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Foreword

It is our great pleasure to welcome you to York for the 27th British Machine
Vision Conference (BMVC). The University of York recently celebrated its 50th
birthday (in 2013) and has grown rapidly since its founding. It now home to
more than 16,000 students. York is a campus University, sited in parkland and
famous for its lakes and waterfowl. The conference is sited on the Heslington
West campus on the outskirts of the historic city of York.

BMVC is one of the top events in the Computer Vision conference calendar
and must now be considered as a truly international event with the majority of
papers coming from outside the UK. This year, BMVC attracted a total of 365
valid submissions. Although this is lower that the record submissions level of
recent years, it still represents a very active and healthy conference. The paper
review process was unchanged from previous BMVCs, and we recruited more
than 300 reviewers to process the papers. All papers received three reviews and
each paper was then handled by two area chairs from our pool of 50 subject
experts. Accepted papers required strong support from both reviewers and area
chairs. We would like to thank all the reviewers and area chairs for their hard
work and prompt responses.

Of the 365 submissions, just 144 were accepted for presentation in BMVC
2016, which is a 39% acceptance rate. Only the very highest quality papers were
selected for oral presentation, with 38 papers gaining a podium spot, or 10% of
the submissions. The accepted papers represent a truly international research
community, with 18% of the papers from the UK, 36% from the EU excluding
the UK, 22% from Asia, 20% from North America, and 4% from the rest of the
world. As is now standard for BMVC, the proceedings are published entirely
online, without the use of USB drives, for environmental reasons.

BMVC has always has strong links with industry, and again we are very grate-
ful to our industrial sponsors for supporting the event. ARM, Disney Research,
OSRAM, Ocado technology, HP, the IET, Edmund Optics and DigitalBridge
kindly supported the main conference. Our thanks also go to NVIDIA, CRC
press and Springer for sponsoring the best paper prizes.
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We have put together an interesting programme of invited speakers and are
delighted to welcome Dr Abhijeet Ghosh, Professor Katsushi Ikeuchi and Pro-
fessor Raquel Urtasun to the conference. Dr Ghosh will deliver the tutorial on
appearance modelling, and Profs. Ikeuchi and Urtasun will give the two keynote
presentations in the main conference.

BMVC 2016 has been organised by the Computer Vision and Pattern Re-
cognition group in the Department of Computer Science at the University of
York. The organisation of such a large conference would not be possible without
the help of many people, and we are grateful to everyone who has contributed.
Particular thanks must go to Bob French for his help in sorting out the logisti-
cal details and the student helpers for their support during the conference. We
would also like to thank Xianghua Xie for his support and advice as the outgoing
BMVC chair, and the BMVA committee for their extremely helpful suggestions
and advice.

We hope you find BMVC 2016 in York both and enjoyable and valuable ex-
perience.

Richard Wilson, Edwin Hancock, Will Smith, Nick Pears, Adrian Bors
BMVC 2016 organising committee
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BMVC 2016 Programme

Programme: Monday 19th September: Tutorial

11:00-17:00 Registration - Exhibition Centre

Tutorial - Conference Hall PX001

Chair: William Smith

13:00-14:30 Measurement-based Appearance Modelling

Abhijeet Ghosh . . . . . . . . . . . . . . . . . . 39

14:30-15:00 Break

Tutorial continued - Conference Hall PX001

15:00-16:30 Measurement-based Appearance Modelling

Abhijeet Ghosh . . . . . . . . . . . . . . . . . . 39

19:00-21:00 Welcome Reception - Exhibition Centre
21:00

1
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Programme: Tuesday 20th September

08:15-17:45 Registration - Exhibition Centre

08:45-09:00 Welcome

Keynote - Conference Hall PX001

Chair: Edwin Hancock

09:00-10:00 e-Intangible Heritage

Katsushi Ikeuchi . . . . . . . . . . . . . . . . . . 41

Session 1: Segmentation - Conference Hall PX001

Chair: Will Smith

10:00-10:20 Local Shape Transfer for Image Co-segmentation

Wei Teng, Yu Zhang, Xiaowu Chen, Jia Li and

Zhiqiang He . . . . . . . . . . . . . . . . . . . . . . . . 47

10:20-10:40 SMURFS: Superpixels from Multi-scale Refinement of Super-regions

Imanol Luengo, Mark Basham and Andrew P. French . . . 48

10:40-11:00 Break
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Session 2: Low-level vision and computational photography

- Conference Hall PX001

Chair: Eraldo Ribeiro

11:00-11:20 Boundary Detection Through Surround Modulation

Arash Akbarinia, C. Alejandro Parraga . . . . . . . . . 49

11:20-11:40 Bio-inspired Collision Detector with Enhanced

Selectivity for Ground Robotic Vision System

Qinbing Fu, Shigang Yue, Cheng Hu . . . . . . . . . . . . 50

11:40-12:00 A Deep Primal-Dual Network for Guided Depth
Super-Resolution

Gernot Riegler, David Ferstl, Matthias Rüther and

Horst Bischof . . . . . . . . . . . . . . . . . . . . . 51

12:00-12:20 Towards Deep Style Transfer: A Content-Aware Perspective

Yi-Lei Chen, Chiou-Ting Hsu. . . . . . . . . . . . . 52

12:20-12:40 Real-Time Intensity-Image Reconstruction for Event

Cameras Using Manifold Regularization

Christian Reinbacher, Gottfried Graber and

Thomas Pock . . . . . . . . . . . . . . . . . . . . . 53

12:40-13:40 Lunch
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Posters 1 - Exhibition Centre

13:40-14:40 Multi-view Multi-illuminant Intrinsic Dataset

Shida Beigpour, Mai Lan Ha, Sven Kunz, Andreas Kolb and

Volker Blanz . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13:40-14:40 Accurate Closed-form Estimation of Local Affine

Transformations Consistent with the Epipolar Geometry

Daniel Barath, Levente Hajder and Jiri Matas . . . 86

13:40-14:40 Recognition of Transitional Action for Short-Term Action

Prediction using Discriminative Temporal CNN Feature

Hirokatsu Kataoka, Yudai Miyashita, Masaki

Hayashi, Kenji Iwata and Yutaka Satoh . . . . . . . . . . . . 87

13:40-14:40 Multi-H: Efficient recovery of tangent planes in stereo images

Daniel Barath, Levente Hajder and Jiri Matas . . . 88

13:40-14:40 Jointly Learning Non-negative Projection and Dictionary

with Discriminative Graph Constraints for Classification

Weiyang Liu, Zhiding Yu, Yandong Wen, Rongmei Lin

and Meng Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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Posters 1 continued - Exhibition Centre

13:40-14:40 A MultiPath Network for Object Detection

Sergey Zagoruyko, Adam Lerer, Tsung-Yi Lin, Pedro O.

Pinheiro, Sam Gross, Soumith Chintala and Piotr Dollár . . . . . . 90

13:40-14:40 Fast Eigen Matching Accelerating Matching and Learning

of Eigenspace method

Yusuke Sekikawa, Koichiro Suzuki, Kosuke Hara,

Yuichi Yoshida, and Ikuro Sato . . . . . . . . . . . . . . . . . . . . . 91

13:40-14:40 Recoding Color Transfer as A Color Homography

Han Gong, Graham D. Finlayson, Bob B. Fisher . . . . . . 92

13:40-14:40 Pose-Robust 3D Facial Landmark Estimation from

a Single 2D Image

Brandon M. Smith and Charles R. Dyer . . . . . . . . . . . . 93

13:40-14:40 Bottom-up Instance Segmentation using Deep
Higher-Order CRFs

Anurag Arnab and Philip H. S. Torr . . . . . . . . . . . . . . . 94

13:40-14:40 Horizon Lines in the Wild

Scott Workman, Menghua Zhai and Nathan Jacobs . . . 95
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Posters 1 continued - Exhibition Centre

13:40-14:40 An Octree-Based Approach towards Efficient Variational

Range Data Fusion

Wadim Kehl, Tobias Holl, Federico Tombari,

Slobodan Ilic and Nassir Navab . . . . . . . . . . . . . . . . . . . . . 96

13:40-14:40 Finsler Geodesic Evolution Model for Region based

Active Contours

Da Chen, Jean-Marie Mirebeau and Laurent D. Cohen . . . 97

13:40-14:40 Patch Based Confidence Prediction for Dense Disparity Map

Akihito Seki and Marc Pollefeys . . . . . . . . . . . . . . . 98

13:40-14:40 Boosted Convolutional Neural Networks

Mohammad Moghimi, Mohammad Saberian, Jian

Yang, Li-Jia Li, Nuno Vasconcelos and Serge Belongie . . . 99

13:40-14:40 Material-Specific Chromaticity Priors

Jeroen Put, Nick Michiels and Philippe Bekaert . . . . . . 100

13:40-14:40 Play and Learn: Using Video Games to Train Computer
Vision Models

Alireza Shafaei, James J. Little and Mark Schmidt . . . 101
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Posters 1 continued - Exhibition Centre

13:40-14:40 SDF-TAR: Parallel Tracking and Refinement in RGB-D

Data using Volumetric Registration

Miroslava Slavcheva and Slobodan Ilic . . . . . . 102

13:40-14:40 Probabilistic Semi-Supervised Multi-Modal Hashing

Behnam Gholami and Abolfazl Hajisami . . . . . . . . . 103

13:40-14:40 Learning to Invert Local Binary Patterns

Felix Juefei-Xu and Marios Savvides . . . . . . . . . . . . 104

13:40-14:40 Probabilistic Compositional Active Basis Models for

Robust Pattern Recognition

Adam Kortylewski and Thomas Vetter . . . . . . . . . . . . 105

13:40-14:40 Loglet SIFT for Part Description in Deformable Part

Models: Application to Face Alignment

Qiang Zhang and Abhir Bhalerao . . . . . . . . . . . . . . . 106

13:40-14:40 Dictionary Replacement for Single Image Restoration of 3D Scenes

T. M. Nimisha, M. Arun and A. N. Rajagopalan . . . 107

13:40-14:40 Poisson Noise Removal for Image Demosaicing

Sukanya Patil and Ajit Rajwade . . . . . . . . . . . . . . . 108
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Posters 1 continued - Exhibition Centre

13:40-14:40 Factorized Binary Codes for Large-Scale Nearest Neighbor Search

Frederick Tung and James J. Little . . . . . . . . . . . . 109

13:40-14:40 Edge Enhanced Direct Visual Odometry

Xin Wang, Wei Dong, Mingcai Zhou, Renju Li and

Hongbin Zha . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

13:40-14:40 Optimised photometric stereo via non-convex variational

minimisation

Laurent Hoeltgen, Yvain Quéau, Michael Breuß

and Georg Radow . . . . . . . . . . . . . . . . . . . . . 111

13:40-14:40 U-shaped Networks for Shape from Light Field

Stefan Heber, Wei Yu and Thomas Pock . . . 112

13:40-14:40 Using Shading and a 3D Template to Reconstruct Complex

Surface Deformations

Mathias Gallardo, Toby Collins and Adrien Bartoli . . . 113

13:40-14:40 Physics 101: Learning Physical Object Properties from

Unlabeled Videos

Jiajun Wu, Joseph J. Lim, Hongyi Zhang,

Joshua B. Tenenbaum, William T. Freeman . . . . . . . . . . . . 114
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Posters 1 continued - Exhibition Centre

13:40-14:40 Attribute Embedding with Visual-Semantic Ambiguity

Removal for Zero-shot Learning

Yang Long, Li Liu and Ling Shao . . . . . . . . . . . . . . . 115

13:40-14:40 NRSfM-Flow: Recovering Non-Rigid Scene Flow from

Monocular Image Sequences

Vladislav Golyanik, Aman Shankar Mathur and

Didier Stricker . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13:40-14:40 Better Together: Joint Reasoning for Non-rigid

3D Reconstruction with Specularities and Shading

Qi Liu-Yin, Rui Yu and Andrew Fitzgibbon,

Lourdes Agapito, and Chris Russell . . . . . . . . . . . . 117

13:40-14:40 STAR-Net: A SpaTial Attention Residue Network for Scene
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Wei Liu, Chaofeng Chen, Kwan-Yee K. Wong,

