registration

- Feature extraction (Harris corners)
 - Matched with optical flow
- Homography-based warping

Frame 1

Frame i

Frame N

Light/view direction estimation

- $\omega_i = \omega_r$ (back scattering direction)
- Android standard API (getRotationMatrix)

- 3D tracking
 - Simultaneous Localisation And Mapping (PTAM [G. Klein and D. Murray 2007])
 - Limited to feature rich scenes
 - SfM alternate solution

[Riviere et al. 16]

Normal map: Weighted average

Normal map

[Riviere et al. 16]

[Riviere et al. 16]

Rendering – frontal view

$$\omega_i = \omega_r \uparrow \mathbf{n}$$

shaders

Rendering

Photograph

[Riviere et al. 16]

Rendering – novel view

shaders

Rendering

Photograph

[Riviere et al. 16]

Rendering – novel view

Rendering

Photograph

Material appearance recap ...

Thank You!

