BMVC 2016 Tutorial: Measurement Based Appearance Modelling

Abhijeet Ghosh Imperial College London

Applications: Phorealistic Computer Graphics

Special Effects / Movies

Applications: Phorealistic Computer Graphics

Games

Other visualization applications

Product design

Speaker

Abhijeet Ghosh ghosh@imperial.ac.uk http://www.doc.ic.ac.uk/~ghosh

Senior Lecturer in Computing Imperial College London 2012 – present Realistic Graphics and Imaging group EPSRC Early Career fellow

Research Assistant Professor, Graphics Lab USC Institute for Creative Technologies 2007 – 2012

Research in Graphics and Imaging

Facial Acquisition and Reflectance

Skin micro-geometry deformation SIGGRAPH 2015

Diffusion from spherical gradients IEEE CG&A 2013

Facial micro-geometry Eurographics 2013

Multiview face capture SIGGRAPH Asia 2011

Layered facial reflectance SIGGRAPH Asia 2008

Research in Graphics and Imaging

Surface Reflectometry

Mobile surface reflectometry Computer Graphics Forum 2015

Continuous SH illumination SIGGRAPH 2013

Circularly polarized spherical illumination SIGGRAPH Asia 2010

Second order statistics EGSR 2009

Basis illumination BRDF acquisition ICCV 2007 (Marr Prize Hon. Mention)

Facial Capture and Modeling

Imagebased Modelbased Multi-layer skin reflectance

Facial capture techniques

Polarized illumination

Reflectance capture techniques

BRDF

SVBRDF

Facial Appearance Capture and Modelling

- Image based
 - Reflectance field
 - Relighting

- Model based
 - 3D geometry
 - Surface reflectance
 - Subsurface scattering

Image Based Relighting & Reflectance Field

Debevec, Hawkins, Tchou, Duiker, Sarokin, and Sagar. *Acquiring the Reflectance Field of a Human Face*. SIGGRAPH 2000

Reflectance field

- 8D general case [Debevec 00]
 - 4D incident & 4D reflected light field

- 4D special case
 - Distant illumination
 - Fixed viewpoint

Light Stage 1: 60-second exposure

Light Stage 4D Reflectance Field

Light Stage 4D Reflectance Field

Dot product of reflectance field and light probe

Image Based Relighting

Relit result!

Image Based Relighting

Relit results

Light Stage designs for IBR

Light Stage 2 [Hawkins et al. 04]

Light Stage 5 [Wenger et al. 05]

Reflectance Function

• Resampling of reflectance field

Reflectance Function

- Per-pixel light transport
 - Diffuse, specular
 - Subsurface scattering
 - Inter-reflection

Model-Based Facial Appearance! [Debevec et al. 00]

Facial geometry (structured light)

Facial Relighting (Interpolated reflectance field)

Model based view interpolation!

Model-Based Facial Appearance

- Dense measurements [Weyrich et al. 06]
 - 16 cameras, 150 lighting directions _
 - commercial face scanner for geometry
 - specular BRDF, single layer subsurface scattering

LED Sphere

Viewpoint freedom!

Face renderings

Skin surface (specular) reflectance

- Bidirectional reflectance distribution function (BRDF), 4D function
 - 3D for isotropic materials like skin
 - Microfacet model

Microfacet Models

- Rough surfaces modeled as a collection of microfacets
 - each face a perfect specular reflector
 - distribution of faces described statistically

Cook-Torrance Model

- $f_r(\omega_r, \omega_i) = \frac{D(\omega_h) G(\omega_r, \omega_i) F_r(\omega_h)}{4 (n \cdot \omega_i) (n \cdot \omega_r)}$
 - D, the distribution term
 - G, the geometric term
 - F, the Fresnel term

Cook-Torrance Model

- $D(\omega_h) = \exp[\tan \delta/m]^2$ Beckman distribution $m^2 \cos^4 \delta$
 - δ , angle between n and ω_h
 - m, root-mean-square slope of microfacets

- $D(\omega_h) = (s + 2) (n \cdot \omega_h)^s$ Blinn microfacet distribution 2π
 - Replace Gaussian with a cosine lobe
 - Normalization term (s + 2)/ $2\pi = \int_{\Omega} (n \cdot \omega_h)^s \cos\theta_h d\omega_h$

Geometric effects

- Geometric effects of microfacets
 - masking
 - shadowing
 - interreflections

Geometric effects

• $G(\omega_r, \omega_i) = \min\{1, 2 (n \cdot \omega_h) (n \cdot \omega_r), 2 (n \cdot \omega_h) (n \cdot \omega_i) \}$