Zhizhong Su and Junyu Han . . . . . . . . . . . . . . . 118

13:40-14:40 Context Matters: Refining Object Detection in Video

with Recurrent Neural Networks

Subarna Tripathi, Zachary C. Lipton, Serge Belongie,

Truong Nguyen . . . . . . . . . . . . . . . . . . . . . 119
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Mengran Gou, Xikang Zhang, Angels Rates-Borras,
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Action Tubes in Videos
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13:40-14:40 Fine-grained Recognition in the Noisy Wild: Sensitivity
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and Joachim Denzler . . . . . . . . . . . . . . . . . . . . . 135
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Fotios Logothetis, Roberto Mecca, Yvain Quéau and
Roberto Cipolla . . . . . . . . . . . . . . . . . . . . . . . . 136

Session 3: 3D Computer Vision -
Conference Hall PX001

Chair: Richard Bowden

14:40-15:00 Adding Synchronization and Rolling Shutter in
Multi-Camera Bundle Adjustment

Thanh-Tin Nguyen and Maxime Lhuillier . . . . . . 54
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Henri Rebecq, Guillermo Gallego and
Davide Scaramuzza . . . . . . . . . . . . . . . . . . . . . . . . 55
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15:40-16:00 Next-Best Stereo: Extending Next-Best View Optimisation
For Collaborative Sensors
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and Richard Bowden . . . . . . . . . . . . . . . . . . . . . 57

16:00-16:20 Break
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Session 4: Motion and Tracking -
Conference Hall PX001

Chair: David Suter

16:20-16:40 Shape-based Image Correspondence

Berk Sevilmis and Benjamin B. Kimia . . . . . . . . . . . . 58

16:40-17:00 Reprojection Flow for Image Registration Across Seasons

Shane Griffith and Cédric Pradalier . . . . . . . . . . . . 59
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Bastian Leibe . . . . . . . . . . . . . . . . . . . . . . . . 60

17.20-18.10 Poster discussion sessions - Exhibition Centre

17.20-18.10 BMVA Members AGM - PX001
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Programme: Wednesday 21st September

8:15-17:45 Registration - Exhibition Centre

Keynote - Conference Hall PX001

9:00-10:00 Towards Affordable Self-driving Cars

Raquel Urtasun . . . . . . . . . . . . . . . . . . . . . . . . 43

Chair: Richard Wilson

Session 5: Statistical Methods and Learning -
Conference Hall PX001

Chair: Andrea Cavallaro

10:00-10:20 Efficient Learning for Discriminative Segmentation with
Supermodular Losses

Jiaqian Yu and Matthew B. Blaschko . . . . . . . . . . . . 61

10:20-10:40 Variational Weakly Supervised Gaussian Processes
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Kumar Rajamani, Jeroen van der Laak and Fred A. Hamprecht 62

10:40-11:00 Break
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Session 6: Recognition and Physics-based vision -
Conference Hall PX001

Chair: Andres Bruhn

11:00-11:20 Regional Gating Neural Networks for Multi-label Image
Classification

Rui-Wei Zhao, Jianguo Li, Yurong Chen,
Jia-Ming Liu, Yu-Gang Jiang and Xiangyang Xue . . . . . . 63
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Jingjing Liu, Shaoting Zhang, Shu Wang and
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Xiaobin Chang, Tao Xiang and Timothy M.
Hospedales . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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Approach for the Joint Estimation of Depth,
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Andrés Bruhn . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12:40-13:40 Lunch
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Bugra Tekin, Isinsu Katircioglu, Mathieu Salzmann,
Vincent Lepetit, and Pascal Fua . . . . . . . . . . . . 68
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The BMVC 2016 Banquet takes place at the National Railway Museum, York
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12:40-12:50 Conference closing remarks

The End of the 27th British Machine Vision Conference 2016
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BMVC 2016 Tutorial
Monday 19th Sep. 13:00-14:30, 15:00-16:30
Abhijeet Ghosh
Imperial College, London

Measurement Based Appearance
Modelling

Abstract
This tutorial will cover measurement based appearance modelling for gra-

phics and vision, with a focus on acquisition of facial and material appearance
including shape and reflectance properties. The tutorial will first introduce fun-
damentals such as the BRDF and the BSSRDF and physically based surface
and subsurface scattering models. Building upon these, the tutorial will present
various techniques for acquisition of facial geometry and reflectance including
state of the art techniques employed for high quality facial acquisition for visual
effects and games. Central to these acquisition techniques will be measurements
under various types of controlled illumination. Specifically, we will cover practi-
cal ways of measuring layered skin reflectance including surface and subsurface
scattering using a small set of measurements as well as state of the art tech-
niques for multi-view facial geometry and reflectance acquisition with polarized
spherical gradient illumination. The tutorial will also cover a recent technique
for measuring skin micro-geometry at the resolution of a few microns for very
high resolution (16K) rendering of skin for increased realism.

The second half of the tutorial will focus on measurement and modelling of
material reflectance properties. Here, the discussion will be restricted to BRDFs
and spatially varying BRDFs for representing material appearance. Once again,
controlled illumination techniques using various lighting setups will be presen-
ted for estimation of spatially varying diffuse and specular reflectance properties
including albedo, surface normals, specular roughness and in some cases ani-
sotropy. The tutorial will conclude with discussion of some recent advances in
material appearance acquisition using commodity hardware such as LCD screens
and mobile devices.
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Biography

Dr Abhijeet Ghosh is currently a Lecturer in the Department of Computing
at Imperial College London. His main research interests are in appearance mo-
delling, realistic rendering, and computational photography. Previously, he was
a senior researcher and research assistant professor at the University of Southern
California Institute for Creative Technologies where he worked on Light Stage
based acquisition. Abhijeet received his PhD in computer science from the Uni-
versity of British Columbia. His doctoral dissertation, "Realistic Materials and
Illumination Environments", received an Alain Fournier Award and his doctoral
work on BRDF acquisition received a Marr Prize Honorable Mention (ICCV
2007). He currently holds a Royal Society Wolfson Research Merit Award and
an EPSRC Early Career fellowship at Imperial College London.
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BMVC 2016 Invited Speaker
Tuesday 20th Sep. 9:00-10:00
Katsushi Ikeuchi
Microsoft Research Asia

e-Intangible Heritage

Abstract

Tangible heritage, such as temples and statues, is disappearing day-by-day
due to human and natural disaster. In-tangible heritage, such as folk dances,
local songs, and dialects, has the same story due to lack of inheritors and mi-
xing cultures. We have been developing methods to preserve such tangible and
in-tangible heritage in the digital form. This project, which we refer to as e-
Heritage, aims not only record heritage, but also analyze those recorded data for
better understanding as well as display those data in new forms for promotion
and education.

This talk mainly covers how to preserve in-tangible heritage, in particular,
preservation of Japanese and Taiwanese folk dances. The first half of my talk
covers how to display such a Japanese folk dance on a humanoid robot. Here,
we follow the paradigm, learning-from-observation, in which a robot learns how
to dance from observing human dance. Due to the physical difference between a
human and a robot, the robot cannot mimic the entire human actions. Instead,
the robot first extracts important actions of a dance, referred to key poses, only
exactly mimics those key poses and then interpolates interval trajectories as
much as possible but within the limit of the robot capabilities. The second half
of my talk covers our effort to apply similar technics to Taiwanese folk dances.
Here, I concentrate on the analysis of the key poses and how such key poses
relate to their social institutions.
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Biography

Dr. Katsushi Ikeuchi is a Principal Researcher of Microsoft Research. He
received a Ph.D. degree in Information Engineering from the University of Tokyo
in 1978. After working at AI Lab of MIT as a pos-doc fellows for three years,
Electrotechnical Lab, Japan as a researcher for five years, Robotics Institute of
Carnegie Mellon University as a faculty member for ten years, the University
of Tokyo as a faculty member for nineteen years, he joined Microsoft Research
Asia in 2015. His research interest spans computer vision, robotics, and computer
graphics. He has received several awards, including IEEE-PAMI Distinguished
Researcher Award, the Okawa Prize from the Okawa foundation, and the Medal
of Honor with Purple ribbon from the Emperor of Japan. He is a fellow of IEEE,
IEICE, IPSJ, and RSJ.

#42



43

BMVC 2016 Invited Speaker
Wednesday 21st Sep. 9:00-10:00
Raquel Urtasun
University of Toronto

Towards Affordable Self-driving Cars

Abstract

The revolution of self-driving cars will happen in the near future. Most soluti-
ons rely on expensive 3D sensors such as LIDAR as well as hand-annotated maps.
Unfortunately, this is neither cost effective nor scalable, as one needs to have a
very detailed up-to-date map of the world.In this talk, I?ll review our current
efforts in the domain of autonomous driving. In particular, I’ll present our work
on stereo, optical flow, appearance-less localization, 3D object detection as well
as creating HD maps from visual information alone. This results in a much more
scalable and cost-effective solution to self-driving cars.
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Biography

Raquel Urtasun is an Associate Professor in the Department of Computer
Science at the University of Toronto and a Canada Research Chair in Machine
Learning and Computer Vision. Prior to this, she was an Assistant Professor at
the Toyota Technological Institute at Chicago (TTIC), an academic computer
science institute affiliated with the University of Chicago. She received her Ph.D.
degree from the Computer Science department at Ecole Polytechnique Federal
de Lausanne (EPFL) in 2006 and did her postdoc at MIT and UC Berkeley. Her
research interests include machine learning, computer vision and robotics. Her
recent work involves perception algorithms for self-driving cars, deep structured
models and exploring problems at the intersection of vision and language. She
is a recipient of an NVIDIA Pioneers of AI Award, a Ministry of Education and
Innovation Early Researcher Award, two Google Faculty Research Awards, a
Connaught New Researcher Award and a Best Paper Runner up Prize awarded
at the Conference on Computer Vision and Pattern Recognition (CVPR). She
is also Program Chair of CVPR 2018, an Editor of the International Journal
in Computer Vision (IJCV) and has served as Area Chair of multiple machine
learning and vision conferences (i.e., NIPS, UAI, ICML, ICLR, CVPR, ECCV,
ICCV).
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Local Shape Transfer for Image Co-segmentation

Wei Teng1

tengw@buaa.edu.cn

Yu Zhang1

zhangyulb@gmail.com

Xiaowu Chen†1
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1 State Key Laboratory of Virtual Reality
Technology and Systems
Beihang University
Beijing, China

2 International Research Institute for
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Beihang University
Beijing, China

3 Lenovo Research

Figure 1: The motivation of this paper. The
common objects in these images have different
poses, rendering their global shapes inconsis-
tent. However, the local object shapes in dif-
ferent images are highly consistent and provide
important cues for co-segmentation.

Image co-segmentation is a challenging com-
puter vision task that aims to segment all pix-
els of the common objects in an image set. In
real-world cases, the common objects often vary
greatly in poses, locations and scales, making
their global shapes highly inconsistent across
images and difficult to be segmented. However
their local shapes are often highly consistent (see
Fig. 1) and thus transferable. Based on the ob-
servation, we propose a novel co-segmentation
approach, which transfers patch-level local ob-
ject shapes and appears more consistently across
different images. Given a group of M images,

† correspondence should be addressed to Xiaowu Chen.

our framework first estimates coarse initial fore-
ground segmentations by thresholding saliency
maps [3]. Meanwhile, we build inter-image con-
nections by constructing a weighted graph on
patches sampled from different images using [1],
where weights are learned by Locally Linear
Embedding [2]. With the patch graph, we refine
the initial segmentation in each image by trans-
ferring the local shapes among different images.
Formally, we minimize the objective

min
y

M

∑
i=1

Eseg(y[i])+α
P

∑
i=1

∥∥∥∥∥~yi− ∑
j∈Ni

wi j~y j

∥∥∥∥∥

2

,

s.t. y ∈ {0,1}|y|,
where y concatenates the binary labels of all pix-
els in the image set, y[i] is the part from the ith
image. The energy Eseg implements intra-image
foreground/background segmentation, for which
we use the popular Markov Random Field en-
ergy. The problem is NP-hard and usually large
scale as it operates on pixels, which is approxi-
mately solved by half quadratic splitting.
We evaluate the proposed approach on two pub-
lic benchmarks: iCoseg and Fashionista. Exper-
iments show that our approach performs compa-
rably with or better than the state-of-the-arts on
iCoseg dataset, while achieving more than 31%
relative improvements on Fashionista dataset.

[1] J. Kim, C. Liu, F. Sha, and K. Grauman. De-
formable spatial pyramid matching for fast dense
correspondences. In CVPR, pages 2307–2314,
2013.

[2] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290:2323–2326, 2000.

[3] J. Zhang, S. Sclaroff, Z. Lin, X. Shen, and
B. Price. Minimum barrier salient object detec-
tion at 80 fps. In ICCV, pages 1404–1412, 2015.
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SMURFS: Superpixels from Multi-scale Refinement of Super-regions

Imanol Luengo1
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Original Image Initial partition Superpixels Super-segments Final result

Merge similar superpixels

Split large super-segments

Optimization loop

(Desired: 200 superpixels) (100 super-segments)

Split Merge small

(200 superpixels)

Figure 1: Overview of our algorithm. Iterative refinement over two scales of regions yields increasingly more
robust superpixels that better capture global image features.

Here we present a new superpixel algorithm:
Superpixels from MUlti-scale ReFinement of
Super-regions (SMURFS), which not only ob-
tains state of the art superpixels, but can also be
applied hierarchically to form what we call n-
th order super-regions. In essence, starting from
a uniformly distributed set of super-regions, the
algorithm iteratively alternates graph-based split
and merge optimization schemes which yield
superpixels (1st order super-regions) that better
represent the image. We define a super-region
hierarchy forming the level i by grouping el-
ements of the level i− 1. Denoting the pixel
grid as level i = 0, superpixels (level i = 1)
are formed by grouping similar adjacent pixels
while supersegments (level i = 2) are formed
of multiple superpixels. To be able to better
represent the image, we alternate optimization
schemes at both level i = 1 and i = 2 with
the aim of refining both superpixels and super-
segments simultaneusly. The split step is per-
formed over the pixel grid to separate large su-
persegments into different smaller superpixels.
This step is fully parallelizable as every region
is split independently, and produces superpixels
that better capture local information of the su-
persegments. The merging process, conversely,

is performed over the superpixel graph to cre-
ate supersegments with the aim of better captur-
ing global image features. This iterative two-
scale procedure refines the super-region bound-
aries of the image without shape or boundary ini-
tialization constraints, present in most of state
of the art superpixels. Results show state of the
art Achievable Segmentation Accuracy (ASA) in
the Berkley Segmentation dataset (BSD500) [1].

Figure 2: ASA comparison on the BSD500 dataset.

[1] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A
database of human segmented natural images and
its application to evaluating segmentation algo-
rithms and measuring ecological statistics. In
Proc. 8th Int’l Conf. Computer Vision, volume 2,
pages 416–423, July 2001.
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Boundary Detection Through Surround Modulation

Arash Akbarinia
www.cvc.uab.es/people/sakbarinia/

C. Alejandro Parraga
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Centre de Visió per Computador
Universitat Autònoma de Barcelona
Barcelona, Spain

Edges are key components of any visual
scene to the extent that we can recognise ob-
jects merely by their silhouettes. Human visual
system captures edge information using neurons
that are sensitive to both intensity discontinu-
ities and particular orientations. The “classi-
cal approach” assumes that these cells are only
responsive to the stimulus present within their
receptive fields (RF), however, recent studies
demonstrate that surrounding regions and inter-
areal feedback connections influence their re-
sponses significantly. In this work we propose
a biologically-inspired edge detection model
based on these physiological findings.

Figure 1: The flowchart of proposed model.

Figure 1 shows the schematics of our model.
The original image is processed by balanced and
imbalanced single opponent cells in the retina
and sent though the lateral geniculate nucleolus
in the form of colour opponent channels [4]. Ori-
entation is obtained in the primary visual cortex
(V1) by convolving these channels with double-
opponent cells (known to be responsive to colour
edges [4]), whose RF we modelled through the
first derivative of a Gaussian function. To con-
sider the RF surround: we define a short range
circular (isotropic) region corresponding to full

surround [2], long range iso- and orthogonal-
orientation surrounds along the primary and sec-
ondary axes of the RF [1], and we model far sur-
round via feedback connections. These interac-
tions are inversely dependant on the contrast of
the RF [5]. V1 output signal is pooled at V2 by a
contrast-variant centre-surround mechanism ap-
plied orthogonally to the preferred direction of
the V1 RF [3]. To account for the impact of
global shapes on local contours [2], we feed the
output of V2 back into V1.

Our experiments suggest that V1 surround
modulation strengthens edges while V2 sup-
presses undesired textural elements (Figure 2).

0.53 0.64

Original image Gaussian Derivative Only V1 Surround

0.69 0.68 0.72

No V2 Feedback No Far Surround Full Model

Figure 2: Components evaluation.

[1] David J Field et al. Contour integration and the
association field. The new visual neurosciences,
pages 627–638, 2013.

[2] Gunter Loffler. Perception of contours and shapes:
Low and intermediate stage mechanisms. Vision
Research, 48(20):2106–2127, 2008.

[3] F Poirier and H R Wilson. A biologically plausi-
ble model of human radial frequency perception.
Vision research, 46(15):2443–2455, 2006.

[4] Robert Shapley and Michael J Hawken. Color in
the cortex: single-and double-opponent cells. Vi-
sion research, 51(7):701–717, 2011.

[5] S Shushruth et al. Comparison of spatial summa-
tion properties of neurons in macaque v1 and v2.
J. of neurophysiology, 102(4):2069–2083, 2009.
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Bio-inspired Collision Detector with Enhanced Selectivity for Ground
Robotic Vision System
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Computational Intelligence Laboratory
Department of Computer Science
University of Lincoln
Lincoln, UK

There are many ways of building collision-
detecting systems. In this paper, we propose a
bio-inspired collision detector based on the ju-
venile locust vision pathway (Fig.1). Two type-
s of motion detectors, LGMD1 and LGMD2
have been identified in locusts’ visual system
[1]. Compared to LGMD1, LGMD2 matures
early in juvenile locusts which mainly live on
the ground whereas already represent evasive re-
sponses to swooping predators. An importan-
t feature is its looming sense is only for light-
to-dark luminance change. It is able to detec-
t dark looming objects embedded in the bright
background selectively whilst not responding to
light objects against the dark background. There
are two defects in LGMD1 modeling works (e.g.
[2]): first, the approaching and receding stimulus
are not properly distinguished in depth; second,
the translating stimulus regularly leads to col-
lision mis-detection. The revealed neural char-
acteristics of LGMD2 make it ideal to handle
those defects for ground vision-based platforms.
Compared to some state-of-the-art collision de-
tectors, the proposed bio-inspired computation-
al model can cope with unpredictable environ-
ments without using specific object recognition
algorithms. It detects potential collision via re-
acting to expansion of the object edges, rather
than the strategy of recognizing the target or an-
alyzing the scene.

The core of this framework is a biophysi-
cal architecture of ON and OFF visual pathways,
which underlies motion detection circuit, and re-
veals the fundamental principle of splitting visu-
al signals into parallel channels encoding bright-
ness increments (ON) and decrements (OFF) as
illustrated in Eq.1. Moreover, in LGMD2 mod-
eling work, we put forth a bias in ON pathway
to achieve its specific collision selectivity.

The proposed framework was set up in a
vision-based ground miniature robot and tested
against systematic and comparative real-time ex-

periments. Compared to other computer vision
techniques, this neural system performs quick-
ly and robustly in the very limited hardware.
The experimental results also demonstrate two
main contributions: first, the collision selectivity
to dark objects against bright background is en-
hanced which makes it ideal for ground mobile
robots; second, the selectivity to approaching
objects versus translation has been shaped which
is expected for a practical collision-detecting
system.
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Figure 1: The schematic overview of LGMD2
vision system: Model notations are illustrated in
green-box. The convolution illustrations are in
red-box.

PON
x,y (t) = (Px,y(t)+ |Px,y(t)|)/2,

POFF
x,y (t) = |(Px,y(t)−|Px,y(t)|)|/2

(1)

[1] P. J. Simmons and F. C. Rind. Responses to ob-
ject approach by a wide field visual neurone, the
lgmd2 of the locust: Characterization and image
cues. J Comp Physiol A, 180:203–214, 1997.

[2] S. Yue and F. C. Rind. Collision detection in com-
plex dynamic scenes using a lgmd based visual
neural network with feature enhancement. IEEE
Trans. Neural Netw., 17(3):705–716, 2006.
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Figure 1: Overview of our proposed deep primal-dual network.
Sensors that measure pixel-wise depth have be-
come increasingly popular and enabled a broad
range of novel computer vision applications.
However, these sensors suffer from a low spa-
tial resolution and depth noise due to physical
limitations of the measurement principles.

In this work we present a novel method to in-
crease the spatial and lateral resolution of noisy
depth images. We combine a deep fully convo-
lutional network (FCN) with a non-local vari-
ational method in a deep primal-dual network
(see Fig. 1) extending our work presented in [4].
The input to our method is a low resolution,
noisy depth map d(lr) and a high-resolution in-
tensity image g that is used as guidance in the
upsampling process. This guidance image is es-
sential for higher upsampling factors, as shown
in our experiments. First, the fully convolutional
network computes the residual to the bilinear up-
scaled low resolution depth input. Further, the
FCN outputs non-local weighting terms, which
are utilized in the subsequent primal-dual net-
work (PDN) as weighting coefficients and cor-
respond to discontinuities in the high resolution
depth data.

In the primal-dual network we compute the
optimizer u∗k of a variational energy functional

u∗k = argmin
u

λD(u, fcn(d)sk )+R(u, fcn(A)sk ) ,

by unrolling the computation steps of the first-
order primal-dual scheme by [1]. D is the data
term penalizing deviations from the initial so-
lution, R is the regularization term encoding
smoothness assumptions, and λ is a trade-off pa-
rameter. We evaluate in this work several pop-
ular choices of regularization terms, which are
especially suited for depth data and found that a

non-local Huber regularization, as given by

R(u) =
∫

Ω

∫

N (x)
w(x,y)|u(x)−u(y)|ε dxdy ,

in combination with a `2 data term yields the
best trade-off between accuracy and computa-
tional requirements. The benefit of unrolling the
optimization algorithm in the network are that
we can learn all parameters of the variational
method, as well as, all hyper-parameter of the
optimization scheme itself. Further, the fully-
convolutional network adapts in the joint train-
ing to the subsequent primal-dual network.

To train our network we generate high-
quality depth maps and corresponding color im-
ages with a physically based renderer in large
quantities. Using this data, we pre-train the
fully-convolutional network and subsequently
train the complete model end-to-end.

In our experimental evaluation we show the
influence of the energy functional and the non-
local neighborhood size on the performance of
our method. Further, we compare our method
on two standard benchmarks for depth super-
resolution to other recent approaches: On the
noisy Middlebury images [3] and the realistic
ToFMark dataset [2]. With this novel combina-
tion we are able create visually appealing results
and outperform state-of-the-art on both datasets.
Acknowledgment: This work was supported by the Austrian Research Promo-
tion Agency project TOFUSION (FIT-IT Bridge program).

[1] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Con-
vex Problems with Applications to Imaging. Journal of Mathematical
Imaging and Vision, 40(1):120–145, 2011.

[2] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof. Image
Guided Depth Upsampling using Anisotropic Total Generalized Variation.
In ICCV, 2013.

[3] J. Park, H. Kim, Y: Tai, M. Brown, and I. Kweon. High Quality Depth
Map Upsampling for 3D-TOF Cameras. In ICCV, 2011.

[4] G. Riegler, M. Rüther, and H. Bischof. ATGV-Net: Accurate Depth Super-
Resolution. In ECCV, 2016.

Tuesday
11:40-12:00

#51



52
Tu

es
da

y
12

:0
0-

12
:2

0
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Motivation  

Recently, it has been shown that one can invert 
a deep convolutional neural network originally 
trained for classification tasks to transfer image 
style. There is, however, a dearth of research on 
content-aware style transfer. In this paper, we 
generalize the original neural algorithm [1] for 
style transfer from two perspectives: where to 
transfer and what to transfer. To specify where 
to transfer, we propose a simple yet effective 
masking out strategy to constrain the transfer 
layout. To illustrate what to transfer, we define 
a new style feature by high-order statistics to 
better characterize content coherency. 