 $(\omega_r \cdot \omega_h) \qquad (\omega_r \cdot \omega_h)$

V-shaped grooves

Fresnel Reflectance

- Reflection from a surface is view dependent
- Fresnel equations
 - Maxwell's equations at smooth surfaces
 - index of refraction and polarization!
 - Dielectrics vs metals
- Approx. using Schlick's formula:
 - reflectance at normal incidence R_0
 - No need for index of refraction

$$R(heta)=R_0+(1-R_0)(1-\cos heta)^5$$

ηi

Fresnel

- Schlick formula approximates red curve for unpolarized reflectance
- Well suited for dielectrics like skin!

Facial specular BRDF

- Spatially varying fits of specular albedo and roughness over various facial regions
 - Cook-Torrance [Weyrich 06]

Uniform BRDF

Skin subsurface (diffuse) scattering

- Bidirectional surface scattering distribution function (BSSRDF), 8D function
 - 4D approximation for highly scattering materials like skin!
 - Dipole diffusion model [Jensen et al. 01]

Diffuse BSSRDF [Jensen et al. 01]

BSSRDF $S_d(x_i, \omega_i, x_o, \omega_o) \approx R_d(x_i, x_o)$

- R_d(x_i, x_o) models isotropic Gaussian-like diffusion between points x_i and x_o
 - Dipole model for homogeneous semi-infinite medium
 - Sum of two Gaussian like fall-offs

Diffuse BSSRDF [Jensen et al. 01]

$$R_d(r) = \frac{\alpha'}{4\pi} \left\{ z_r \left(\sigma_{tr} + \frac{1}{d_r} \right) \frac{e^{-\sigma_{tr}d_r}}{d_r^2} + z_v \left(\sigma_{tr} + \frac{1}{d_v} \right) \frac{e^{-\sigma_{tr}d_v}}{d_v^2} \right\}$$

- R_d(x_i, x_o) models isotropic Gaussian-like diffusion between points x_i and x_o
 - Two parameters, albedo and translucency (diffuse mean free path in mm)

Measuring facial subsurface scattering

- LED probe [Weyrich et al. 06]
 - special contact device with spatial light sensors for diffusion
 - one measurement over entire region
 - dipole diffusion fit

[Weyrich et al. 06]
Measuring facial subsurface scattering

- phase-shifted stripes [Tariq et al. 06]
 - inverse rendering for dipole diffusion parameter fitting
 - 40 phase shifts time consuming

Rapid acquisition of geometry and reflectance

Photograph

Geometry

Rendering

[Alexander et al. 2010]

[Ma et al. 2007]

- Polarization for diffuse/specular separation
 - separate diffuse & specular normals
 - albedo maps

LED sphere

Linear polarization pattern

[Ma et al. 2007]

- Polarization for diffuse/specular separation
 - separate diffuse & specular normals
 - albedo maps

- Polarization for diffuse/specular separation
 - separate diffuse & specular normals
 - albedo maps
 - structured light for base geometry

High res. geometry

- Polarization for diffuse/specular separation
 - separate diffuse & specular normals
 - albedo maps
 - structured light for base geometry

Hybrid normal rendering

Polarization

- Light a transverse electromagnetic wave
 - natural state un-polarized
 - electric field randomly oriented
- Linear polarization
 - electric field in fixed plane

Polarization based reflectance separation

Parallel pol.

Cross pol.

Pol. preserving

[Ma et al. 2007] [Alexander et al. 2010]

- Polarization difference imaging
 - Parallel and cross pol. states

Polarized spherical gradients

Polarized spherical gradients

Skin Reflectance

Skin diagram (courtesy University of Iowa) Epidermis

Dermis

Photograph

Diffusion models

Single layer diffusion [Jensen et al. 01]

Multipole model – Donner&Jensen 05

- Multipole models reflectance and transmissions through thin layers more accurately than dipole model
- More accurate for epidermal scattering

Kubelka-Munk theory

3 layer model rendering

[Donner & Jensen05]

Epidermis

T1

Dermis

Bloody Dermis

Layers based on tissue optics [Tuchin 2000]

Τ2

Layers combined with Kubelka-Munk theory

Spectral 2 layer model: Donner&Jensen06

Epidermis absorption:

 $\sigma_a^{epi}(\lambda) = C_m(\beta_m \sigma_a^{em}(\lambda) + (1 - \beta_m) \sigma_a^{pm}(\lambda)) + (1 - C_m) \sigma_a^{baseline}$