 

Methodology 

Given a source image (or content image) � 
and a target image (or style image) �, [1] aims 
to synthesize an image � which simultaneously 
shares the visual content of �  and the style 
representation of � . Specifically, the image 
rendering was modelled as an optimization 
problem by minimizing the difference between 
� and � and the difference between � and � in 
terms of content and style features, respectively. 
The authors characterize both features by the 
deep convolutional neural network (CNN). The 
desired image was obtained by 

�� = argmin� �∑ ������ − ������
�

�∈��    

+∑ ������ − ������
�

�∈�� + �Γ��� , (1) 

where the content feature  ����� is the layer-wise 
response and the style feature ����� = �����

T����� 
encodes cross-feature dependencies globally. 

We formulate the generalized style transfer 
based on Equation (1) under two additional 
constraints: where to transfer and what to 
transfer. To constrain where to transfer, we 
introduce a diagonal matrix �����, whose ��, ���� 
entry  ! 	�0 ≤  ! ≤ 1 ) is a soft indictor of 

feature aggregation, to specify the spatial 
correspondence. To constrain what to transfer, 
we propose a new feature statistics �&���� =
�'����������T�'����������, by introducing a high-
order convolutional matrix '�, to better  match 
the style representation. Finally, we propose to 
embed both two constraints into the style loss of 
Equation (1) and derive the layer-wise gradient 
in a general form: 

∇�)���= ∑ ∑ '�
�*�+�����

�,� +-�����
�,� '�

�*������.-�&����
�,� − �&����

�,� /0�
�,�.1

,23
4
*23  ,   

where  �&����
�,� = ������

�,� '�
�*�������+������

�,�'�
�*������� . (2) 

 

Results 

We show an example for real-life photo 
transfer in Fig. 1. Using the semantic masks 
estimated by image matting, we successfully 
transfer the dogs’ appearance without either 
changing background or producing noticeable 
artifacts. Please refer to our paper for more style 
transfer results 

Figure 1: An example of content-aware style 
transfer. The face appearance of two different 
breeds of dogs, Maltese and Yorkshire terrier, 
are exchanged by our method. 

 [1] L. A. Gatys, A. S. Ecker, and M. Bethge. Image 

style transfer using convolutional neural networks. 

In Proc. CVPR, 2016.  
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(a) Raw Events (b) Reconstructed
Image

(c) Event Mani-
fold

Figure 1: Sample results from our method. The
image (a) shows the raw events and (b) is the
result of our reconstruction. The time since the
last event has happened for each pixel is depicted
as a surface in (c) with the positive and negative
events shown in green and red respectively.

Event cameras or neuromorphic cameras mimic
the human perception system as they measure
the per-pixel intensity change rather than the ac-
tual intensity level. In contrast to traditional
cameras, such cameras capture new information
about the scene at MHz frequency in the form
of sparse events. The high temporal resolution
comes at the cost of losing the familiar per-pixel
intensity information.

In this work we aim to bridge the gap be-
tween the time-continuous domain of events and
frame-based computer vision algorithms. We
propose a simple method for simultaneous de-
noising and intensity reconstruction for neuro-
morphic cameras in real-time (see Fig. 1 for a
sample output of our method). In contrast to
very recent work on the same topic by Bardow et
al. [1], we formulate our algorithm on an event-
basis, avoiding the need to simultaneously esti-
mate the optical flow. We cast the intensity re-
construction problem as an energy minimisation,
where we model the camera noise in a data term
given by the generalised Kullback-Leibler diver-
gence. The optimisation problem is defined on
a manifold induced by the timestamps of new
events (see Fig. 1(c)). Benosman et al. [2] fit-
tingly call this manifold the surface of active

events. We show how to optimise this energy
using the Primal-Dual algorithm of Chambolle
and Pock [3] and achieve real-time performance
by implementing the energy minimisation on a
graphics processing unit (GPU). We release soft-
ware to provide live intensity image reconstruc-
tion to all users of DVS cameras1. We believe
this will be a vital step towards a wider adoption
of this kind of cameras.

Figure 2: Comparison to the method of [1]. The
first row shows the raw input events that have
been used for both methods. The second row de-
picts the results of Bardow et al., and the last row
shows our result. We can see that out method
produces more details (e.g. face, beard) as well
as more graceful gray value variations in untex-
tured areas, where [1] tends to produce a single
gray value.

[1] Patrick Bardow, Andrew Davison, and Stefan
Leutenegger. Simultaneous optical flow and inten-
sity estimation from an event camera. In CVPR,
2016.

[2] R. Benosman, C. Clercq, X. Lagorce, S. H. Ieng,
and C. Bartolozzi. Event-based visual flow. IEEE
Transactions on Neural Networks and Learning
Systems, 25(2):407–417, 2014.

[3] Antonin Chambolle and Thomas Pock. A first-
order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathe-
matical Imaging and Vision, 40(1), 2011.

1https://github.com/VLOGroup/
dvs-reconstruction
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This paper introduces a new bundle adjustment
for multi-cameras, that simultaneously estimates
not only the usual parameters (poses and points)
but also the synchronization and the rolling shut-
ter. We start from an initial calibration with a
global shutter camera model (GS) and a frame-
accurate synchronization provided by previous
self-calibration methods [1]. Our BA provides
subframe-accurate synchronization (SFA), i.e. it
estimates the residual time offsets ∆ j between a
reference camera and the others. It also estimate
the rolling shutter (RS) coefficient, i.e. the time
delay τ between two adjacent lines of a frame.

We present a continuous camera trajectory
model that provides the multi-camera pose at
every time. Let R be a C1 continuous func-
tion that maps Ω ⊆ Rk to rotation set SO(3).
The camera trajectory is modeled by a C3 con-
tinuous function M : [0,1]→ R3×Ω such that
M(t)T =

(
TM(t)T EM(t)T

)
and TM(t) ∈ R3 is

the translation and R(EM(t)) ∈ SO(3) is the ro-
tation. We approximate M at every time t by us-
ing M at few times ti ∈ [0,1] corresponding to
the key-frames provided by standard GS-multi-
camera structure-from-motion: M(t) is a lin-
ear combination of three M(ti) thanks to Taylor
approximations and by neglecting their remain-
ders. The y-th line of the j-th camera in the i-th
keyframe is taken at time t = ti +∆ j + yτ .

Following [2], a minimal parametrization R
is preferred to avoid any constraints on the R
entry and limit the number of estimated parame-
ters: k = 3. However, R is a global parametriza-
tion of all rotations of the continuous camera
motion and R has singularities like every 3D
parametrization of SO(3). We propose to define
R using a careful use of the Euler parametriza-
tion and keep away from the Euler singularities
thanks to an assumption on the camera (all yaw
angles are possible, but the pitch and roll are
small). This assumption is reasonable for an user
exploring the environment without a special ob-
jective like grasping at objects on the ground.

We experiment in cases that we believe use-

Figure 1: Helmet-held multi-camera formed by
four GoPro Hero3 cameras, images taken at a
viewpoint, reconstruction of a 900m long video
sequence (walking in a town) by RS-SFA bundle
adjustment without loop closure.

ful: several and identical consumer cameras
mounted on a helmet under varying conditions:
bike riding, walking, and flying. Ground truth is
available for τ (using a strobe) and ∆ j (synthetic
videos). At first glance, our approximations
seem hazardous if the user does a motion that is
not consistent with the neighboring keyframes.
Anyway, the majority of keyframes provides ac-
curate enough approximation to obtain the fol-
lowing results in our non trivial datasets. The
relative error of the estimated line delay is less
than 7.9% except in the most difficult case (fly-
ing) with faster head motions; the simultane-
ous estimation of line delay and time offsets can
provide bias but it also provides the best result
(5.1%) for the most difficult case. The best time
offsets are given by the simultaneous estimation.

[1] M. Lhuillier and T.T. Nguyen. Synchroniza-
tion and self-calibration for helmet-held consumer
cameras, applications to immersive 3d modeling
and 360 videos. In 3DV’15.

[2] L. Oth, P. Furgale, L. Kneip, and R. Siegwart.
Rolling shutter camera calibration. In CVPR’13.
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Event cameras are bio-inspired vision sensors that
output pixel-level brightness changes instead of
standard intensity frames. They offer significant
advantages over standard cameras, namely a very
high dynamic range, no motion blur, and a la-
tency in the order of microseconds. However,
because the output is composed of a sequence of
asynchronous events rather than actual intensity
images, traditional vision algorithms cannot be
applied, so that a paradigm shift is needed.
We introduce the problem of Event-based Multi-
View Stereo (EMVS) for event cameras and pro-
pose a solution to it. Unlike traditional MVS
methods, which address the problem of estimat-
ing dense 3D structure from a set of known view-
points, EMVS estimates semi-dense 3D struc-
ture from an event camera with known trajectory.
Our EMVS solution elegantly exploits two in-
herent properties of an event camera: (i) its abil-
ity to respond to scene edges—which naturally
provide semi-dense geometric information with-
out any pre-processing operation—and (ii) the
fact that it provides continuous measurements as
the sensor moves. Despite its simplicity (it can
be implemented in a few lines of code), our al-
gorithm is able to produce accurate, semi-dense
depth maps. We successfully validate our method
on both synthetic and real data. Our method is
computationally very efficient and runs in real-
time on a CPU.

RV

(a) (b) (c)
Figure 1: Events are back-projected into rays
(a), which are counted in a ray density DSI (b),
from which a semi-dense 3D reconstruction of
the scene edges is extracted by detecting local
maxima (c).

We solve the EMVS problem in a similar
way to the Space-Sweep approach for MVS [2],
showing how sparsity can be leveraged to esti-

(a) Front view. (b) Projection on a
frame.
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Figure 2: Reconstruction of a desk scene with
objects of different shapes that cause occlusions.
Depth is colored from red (close) to blue (far).

mate 3D structures without the need for explicit
data association or photometric information.
The Event-based Space-Sweep Method con-
sists of three steps:
• Events are back-projected according to the

viewpoint of the camera. Each event pro-
duces a viewing ray (Fig. 1(a)).

• Rays are counted on a discretized volume
containing the 3D scene, yielding a DSI (Fig. 1(b))
that measures the spatial density of rays.

• Scene points are detected in the regions of
high ray-density. The location and value of
local maxima of the DSI provide the depth
and confidence of reconstructed 3D points,
respectively. The most confident values yield
a semi-dense depth map or point cloud (Fig. 1(c))

Results. Our algorithm produces accurate 3D
reconstructions (relative depth errors < 5%) in
the presence of high dynamic range (HDR) illu-
mination and/or high-speed motions that cannot
be handled by standard cameras, in spite of the
low spatial resolution of the sensor [1] and the
high amount of noise typical of event cameras.

Multimedia Material. A supplemental video
for this work is available on the authors’ web-
page: http://rpg.ifi.uzh.ch

[1] C. Brandli et al. A 240x180 130dB 3us latency
global shutter spatiotemporal vision sensor. IEEE
J. of Solid-State Circuits, 2014.

[2] R. T. Collins. A space-sweep approach to true
multi-image matching. In IEEE CVPR, 1996.
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We propose a probabilistic occlusion-aware ex-
tension to 3D Morphable Face Models [1, 2] for
face image analysis based on the Analysis-by-
Synthesis setup. In natural images, parts of the
face are often occluded by a variety of objects.
Such occlusions are a challenge for face model
adaptation. We propose to segment the image
into face and non-face regions and model them
separately. The segmentation and the face model
parameters are not known in advance and have to
be adapted to the target image. A good segmen-
tation is necessary to obtain a good face model
fit and vice-versa. Therefore, face model adapta-
tion and segmentation are solved together using
an EM-like procedure. We use a stochastic sam-
pling strategy based on the Metropolis-Hastings
algorithm for face model parameter adaptation
[3] and a modified Chan-Vese segmentation for
face region segmentation. Previous robust meth-
ods are limited to homogeneous, controlled illu-

mination settings and tend to fail for important
regions such as the eyes or mouth. We propose a
RANSAC-based robust illumination estimation
technique to handle complex illumination con-
ditions. We do not use any manual annotation
and the algorithm is not optimised to any spe-
cific kind of occlusion or database. We evaluate
our method on a controlled and an “in the wild”
database.

[1] Blanz and Vetter. A morphable model for the syn-
thesis of 3d faces. In SIGGRAPH, 1999.

[2] Paysan et al. A 3d face model for pose and illumi-
nation invariant face recognition. In AVSS, 2009.

[3] Schönborn et al. A monte carlo strategy to inte-
grate detection and model-based face analysis. In
Pattern Recognition, 2013.

[4] Martinez and Benavente. The ar face database. In
CVC Technical Report, 1998.

Figure 1: Algorithm overview: First we perform a RANSAC-like robust illumination estimation for
initialisation of the segmentation label z and the illumination setting. Then our face model and the
segmentation are simultaneously adapted to the target image Ĩ. The result is a set of face model
parameters θ and a segmentation into face and non-face regions. The presented target image is from
the AR face database [4].
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1 pair 3 pairs 5 pairs 7 pairs (GT)

Figure 1: Reconstruction using autonomous stereo pair
selection on the Middlebury Dataset.

Reconstruction algorithms that are capable of
selecting data to maximise performance, while
reducing computational time are necessary to
perform reconstruction in the real world. This
work proposes an approach to intelligently filter
large amounts of data for 3D reconstructions
of unknown scenes using monocular cameras.
Fig. 1 shows how the reconstruction progresses
with a limited number of views. We can achieve
state-of-the-art results using as little as 3.8% of
the views on the Middlebury dataset. Furthermore,
view selection is efficient, taking only 1.1ms per
pose pair.

We first present a novel criterion for Next-
Best View (NBV) optimisation based on a com-
promise between the competing objectives of cov-
erage and accuracy. The coverage objective will
drive the system to collect views of previously
unobserved parts of the scene (e.g., due to restric-
tions on the field of view or occlusion), whereas
the accuracy objective will drive the system to
choose the next pose to reduce point cloud uncer-
tainty. These two criteria are optimised jointly
using parameter γ . Fig. 2 illustrates how a γ of
1 will give the highest cost to unobserved voxels,
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Figure 2: Average Error (Left) and Average Coverage
(Right) with different values of γ .

preferring to reduce the uncertainty of observed
voxels, while 0 will give them the lowest, prefer-
ring exploratory behaviour.

When there are multiple collaborating sensors
available, we can extend NBV to also optimise
the stereo arrangement of the sensors. This can be
achieved by selecting another view, with respect
to the NBV, to create the stereo pair with the best
possible vergence and baseline.

Thresh. [1] [1] [2] Prop.
# Frames - 41 41 ? 26

Err(mm)
80% 0.64 0.59 0.64 0.53
90% 1.00 0.88 0.91 0.74
99% 2.86 2.08 1.89 1.68

Cvg(%)
0.75mm 79.5 82.9 72.9 87.3
1.25mm 90.2 93.0 73.8 96.4
1.75mm 94.3 96.9 73.9 98.4

Table 1: Middlebury Evaluation for different NBV and
MVS approaches.

Tab. 1 shows experimental evaluation against
the Middlebury benchmark. The proposed method
allows efficient selection of stereo pairs for recon-
struction, such that a dense model can be obtained
with only a small number of images. Once a
complete model has been obtained, the remaining
computational budget is used to intelligently refine
areas of uncertainty, achieving results comparable
to state-of-the-art batch approaches on the Middle-
bury dataset, using as little as 3.8% of the views.

Both contributions are extremely efficient, tak-
ing 0.8ms and 0.3ms per pose, respectively. More
importantly, neither uses any image-based infor-
mation instead relying on cues from the partially
reconstructed geometry. This allows the proposed
approach to sample areas of space that have not
been imaged, and is therefore inherently applica-
ble to robotic problems such as path-planning and
goal estimation.
[1] Alexander Hornung, Boyi Zeng, and Leif Kobbelt.

Image selection for improved multi-view stereo. In
CVPR, 2008.

[2] Michal Jancosek, Alexander Shekhovtsov, and
Tomas Pajdla. Scalable multi-view stereo. In ICCV,
2009.
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Many of the computer vision tasks such as stereo correspon-
dence, optical flow, biometric user verification, and object
recognition require the establishment of dense pixel corre-
spondences between pair of images which can differ in im-
age acquisition setting, i.e., scene content and scene configu-
ration. On the one end of the spectrum is the narrow-baseline
stereo correspondence, where these variations are at a mini-
mum since the same 3D scene is captured from slightly dif-
ferent viewpoints. On the other extreme is the semantic im-
age alignment, involving images captured from different 3D
scenes sharing similar characteristics such as containing same
but different instances of objects.

Recent state-of-the-art approaches [2, 5, 7, 8, 10] attempt
to compute correspondences between pair of images by match-
ing image signatures, e.g., color histograms, SIFT descrip-
tor [9], CNN features [6], extracted locally from pixels and
enforce smoothness on the correspondence field by enforcing
spatial regularity. This type of a variational approach is chal-
lenged by semantically related images featuring large visual
variations given that the variation measure does not capture
any semantic aspect of the scene beyond a local histogram over
a neighborhood.

Our approach is to introduce certain semantic concepts
into the correspondence process. Specifically, in this paper,
we explore the effect of shape as an additional guideline to
the variational correspondence process. We ask whether spec-
ifying a pair of corresponding shapes can influence the corre-
spondence process significantly and under what scenarios. We
also ask whether shape should be specified in the form of a
contour fragment or in the form of a closed curve bounding
a region. Finally, when such corresponding shape constraints
are not available, we ask whether object proposals can serve
this purpose and under what conditions.

In our experiments, we consider three types of tasks:
(i) optical flow, (ii) wide-baseline stereo correspondence, (iii)
semantic image alignment and use four publicly available
datasets, i.e., the MPI Sintel Flow dataset [3], the DTU Robot
Image datasets [1], the CUB-200-2011 dataset [11], and the
PASCAL-Part dataset [4].

The qualitative and quantitative experiments reveal that
(i) for datasets depicting slight visual variations, traditional
methods are effective and do not benefit from the introduc-
tion of a shape correspondence constraint; (ii) for datasets de-
picting large visual variation with the same scene context, the
shape correspondence constraints improve the correspondence
in the range of 7%; and (iii) for datasets depicting instance and
configuration variation, there are significant improvements up
to 170%. Shape seems to help bring pixels into proper regis-
tration. The experiments on the form of the shape constrain-
ing the correspondence show that closed curves generally per-
form better than contour fragments which in turn perform bet-
ter than shape presented as an unorganized cloud of points.
Moreover, the use of object proposals to automatically obtain
a shape constraint is also very promising. Compared to the per-
formance obtained when ground truth segmentations are used,
a ~26% drop in segmentation accuracy in terms of Jaccard in-
dex leads to a ~10% drop in performance.

Target Source Target Source

(a) (b)

Target Source DSP [5] DSP+shape

(c)

Figure 1: Shape aligned dense correspondence. (a) Spa-
tial regularity in current state-of-the-art methods only disam-
biguate matches which are not locally consistent, i.e., prefer-
ring the solid line correspondence to dashed one. (b) Shape
alignment can reduce the ambiguity further by ruling out cor-
respondences which violate inside-outside consistency. (c) A
visual result. The warped source using shape alignment con-
straint is clearly superior.

[1] H. Aanæs, A.L. Dahl, and K. Steenstrup Pedersen. Interesting
interest points. IJCV, 97:18–35, 2012.

[2] Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam
Finkelstein. The generalized patchmatch correspondence algo-
rithm. In ECCV, pages 29–43, 2010.

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic
open source movie for optical flow evaluation. In ECCV, pages
611–625, 2012.

[4] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. Detect what you can: Detect-
ing and representing objects using holistic models and body parts.
In CVPR, 2014.

[5] Jaechul Kim, Ce Liu, Fei Sha, and Kristen Grauman. Deformable
spatial pyramid matching for fast dense correspondences. In
CVPR, pages 2307–2314, 2013.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks. In
NIPS, pages 1106–1114, 2012.

[7] Ce Liu, Jenny Yuen, and Antonio Torralba. SIFT flow: Dense
correspondence across scenes and its applications. PAMI, 33(5):
978–994, 2011.

[8] Jonathan Long, Ning Zhang, and Trevor Darrell. Do convnets learn
correspondence? In NIPS, pages 1601–1609, 2014.

[9] David G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[10] Weichao Qiu, Xinggang Wang, Xiang Bai, Alan L. Yuille, and
Zhuowen Tu. Scale-space SIFT flow. In WACV, pages 1112–1119,
2014.

[11] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The
Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-
TR-2011-001, California Institute of Technology, 2011.
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We address the problem of robust visual data as-
sociation across seasons and viewpoints. The
predominant methods in this area are typically
appearance–based, which lose representational
power in outdoor and natural environments that
have significant variation in appearance. After a
natural environment is surveyed multiple times,
we recover its 3D structure in a map, which
provides the basis for robust data association.
Our approach is called Reprojection Flow (see
Fig. 1).

A map can make robust data association
possible, but acquiring one that is composed of
landmarks from different seasons is a feat in and
of itself. First, images are registered (low-res)
between near–time surveys to identify images of
the same scenes (aided by GPS). Full resolution
image registration is performed on the set that
aligns well in order to acquire inter-survey ob-
servations of KLT–tracked landmarks. A map is
recovered from the set of intra- and inter-survey
landmark observations using visual SLAM.

Given the optimized map and camera

poses, reprojected map points are used for 1)
appearance–invariant viewpoint selection and 2)
the robust registration of images. First, images
of the same scenes from multiple surveys are
found by maximizing the co-visibility of repro-
jected map points. Second, the pixel locations
of reprojected map points are used to indicate
correspondences between them. This reprojec-
tion flow directly provides sparse data associa-
tion among images of the same scenes, which is
applied with matching constraints to maximize
the use of appearance–invariant information.

We evaluated this approach using a dataset
of 24 surveys of a natural environment that
span over a year. This approach significantly
improves dense correspondence across seasons
compared to SIFT Flow [1]. It also provides ro-
bustness to changes in viewpoint.

[1] Ce Liu, Jenny Yuen, and Antonio Torralba. SIFT
Flow: Dense correspondence across scenes and its
applications. PAMI, 33(5):978–994, 2011.
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Analysing and predicting the movement of
objects is a vital ability for self-driving cars and
autonomous mobile robots. We propose an un-
supervised approach to learn typical motion pat-
terns of object categories from example data. In
our approach, object categories are not limited
to predefined classes. Instead, we categorize ob-
jects by similarity in shape and trajectory.

Maneuver-based methods (e.g. [2]) such as
ours find patterns in previously observed tra-
jectories to predict the future evolution of the
trajectory. Compared to previous maneuver-
based methods, we additionally distinguish the
observed objects by their shape, which allows
us to assign object category-specific motion pat-
terns. While most related work in the research
area of object categorization focuses on super-
vised methods (e.g. [1]), only a small number of
approaches tackle the semi-/unsupervised cate-
gorization of objects.

Based on noisy stereo data we cluster ob-
jects based on shape and trajectory information
in an unsupervised way. We propose to describe
objects in a hierarchical approach, as visualized
in Fig. 1: (1.) First, we run a tracker on the
training set and gather training data by sampling
the trajectories of the tracked objects. A train-
ing example contains a shape model of the ob-
ject together with its trajectory. (2.) We clus-
ter the instances from the training set based on
their shape. The shape clusters cS ∈ CS repre-
sent categories of objects, differentiating view
points within an object class. (3.) Various in-
stances in each shape cluster can have differ-
ent motion models, e.g. a car can be parked or
drive with a large velocity. Hence, we cluster
the trajectories m ∈M(cS) of each shape clus-
ter cS to obtain shape-specific trajectory clus-
ters cM|cS

∈ CM|cS
. (4.) Each trajectory cluster in

a shape forms one shape-motion pattern (SMP)

Training Recall

(1.)

(2.)

(3.)

(4.)

=

=

(5.)

(6.)

(7.)

(8.)

Figure 1: Motion prediction pipeline based on
hierarchical clustering.
p = (cS,cM|cS

). The trajectories in the SMP can
be described by the Gaussian distribution on the
past and future positions relative to their current
position. (5.)-(7.) Using our learned model, we
classify novel object shapes and trajectories into
one of the learned SMPs. (8.) Based on the se-
lected motion model we predict the future mo-
tion and infer a probability distribution describ-
ing where the object could move based on its
shape.

We demonstrate in our experiments that our
approach outperforms Kalman filter based pre-
dictions and that reasoning on shape can increase
prediction performance especially for object cat-
egories e.g. pedestrians whose trajectory mod-
els differ significantly from the typical trajec-
tories of other observed objects. In addition,
we demonstrate qualitatively that our method
can predict possible future motions for static ob-
jects and thus foresee potentially dangerous sit-
uations.