Melanin type $eta_m \in [0,1]$ and concentration $C_m \in [0,1]$

Dermis absorption:

 $\sigma_a^{derm}(\lambda) = C_h(\gamma \sigma_a^{oxy}(\lambda) + (1 - \gamma) \sigma_a^{deoxy}(\lambda)) + (1 - C_h) \sigma_a^{baseline}$

Hemoglobin oxygenation $\gamma = 0.7$ and concentration $C_h \in [0,1]$

Spectral 2 layer model: Donner&Jensen06

Measuring spectral parameters– Donner et al. 08

- Multi-spectral imaging
- Inverse rendering for parameters: melanin, hemoglobin & inter layer absorption

Measuring spectral parameters– Donner et al. 08

430 nm

450 nn

470 n

- Multi-spectral imaging
- Inverse rendering for parameters: melanin, hemoglobin & inter layer absorption

Model Fit

Layered Facial Reflectance

[Ghosh et al. 2008]

Approach

- Model skin reflectance as combination of different layers
 - specular reflection
 - single scattering
 - shallow multiple scattering
 - deep multiple scattering

Skin reflectance model

Acquisition setup

- Canon 1D Mark III digital SLRs
- LCD projector vertically polarized
- LED sphere with linear polarizers (similar to [Ma et al. 07])

Measured components

(a) specular albedo

(b) front lit, parallel polarized

(d) front lit, cross polarized

(e) shallow scattering

╋

(f) deep scattering

(d) = (e) + (f)

(c) diffuse albedo

Exploiting polarization

(a) front-lit, parallel polarized

(b) front-lit, cross polarized

(c) specular reflection + single scattering

Separating single and multiple scattering

Specular reflection

- Cook-Torrance micro-facet BRDF model
- separate distributions for different regions of the face

segmentation

Single scattering

- Polarization preserving non-specular scattering
- Hanrahan & Krueger BRDF model
- Heney-Greenstein phase function fit to backscattering

$$p_{HG}(\cos\theta) = \frac{1 - g^2}{4\pi (1 + g^2 - 2g\cos\theta)^{3/2}}$$

- θ is the angle between $\omega \& \omega'$
- $g \rightarrow$ [-1, 1], g > 0 forward scatting

- Model skin as a 2 layer scattering medium
 - epidermis (~0.5mm) and dermis
- Direct-indirect separation
 [Nayar et al. 06]
 - illumination frequency determines separation

Direct-indirect separation [Nayar et al. 06]

- Cross-polarized separation
 - width 1.2 mm
 - approx. separate epidermal & dermal scattering!

- Cross-polarized separation
 - width 1.2 mm
 - approx. separate epidermal & dermal scattering!

- Cross-polarized separation
 - width 1.2 mm
 - approx. separate epidermal & dermal scattering!

- Cross-polarized separation
 - width 1.2 mm
 - approx. separate epidermal & dermal scattering!

- Cross-polarized separation
 - width 1.2 mm
 - approx. separate epidermal & dermal scattering!

shallow scattering (max - min) deep scattering (2*min)

Estimating scattering

exposure bracketing 2 f-stops

- Circular black dot pattern for observing spatially varying SSS
- 2D LUT for translucency estimation
 - Monte Carlo simulation for LUT

forehead

mouth

Rendering comparison

single layer + specular

layered rendering

photograph

Avatar (2009)

Fixed viewpoint acquisition

LED sphere
Fixed viewpoint acquisition

Linear polarization

frontal scan

right side

left side

manual rotation for side-to-side scans

Passive Multiview Capture

[Beeler et al. 2010]

7 cameras

Passive Multiview Capture

[Beeler et al. 2010]

Multiscale geometric refinement

Diffuse texture high-pass filtering (meso-structure)

Mesoscopic augmentation ("dark is deep" emboss)

Passive Multiview Capture

[Beeler et al. 2010]

Multiview Polarization for Face Capture

[Ghosh et al. 2011]

Acquisition setup

Multiview setup (top-view)

Lines of latitude-longitude linear polarization

Cross polarization

Parallel polarization

Multiview setup (top-view)

Lines of longitude linear polarization

Circular polarization – rotational symmetry

Multiview polarization

Cross polarization

Parallel polarization

Polarization diff.