[1] D. Mitzel, J. Diesel, A. Ošep, U. Rafi, and
B. Leibe. A fixed-dimensional 3d shape represen-
tation for matching partially observed objects in
street scenes. In ICRA, 2015.

[2] V. Romero-Cano, J. Nieto, G. Agamennoni, et al.
Unsupervised motion learning from a moving
platform. In Intel. Vehicles Symp., 2013.
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(a) Our loss is based on an
8-connected neighborhood.

E =−

inference pairwise potential︷ ︸︸ ︷(
w00 w01
w10 w11

)
−

(
0 γ
0 0

)

︸ ︷︷ ︸
loss pairwise potential

(b) Pairwise potential construction for an
edge with y∗k =+1 and y∗l =−1 follow-
ing Equation (1).

Figure 1: Non-submodularity of the joint loss augmented inference using
the same mapping to a set function for inference and loss functions.

Several non-modular loss functions have been
considered in the context of image segmentation.
These loss functions do not necessarily have the
same structure as the segmentation inference al-
gorithm, and in general, we may have to resort
to generic submodular minimization algorithms
for loss augmented inference. Although these
come with polynomial time guarantees, they are
not practical to apply to image scale data.

In this work, we first propose a supermodu-
lar loss function that is itself optimizable with
graph cuts. It counts the number of incorrect
pixels plus the number of pairs of neighboring
pixels that both have incorrect labels

∆(y∗, ỹ) = ∑p
j=1[y

∗ j 6= ỹ j]+∑(k,l)∈E`
γ[y∗k 6= ỹk ∧ y∗l 6= ỹl ] (1)

where [·] is Iverson bracket, E` is a loss specific
edge set and γ is a positive weight. We may iden-
tify this function with a set function to which the
argument is the set of mispredicted pixels.

While being incorporated in a joint loss-
augmented inference leads to non-submodular
potentials, we therefore use the alternating di-
rection method of multipliers (ADMM) based
decomposition strategy (Algorithm 1). It con-
sists of alternatingly optimizing the loss function
and performing MAP inference, with each pro-
cess augmented by a quadratic term enforcing
the labeling determined by each to converge to
the optimum of the sum. In this way, we gain
computational efficiency, making new choices
of loss functions practical, while simultaneously
making the inference algorithm employed dur-

Algorithm 1 ADMM in scaled form for
finding a saddle point of the Lagrangian
L(ya,yb,λ ) = −〈w,φ(x,ya)〉 − ∆(y∗,yb) +
λ T (ya− yb)+

ρ
2 ‖ya− yb‖2

2

1: Initialization u0 = 0
2: repeat
3: yt+1

a = argminya−〈w,φ(x,ya)〉+ ρ
2 (‖ya− yt

b +ut‖2
2)

4: yt+1
b = argminyb−∆(y∗,yb)+

ρ
2 (‖yt+1

a − yb +ut‖2
2)

5: ut+1 = ut +(yt+1
a − yt+1

b )
6: t = t +1
7: until stopping criterion satisfied

(a) Hamming (b) 8-connected (c) Hamming (d) 8-connected

(e) Hamming (f) 8-connected (g) Hamming (h) 8-connected
Figure 2: The segmentation results of prediction trained with Hamming
loss and our supermodular loss.

ing training closer to the test time procedure.
We show improvement both in accuracy and

computational performance on the MR Grabcut
database (Fig. 2) and a brain structure segmen-
tation task, empirically validating the use of a
supermodular loss during training and the im-
proved computational properties of the proposed
ADMM approach over the Fujishige-Wolfe min-
imum norm point algorithm. We envision that
this can be of use in a wide range of ap-
plication settings, and an open source general
purpose toolbox for this efficient segmentation
framework with supermodular losses is available
for download from https://github.com/
yjq8812/efficientSegmentation.
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We introduce the first model to perform weakly
supervised learning with Gaussian processes
(GPs) on up to millions of instances. The key
ingredient to achieve this scalability is to re-
place the standard assumption of MIL that the
bag-level prediction is the maximum of instance-
level estimates with the accumulated evidence of
instances within a bag. Given data set of N in-
stances X = [x1, · · · ,xN ] = {X1∪X1∪·· ·∪XB}
composed of B disjoint partitions, called bags,
and supervised by bag labels T = [t1, · · · , tB], we
propose the following model to infer a Bayesian
weakly supervised predictor

p(u|Z) =N (u|0,KZZ), (1)

p(f|u,X,Z) =N (f|KXZK−1
ZZu, (2)

diag(KXX−KXZK−1
ZZKZX)),

p(T|f) =
B

∏
b=1

Bernoulli(Tb|σ(fT
b 1)), (3)

where Z = [z1; · · · ;zP] with P � N is a tiny
pseudo data set called the inducing point set
and u the corresponding outputs. We refer to
this model as the Variational Weakly Supervised
Gaussian Process (VWSGP) 1. Here, Equations
1 and 2 constitute the sparse GP prior and Equa-
tion 3 is a Bernoulli likelihood ensuring the
model to predict binary outputs. Thanks to the
sum term fT

b 1 in the likelihood, this model can
be trained by closed-form variational inference
updates. Hence, keeping all parameters but one
fixed, the remaining parameter can be analyti-
cally fit to the global optimum. This virtue leads

1The source code of our model is publicly available under
https://github.com/melihkandemir/vwsgp

to charmingly fast convergence, fitting perfectly
to large-scale learning setups.

We evaluate our VWSGP on the Pascal VOC
’07 benchmark and two medical image analysis
applications: i) Diabetic Retinopathy screening
(DR), and ii) metastatic tumor detection from
histopathology images of lymph node tissues
(Lymph). While VOC ’07 consists of 19M in-
stances (2000 region proposals per image), DR
and Lymph have 361K and 1M instances, re-
spectively. The results are summarized in Ta-
ble 1. Our model proves to outperform various
scalable MIL algorithms, as well as state-of-the-
art adaptations of deep learning to weakly super-
vised learning.

Table 1: Bag-level average precision scores on
two medical data sets.

VOC’07 DR Lymph
VWSGP (Ours) 83.7 0.98 0.68

VGG-S [1] 82.4 - -
DMIL [4] 75.5 - -
mi-FV [3] - 0.92 0.48
e-MIL [2] - 0.93 0.61

[1] A. Vedaldi et al. Return of the devil in the details:
Delving deep into CNNs. In BMVC, 2014.

[2] G. Krummenacher et al. Ellipsoidal multiple in-
stance learning. In ICML, 2013.

[3] X.-S. Wei et al. Scalable multi-instance learning.
In ICDM, 2014.

[4] J. Wu et al. Deep multiple instance learning
for image classification and auto-annotation. In
CVPR, 2015.
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In this paper we propose a novel deep learning
framework named as regional gating neural net-
works (RGNN) for multi-label image classifica-
tion. It mainly focuses on integrated contextual
object region selection. The motivation arises
from the fact that successful global CNN fea-
tures ignore the underlying context information
among different image objects. However, when
people attempt to use information from object-
ness regions, current objectness region proposal
algorithms usually produce too many irrelevant
or even noisy regions as well. Thus it is mean-
ingful to study how to effectively select useful
contextual regions for image classification in the
deep architecture.

The proposed RGNN is an end-to-end deep
learning framework that can automatically se-
lect contextual region features with specially de-
signed gate units, which are then fused for better
classification. The feed-forward path of RGNN
consists of 5 steps: (1) For each image, object
proposals are used to generate multiple candi-
date regions. (2) Shared Conv + ROI pool + FC
layers are then applied to obtain feature repre-
sentations of regions. (3) Region/feature level
gate units are imposed on each regional repre-
sentation to control whether to be turned on/off
so as to select useful contextual region features.
(4) Multi-scale cross region pooling are further
applied to get contextual image level feature rep-
resentation. (5) Fused contextual representation
are fed into FC layers to predict image labels.

The whole network is optimized with multi-
label loss. When object level bounding box an-
notations are available, we further define a local-
ization loss to aid effective region selection and

Method VOC’07 VOC’12
VGG-16+19 [1] 89.7 89.3
HCP-VGG [2] 90.9 90.5

HCP++ [2] - 93.2
RGNN-RL 93.7 93.4
RGNN-FL 93.7 93.3

Table 1: Classification results (AP in %) com-
parison on VOC’07 and VOC’12 benchmarks.

optimize the network with multi-task learning.
Because the gate units and the classifier are inte-
grated in the same deep neural network pipeline,
we can learn parameters of the network simulta-
neously.

We evaluate on PASCAL VOC 2007/2012
and MS-COCO benchmarks, and results show
that RGNN is superior to existing state-of-the-
art methods. Partial comparison results with
state of the arts are displayed in Table 1. We
can see from these results that our proposed net-
works with region level gate (RGNN-RL) and
feature level gate (RGNN-FL) outperform the
global VGG-16+19 networks. Compared to ex-
isting algorithms based on objects information
like HCP-VGG and HCP++ (with multiple mod-
els fusion), RGNNs also work better thanks to
the effective integrated contextual region selec-
tion in the deep networks. We also find that
the introduced localization loss can effectively
improve RGNN performances from our ablation
studies on VOC 2007 data set.

[1] Simonyan et al. Very Deep Convolutional
Networks for Large-Scale Image Recognition.
arXiv.org, September 2014.

[2] Wei et al. HCP: A Flexible CNN Framework for
Multi-label Image Classification. IEEE TPAMI,
pages 1–8, 2015.
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Multispectral pedestrian detection is essential
for around-the-clock applications, e.g., surveil-
lance and autonomous driving. In some sense,
color and thermal images provide complemen-
tary visual information. As shown in Figure 1,
thermal images usually present clear silhouettes
of human objects [1], but losing fine visual de-
tails of human objects (e.g. clothing) which can
be captured by RGB cameras (depending on ex-
ternal illumination), Nevertheless, except very
recent efforts (e.g.,[2]), most of previous studies
concentrated on detecting pedestrians with color
or thermal images only. It is still unknown how
color and thermal image channels can be prop-
erly fused in DNNs to achieve the best pedes-
trian detection synergy.

Figure 1: Yellow bounding boxes indicate detec-
tion failures with one image channel.

In this paper, we focus on how to make the
most of multispectral images (color and ther-
mal) for pedestrian detection. With the re-
cent success of DNNs on generic object de-
tection, it becomes very natural and interest-
ing to exploit the effectiveness of DNNs for
multispectral pedestrian detection. We deeply
analyze Faster R-CNN [3] for this task and
then model it into a convolutional network
(ConvNet) fusion problem. We carefully de-
sign four distinct ConvNet fusion architectures
that integrate two-branch ConvNets on different
DNNs stages, i.e., convolutional stages, fully-
connected stages, and decision stage, corre-

Figure 2: ConvNet fusion models for color and
thermal images. From left to right are fusions at
low level (Early Fusion), middle level (Halfway
Fusion), and high level (Late Fusion), confi-
dence level (Score Fusion), respectively.

sponding to information fusion on low level,
middle level, high level, and confidence level.
All these models outperform the strong baseline
detector Faster-RCNN on KAIST multispectral
pedestrian dataset (KAIST) [4].

We reveal that our Halfway Fusion model
– fusion of middle-level convolutional features,
provides the best performance on multispec-
tral pedestrian detection. Our Halfway Fusion
model significantly reduces the missing rate of
baseline method Faster R-CNN by 11%, yield-
ing a 37% overall missing rate on KAIST, which
is also 3.5% lower than the other proposed fu-
sion models. We speculate that middle-level
convolutional features from color and thermal
branches are more compatible in fusion: they
contain some semantic meanings and meanwhile
do not completely throw all fine visual details.

[1] Y. Socarrás, S Ramos, D. Vázquez, A.M. López,
and T. Gevers. Adapting pedestrian detection
from synthetic to far infrared images. In ICCVW,
2011.

[2] J. Wagner, V Fischer, M. Herman, and S. Behnke.
Multispectral pedestrian detection using deep fu-
sion convolutional neural networks. 2016.

[3] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-
CNN: Towards real-time object detection with re-
gion proposal networks. In NIPs, 2015.

[4] S. Hwang, J. Park, N. Kim, Y. Choi, and
I.S. Kweon. Multispectral pedestrian detection:
Benchmark dataset and baseline. In CVPR, 2015.
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We aim to learn recognition models from
widespread user-provided social media tags,
rather than costly purpose created annotations.
To address this challenge, we propose a label de-
noising algorithm to rectify noisy (incorrect and
missing) labels. Subsequent supervised learning
tasks then benefit from using the de-noised la-
bels rather than the original noisy ones.

Our model is based on two intuitions: learn-
ing the typical noise pattern between observed
noisy labels and latent true labels, and exploit-
ing the expected smoothness true labels with re-
gards to the image manifold. Notably, we han-
dle both visual and label outliers with robust L1-
norm based regularisers. Our L1 Graph based
Sparse model with explicit noise pattern model
(L1GSP) is shown in Eq. (1), with two key com-
ponents: the robust L1 visual similarity graph
regulariser (||SŶ ||1) and the robust L1 label reg-
ulariser with explicit label noise pattern mod-
elling (||Ŷ −Y Q||1):

min
Ŷ ,Q

||SŶ ||1 + γ||Ŷ −Y Q||1 +
β
2

||Q||2F , (1)

where S encodes the visual similarity graph, Y
and Ŷ represent observed noisy labels and latent
de-noised labels respectively, and Q the learned
noise pattern transition matrix. The optimisation
of Eq. (1) is non-trivial because the two L1 norm
terms make it significantly harder than the more
common case of a single L1 norm. Therefore,
multiple stages of alternating optimisation pro-
cedures are formulated in order to break it into
more tractable sub-problems.

Our experiments apply label de-noising al-
gorithms to train sets and evaluate de-noising
performance. The cleaned labels are then used
for classifier learning, and performance is eval-
uated on test sets. L1GSP achieves better per-
formance than its competitors on both label de-
noising and follow-up classification tasks across
datasets, as shown in Table 1 and 2. Qualita-
tive label de-noising results are shown in Fig. 1.
The first example shows that incorrect labels can

GT NL L2V G L2V GLG RPCA L1GSP
Denoising mAP - - 52.21 55.01 56.39 60.09

Testing mAP 71.98 42.34 40.33 41.10 53.54 58.66

Table 1: Pascal VOC 2007 de-noising perfor-
mance and testing performance (mAP, %). GT
for Ground-truth; NL for Noisy Labels.

De-noising Testing
mAPc mAPi mAPc mAPi

GT - - 47.76 74.31
NL - - 30.07 47.88

L2V G 52.39 57.45 33.81 48.52
L2V GLG 53.02 59.68 34.69 49.45

RPCA 48.89 64.10 31.20 54.21
L1GSP 58.46 66.98 35.70 57.84

Table 2: De-noising (left) and testing (right)
performance (mAP, %) on NUS-WIDE. GT for
Ground-truth; NL for Noisy Labels.

be eliminated from the top ranking predictions
of our de-noising model. The effectiveness of
the proposed model to recover missing labels is
illustrated in the second image of Fig. 1. The
last image of Fig. 1 shows a failure case using
our model, which is mainly due to the uncon-
ventional appearance of toys.

!"#$%&'()*+,

(-#.(+ / *+0&/&12($$

3*4-"#$*5&'()*+,

(-#.(+&/ 12($$&/ *+0

!"#$%&'()*+,

1(25*-&/ $0% / 6+"75$ /&8+"9*2$

3*4-"#$*5&'()*+,

$0%&/ 6+"75$&/ 8+"9*2$

!"#$% '()*+,

2(#-)"9&/ :"%

3*4-"#$*5&'()*+,

8+"9*2$&/ 8""5 / 2(#-)"9

Figure 1: Illustrations of label de-noising results
on NUS-WIDE (top 3 scoring of the de-noised
labels by L1GSP are shown). Red indicates in-
correct labels, green for missing labels and blue
for correct labels. Failure case in red dashed line.
[1] Baoyuan Wu, Siwei Lyu, and Bernard Ghanem.

Ml-mg: Multi-label learning with missing labels
using a mixed graph. In ICCV, 2015.

[2] Wenxuan Xie, Zhiwu Lu, Yuxin Peng, and
Jianguo Xiao. Graph-based multimodal semi-
supervised image classification. Neurocomputing,
2014.
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PatchIt: Self-Supervised Network Weight Initialization for Fine-grained
Recognition
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ConvNet training is highly sensitive to ini-
tialization of the weights. A widespread ap-
proach is to initialize the network with weights
trained for a different task, an auxiliary task. The
ImageNet-based ILSVRC classification task is
a very popular choice for this, as it has shown
to produce powerful feature representations ap-
plicable to a wide variety of tasks. However,
this creates a significant entry barrier to explor-
ing non-standard architectures. In this paper,
we propose a self-supervised pretraining, the
PatchTask, to obtain weight initializations for
fine-grained recognition problems, such as per-
son attribute recognition, pose estimation, or ac-
tion recognition. Our pretraining allows us to
leverage additional unlabeled data from the same
source, which is often readily available, such as
detection bounding boxes. We experimentally
show that our method outperforms a standard
random initialization by a considerable margin
and closely matches the ImageNet-based initial-
ization.

The PatchTask presented in this paper
provides a viable alternative to the popular
ImageNet-based pretraining. The core idea is to
leverage data from the same domain as the tar-
get task for pretraining. The pretraining is self-
supervised, i.e., it solely relies on automatically
generated rather than human annotated labels.
We target fine-grained recognition tasks that ap-
pear in person analysis applications (e.g., pose
estimation, re-identification, action and attribute
recognition). Their common aspect is that they
make predictions for an object that has been lo-
cated before (e.g., by a detector). So, we will
assume such a specific input domain.

The PatchTask idea is inspired by the work
of Doersch et al. [1], who propose an auxil-
iary task defined by the spatial layout of pairs
of patches. In contrast to their work on gen-
eral images, we focus on fine-grained recogni-
tion, where the input images come from a re-
stricted data domain (i.e., bounding boxes show-
ing persons). In this restricted setting, it is fea-
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Figure 1: Patch Task: Classify the extraction po-
sition given one 32×32 pixel patch. During the
pretraining phase, the model needs to encode lo-
cal patch structure. The parameters are trans-
ferred to the target task net. Subsequent fine-
tuning benefits from a better initialization.

sible to directly predict the original location of
single patches (Fig. 1).

This paper makes the following contri-
butions: (1) We describe a family of self-
supervised patch tasks for fine-grained analysis.
(2) We demonstrate and evaluate their use for
human attribute recognition, where we achieve
state-of-the-art performance without using ex-
ternal labels (in particular, without ImageNet).
This facilitates further exploration of architec-
tures. (3) We provide data for person analy-
sis pretraining and supporting code that may be
used to improve person representations in other
ConvNet architectures.

[1] Carl Doersch, Abhinav Gupta, and Alexei A.
Efros. Unsupervised Visual Representation
Learning by Context Prediction. In ICCV, 2015.
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Shape from shading (SfS) and stereo are two
fundamentally different strategies for image-
based 3-D reconstruction. While approaches for
SfS infer the depth solely from pixel intensities,
methods for stereo are based on finding corre-
spondences across images.

In this paper we propose a joint variational
method that combines the advantages of both
strategies. By integrating recent stereo and
SfS models into a single minimisation frame-
work, we obtain an approach that exploits shad-
ing information to improve upon the recon-
struction quality of robust stereo methods. To
this end, we fuse a Lambertian SfS approach
with a robust stereo model and supplement
the resulting energy functional with a detail-
preserving anisotropic second-order smoothness
term. Moreover, we extend the novel model in
such a way that it jointly estimates depth, albedo
and illumination. This in turn makes the ap-
proach applicable to objects with non-uniform
albedo as well as to scenes with unknown illu-
mination.

Experiments for synthetic and real-world
images show the advantages of our combined
approach: While the stereo part overcomes the
albedo-depth ambiguity inherent to all SfS meth-
ods, the SfS part improves the degree of details
of the reconstruction compared to pure stereo
methods. An example of the reconstruction
quality of our combined approach using only
two views is given in Figure 1. As one can see,
the reconstructed depth is quite detailed. More-
over, the computed illumination direction as well
as the estimated albedo look reasonable.

[1] C. Strecha, W. von Hansen, L. Van Gool, P. Fua,
and U. Thoennessen. On benchmarking camera
calibration and multi-view stereo for high resolu-
tion imagery. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2008.

Figure 1: Two-view results for the Fountain-P11
[1]. Top to bottom: Reference image, computed
depth (shaded reconstruction), computed illumi-
nation direction, computed albedo.
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Structured Prediction of 3D Human Pose with Deep Neural Networks
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In this paper, we introduce a Deep Learning re-
gression architecture for structured prediction of
3D human pose from monocular images that re-
lies on an overcomplete auto-encoder to learn a
high-dimensional latent pose representation and
account for joint dependencies.

(a) (b) (c)
Figure 1: (a) An overcomplete denoising au-
toencoder is trained. (b) CNN is mapped into the
latent representation learned by the autoencoder.
(c) The latent representation is mapped back to
the original pose space using the decoder.

For this purpose, we first train an overcom-
plete auto-encoder that projects joint positions
to a high dimensional space represented by its
middle layer, as depicted by Fig. 1(a). We then
learn a CNN-based mapping from the input im-
age to this high-dimensional pose representation
as shown in Fig. 1(b). This is inspired by Ker-
nel Dependency Estimation (KDE) [2], which
maps both input and output to high-dimensional
Hilbert spaces via kernel functions and learns a
mapping between these spaces. In fact, it can
be understood as replacing kernels by the auto-
encoder layers to predict the pose parameters
in a high dimensional space that encodes com-
plex dependencies between different body parts.
As a result, it enforces implicit constraints on
the human pose, preserves the body statistics,
and improves prediction accuracy. Finally, as in
Fig. 1(c), we connect the decoding layers of the
auto-encoder to this network, and fine-tune the
whole model for pose estimation. Our contribu-

∗ indicates equal contribution

tion is to show that combining traditional CNNs
for supervised learning with auto-encoders for
structured learning preserves the power of CNNs
while also accounting for dependencies, result-
ing in increased performance.
Results: We evaluate our method on Hu-
man3.6m [2] and report our results along with
three state-of-the-art approaches [2, 3, 4] in Ta-
ble 1. Our method outperforms all the baselines.

Following [1], we show in Table 2 the differ-
ences between the ground-truth limb ratios and
the limb ratios obtained from predictions based
on KDE, CNN regression and our approach.
These results evidence that our predictions better
preserve these limb ratios, and thus better model
the dependencies between joints.

Model Discussion Eating Greeting Taking Photo Walking Walking Dog

LinKDE( [2] 183.09 132.50 162.27 206.45 97.07 177.84
DconvMP-HML [3] 148.79 104.01 127.17 189.08 77.60 146.59
StructNet-Max [4] 149.09 109.93 136.90 179.92 83.64 147.24
StructNet-Avg [4] 134.13 97.37 122.33 166.15 68.51 132.51
OURS 129.06 91.43 121.68 162.17 65.75 130.53

Table 1: Average Euclidean distance error in mm
for [2, 3, 4] and ours.

Model Lower Body Upper Body Full Body

KDE [2] 1.02 7.18 16.43
CNN 0.57 6.86 14.97
OURS no FT 0.62 5.30 11.99
OURS with FT 0.77 5.43 11.90

Table 2: Sum of the log of limb length ratio er-
rors for different parts of the human body.
[1] C. Ionescu, F. Li, and C. Sminchisescu. Latent

Structured Models for Human Pose Estimation. In
ICCV, 2011.

[2] C. Ionescu, I. Papava, V. Olaru, and C. Sminchis-
escu. Human3.6M: Large Scale Datasets and Pre-
dictive Methods for 3D Human Sensing in Natural
Environments. PAMI, 2014.

[3] S. Li and A.B. Chan. 3D Human Pose Estimation
from Monocular Images with Deep Convolutional
Neural Network. In ACCV, 2014.