Specular normal

Multiview stereo

diffuse albedo

specular albedo

specular normal

five viewpoints

Facial rendering

4K x 4K Rendering

geometry

rendering

Polarization vs texture for mesostructure

[Beeler et al. 10]

[Ghosh et al. 11]

Presidential scanning-Smithsonian/USC 2014

President Barak Obama scanned with portable light-stage for multiview capture with polarized spherical gradient illumination

Presidential scanning- Smithsonian/USC 2014

President Barak Obama scanned with portable light-stage for multiview capture with polarized spherical gradient illumination

Face Close-up

Mesostructure 4K displacement maps [Ghosh et al. 2011]

Photograph

Microstructure 16K displacement maps

Facial Microgeometry

[Graham et al. 2013]

16K x 16K Rendering

Approach

- Constrained texture synthesis!
 - microstructure digitized from skin samples
 - 10 micron resolution
 - microscale reflectance measurement
 - Image analogies for synthesis

16K displacement maps

Recording skin microstructure

- 12-light dome
 - Canon 1DMark III camera with a Canon 100mm macro lens
 - 24mm by 16mm aperture ~ 8
 microns resolution
 - each light produces either of two linear polarization conditions

Setup 1

Male subject

Forehead

Temple

Cheek

Nose

Chin

Female subject

Forehead

Temple

Cheek

Nose

Chin

BRDF Fitting

- Cook-Torrance BRDF model for specular + single scattering [Ghosh et al. 08]
 - Skin protrudes through metal aperture resulting in sufficient normal variation
 - Two lobes of the Beckmann distribution

Skin patch

BRDF Fitting – Subject 1

Light 1

Light 2

Photograph

Rendering

BRDF fits at different scales

Meso-scale	Subject 1	Subject 2
Forehead	m1=0.250, m2=0.125, w=0.85	m1=0.250, m2=0.125, w=0.80
Temple	m1=0.225, m2=0.125, w=0.80	m1=0.225, m2=0.150, w=0.70
Cheek	m1=0.275, m2=0.200, w=0.60	m1=0.225, m2=0.150, w=0.50
Nose	m1=0.175, m2=0.100, w=0.65	m1=0.150, m2=0.075, w=0.80
Chin	m1=0.250, m2=0.150, w=0.35	m1=0.300, m2=0.225, w=0.15
Micro-scale	Subject 1	Subject 2
Micro-scale Forehead	Subject 1 m1=0.150, m2=0.050, w=0.88	Subject 2 m1=0.150, m2=0.050, w=0.60
Micro-scale Forehead Temple	Subject 1 m1=0.150, m2=0.050, w=0.88 m1=0.150, m2=0.075, w=0.55	Subject 2 m1=0.150, m2=0.050, w=0.60 m1=0.175, m2=0.050, w=0.80
Micro-scale Forehead Temple Cheek	Subject 1 m1=0.150, m2=0.050, w=0.88 m1=0.150, m2=0.075, w=0.55 m1=0.150, m2=0.125, w=0.60	Subject 2 m1=0.150, m2=0.050, w=0.60 m1=0.175, m2=0.050, w=0.80 m1=0.100, m2=0.075, w=0.50
Micro-scaleForeheadTempleCheekNose	Subject 1 $m1=0.150, m2=0.050, w=0.88$ $m1=0.150, m2=0.075, w=0.55$ $m1=0.150, m2=0.125, w=0.60$ $m1=0.100, m2=0.075, w=0.80$	Subject 2 m1=0.150, m2=0.050, w=0.60 m1=0.175, m2=0.050, w=0.80 m1=0.100, m2=0.075, w=0.50 m1=0.100, m2=0.050, w=0.50

Data preparation

Image Analogies (texture synthesis) [Hertzmann et al. 01]

Mesostructur **B** (80 microns)

(8 microns)

Microgeometry Deformation

[Nagano et al. 2015]

Mesostructure

Photograph

Microgeometry Deformation

[Nagano et al. 2015]

Mesostructure

Static microgeometry

Photograph
[Nagano et al. 2015]

Compression

Neutral

Stretch

Skin patch deformation scanning

Skin patch deformation scanning

Anisotropic normal distribution under compression and stretch!

Horizontal

[Nagano et al. 2015]

- Blur of static microgeometry along direction of stretch
- Sharpening along direction of compression
- 1D separable kernel approximations for GPU filtering

[Nagano et al. 2015]

Strain magnitude

Strain directions

- Blur of static microgeometry along direction of stretch
- Sharpening along direction of compression
- 1D separable kernel approximations for GPU filtering

[Nagano et al. 2015]

Specular only

Rendering

Photograph

Facial appearance recap ...

Thank You

• Questions?

- Resume at 3pm
- Material appearance capture & modelling