[4] S. Li, W. Zhang, and A. B. Chan. Maximum-
Margin Structured Learning with Deep Networks
for 3D Human Pose Estimation. In ICCV, 2015.
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Relative attribute represents the correlation de-
gree of one attribute between an image pair.
Fine-grained or appearance insensitive relative
attribute prediction still remains as a challeng-
ing task. To address this challenge, we propose
a multi-task trainable deep neural networks by
incorporating an object’s both local context and
global style information to infer the relative at-
tribute. In particular, we leverage convolutional
neural networks (CNNs) to extract feature, fol-
lowed by a ranking network to score the image
pair. In CNNs, we treat features arising from
intermediate convolution layers and full connec-
tion layers in CNNs as local context and global
style information, respectively. Our intuition is
that local context corresponds to bottom-to-top
localised visual difference and global style in-
formation records high-level global subtle dif-
ference from a top-to-bottom scope between an
image pair. We concatenate them together to
escalate overall performance of multi-task rel-
ative attribute prediction. Finally, experimental
results on 5 publicly available datasets demon-
strate that our proposed approach outperforms
several other state of the art methods and fur-
ther achieves comparable results when compar-
ing to very deep networks, like 152-ResNet and
inception-v3.

0.1 Feature Learning
We propose to learning discriminative feature
by incorporating both local context and global
style information feature. Local context stores
object’s local and obvious feature, while global
style information stores more abstract and high-
level feature. We achieve this by extracting fi-
nal full connection layer feature and intermedi-
ate layer feature, and further concatenate them
together to form the final feature vector [1] (see
fig.2 for framework pipeline):

ψ i = ψ i
f c +ψ i

local +ψ i
global (1)

... ...
fc1 fc2

Local Context

Global Style Info

... ...
fc1 fc2

Local Context

Global Style Info

Sh
ar

ed Ranking
Layer

Sigmoid
Posterior
Probability Cross

Emtropy
Loss

Vk
1

Vk
2

Pk
12

lkᴪk
2

ᴪk
1

Figure 1: Framework pipeline: we feed the im-
age pair to two CNNs with the same network
architecture and shared parameters. Features
learned by CNNs intermediate layers and final
several full connection layers are concatenated
together to form the final feature. The feature
pair is further fed to the ranking layer to score
each attribute.

0.2 Relative Attribute Prediction via
Ranking

The image feature extracted above is mapped to
a real value (or a real value vector) through a ma-
trix W and a bias term b: v = W ·ψ + b. Then
We calculate the posterior probability for each
relative attribute and squash it between [0-1] via
a sigmoid function[2],

Pk
1,2 =

1

1+ e−(v
i
1−vi

2)
(2)

Finally, we utilise cross entropy loss to rank each
relative attribute,

Li =
K

∑
k=1

li
k log(Pk

1,2)− (1− li
k) log(−Pk

1,2) (3)

0.3 Experiment
see the paper for detailed experiment discussion.

[1] W. Choi F. Yang and Y. Lin. Exploit all layers: fast
and accurate cnn object detector with scale depen-
dent pooling and cascaded rejection classifiers. In
Proc. CVPR, 2016.

[2] E. Adeli-Mosabbed Y. Souri, E. Noury. Deep rel-
ative attributes. arXiv preprint arXiv:1512.04103,
2015.
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With touch-screen devices becoming ever more
ubiquitous, sketch holds great promise as an in-
tuitive and efficient mode of input compared to
classic alternatives. This has motivated a ma-
jor revival of interest in vision-based analysis of
sketches, notably in sketch-based image retrieval
(SBIR). Superior to classic SBIR methods, fine-
grained SBIR (FG-SBIR) methods [1] are pro-
posed to make fine-grained retrieval in category-
level.

In this work, we introduce a multi-task
learning (MTL) model for FG-SBIR (as illus-
trated in Fig. 1), where the main task is a re-
trieval task with triplet-ranking objective similar
to [1], and attributes are detected and exploited
in two additional side tasks: The first side task
is to predict the attributes of the input sketch
and photo images. By optimising this task at
training, we encourage the learned representa-
tion to more meaningfully encode the semantic
properties of the photo/sketch; The second side-
task is to perform retrieval ranking based on the
attribute predictions themselves. At test time,
this means that the retrieval ordering is explic-
itly driven by semantic attribute-level similarity
as well as the similarity of the internally learned
representation. The multi-task loss is formulated

Rank list

Triplet 

samples Sketch branch

Positive branch

Shared representation

Negative branch

Main task

Attribute 

auxiliary task

Figure 1: Diagram of the proposed deep multi-
task fine-grained SBIR model.

as Eq. 1 (full details can be found in our paper).
L
(
s, p+, p−

)
= Lθ

(
s, p+, p−

)
+λaLa

(
s, p+, p−

)

+λsLp (s, ts)+λp+Lp

(
p+, t p+

)

+λp−Lp

(
p−, t p−

)
+λθ ‖θ‖22

(1)

By introducing multiple tasks in the net-
work, the model generalises better and further
can rely less on expensive human ranking an-
notation. Specifically, we show that the highly
non-scalable step of triplet annotation required
by the model in [1] can now be avoided and an
automatic attribute-based strategy is developed
instead to focus on the most informative ‘hard’
training samples for more efficient learning of
the model.
Contributions Our contributions are two-
fold: (1) A novel deep MTL model is proposed
to exploit two attribute-based auxiliary tasks for
learning semantically meaningful and domain-
invariant representation for FG-SBIR. (2) A new
attribute-based triplet generation and sampling
strategy is developed to boost the effectiveness
of the deep MTL model.
Experiments Extensive experiments are car-
ried out on two benchmarks and the results
demonstrate that the proposed model signifi-
cantly outperforms the state-of-the-art while si-
multaneously requiring less costly annotation.
Partial results are shown in Table 1 (full com-
parisons can be found in our paper).

Table 1: Comparative results against state-of-
the-art retrieval performance.

Shoe Dataset top 1 top 10 trip-acc Chair Dataset top 1 top 10 trip-acc
Triplet model [1] 39.13% 87.83% 69.49% Triplet model [1] 69.07% 97.94% 72.30%

Ours 50.43% 91.30% 70.59% Ours 78.35% 98.97% 73.13%

[1] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang,
Timothy M Hospedales, and Chen Change Loy.
Sketch me that shoe. In CVPR, 2016.
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We investigate why the utility of context infor-
mation in object detection is limited through the
evaluation of the effect of different pure con-
text cues. We analyze the predictive potential
of context in an idealized case where the labels
of all contextual objects are known, and only
these labels and their relationships to a target
object are used to predict the target object la-
bel. These experiments reveal that, despite ig-
noring the appearance of the target object, pure
context is effective at predicting the target object
class. Not surprisingly, different categories vary
in their ability to predict certain target objects.
Based on this study, we propose a region-based
context re-scoring method with dynamic context
selection, illustrated in figure 1(b), which tries to
eliminate false positive contextual regions while
emphasizing likely true positive and informative
ones. Specifically, we introduce a latent vari-
able for each contextual region that determines
if that region will be selected to provide context
information. In practice, it is intractable to select
the optimal set of contextual regions that provide
the most trustworthy information when contra-
dictory evidence exists, for and against the tar-
get object being in a certain class. Instead, we
decompose the problem by selecting informa-
tive regions providing the strongest supporting
and refuting evidence independently to compute
a For upper-bound (FUB) and an Against upper-
bound (AUB) of the confidence score, and then
re-score the confidence for that object being in
that class with the difference between the two
upper-bounds. The model for computing the two
upper-bounds is trained by latent-SVM [1].

The proposed method is evaluated on the
SUN RGB-D dataset and achieves 48.25% mean
average precision (mAP), an improvement of ∼
2.8% over using object detections without con-
text (45.47%). We also conduct experiments to
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Figure 1: (a) Imperfect detections from the Fast
R-CNN detector; (b) The proposed context se-
lection method.

study the performance of the selection model.
Both the simulations on pure context and the
real-world experiments using the proposed se-
lection method demonstrate the importance of
object-to-object context and the gain attributed
to the context selection scheme.
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Figure 2: 1st row: FUB model. 2nd row AUB
model. The yellow boxes are the target objects,
the red boxes are the selected contextual regions,
and the blue dashed boxes are the ones that are
not selected.

[1] Pedro F. Felzenszwalb, Ross B. Girshick, David
McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models.
IEEE Trans. Pattern Anal. Mach. Intell., 32(9):
1627–1645, September 2010.
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Figure 1: (a) Conventional re-id: A re-id model is
trained on a fully labelled training set, then fixed for
deployment; (b) Active re-id by HER+: A training set
is actively labelled incrementally on-the-fly as a re-id
model is incrementally learned, and further updated
without re-training during future deployment.

This work is motivated by two very intuitive re-
quirements for a scalable re-id system [2]: (1)
Low model complexity with scalable computa-
tional cost and memory usage in model train-
ing; and (2) High model adaptability support-
ing fast model update to incorporate any new
and increasingly larger data. A Highly Effi-
cient Regression (HER) model is formulated by
embedding the Fisher’s criterion to a ridge re-
gression model for very fast re-id model learn-
ing with scalable memory/storage usage. Im-
portantly, this new HER model supports faster
than real-time incremental model updates there-
fore making real-time active learning feasible in
re-id with human-in-the-loop (Fig. 1).

Our Highly Efficient Regression (HER) so-
lution for re-id has a very simple and fast closed-
form solution, involved with only a set of lin-
ear equations. It is readily scalable to large data
with many off-the-shelf efficient implementation
available. The base HER model for adopts the
form of minimising a least mean squared error:

P = argminP
1
2 ‖X⊤P−Y‖2

F +λ‖P‖2
F , (1)

where X ∈ Rd×n refers to the labelled data, and
P ∈ Rd×k refers to the discriminative projection
to be learned. To make the estimated subspace
person identity discriminative, FDA [1] criterion
are further embedded. Moreover, to incorporate
new and increasingly larger data in a real-world,
we further introduce an incremental learning for-
mulation HER+, enabling fast model updates
without the need for re-training from scratch.

Figure 2: Joint exploration-exploitation criteria
for active re-id.

The efficient model updates achieved by
HER+ makes makes active learning re-id with
human-in-the-loop feasible with reduced human
labelling costs. A joint exploration-exploitation
(jointE2) active sampling strategy is further pro-
posed (Fig. 2). Three criterion are considered for
selecting most useful samples to maximise the
re-id model’s discriminative power (1) Appear-
ance diversity exploration, (2) Matching uncer-
tainty exploitation, and (3) Ranking uncertain-
ty exploitation. Finally, these criterion are com-
bined into the final active sampling strategy.

For experimental results, when evaluated
under the conventional supervised re-id set-
ting on three popular re-id benchmarks, VIPeR,
CUHK01, and CUHK03, HER achieves Rank-
1 rates of 45.1%, 68.3% and 60.8% respective-
ly, outperforms all existing competitors. The
computational efficiency of HER is also evalu-
ated and it is shown that HER is the fastest in
batch training over other state-of-the-art model-
s. When evaluated under the active re-id set-
ting where a model is trained incrementally, it
is shown that: (1) HER+ incremental updates
is much more efficient than re-training from
scratch; and (2) The proposed jointE2 sampling
strategy effectively reduces human labelling ef-
fort and achieves better re-id performances.

[1] Ronald A Fisher. The use of multiple mea-
surements in taxonomic problems. Annals
of eugenics, 7(2):179–188, 1936.

[2] Shaogang Gong, Marco Cristani,
Change Loy Chen, and Timothy M.
Hospedales. The re-identification challenge.
In Person Re-Identification. Springer, 2014.
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In this paper we present a novel reflective
method to estimate 2D-3D face shape across
large pose. Based on the fact that 2D face
image is a projection of 3D face model, we
parameterise the configuration of landmarks into
3D Morphable Model and the projection matrix,
and regress them in a unified framework. First,
two regressors are learned for each cascaded
stage, one for predicting the update of camera
projection matrix, and the other for 3D shape
parameters. They work collaboratively to refine
the predicted shape towards true shape; Second,
to tackle failures which always occur in large-
pose problem, we propose a novel reflective
invariant metric to quantitatively estimate the
alignments, subsequently the estimation will
guide the model whether there is a need to
restart the algorithm with different initialization.
This is motivated by the fact that CPR are
more sensitive to horizontal reflection, and the
reflective variance are highly correlated to the
misalignment error; Third, instead of using
mean shape or random shapes for initialisation
[1], we propose a head pose (from a ConveNet
estimator) based initilisation scheme, which will
relax failure alignments.

New initilisations can then be found by
searching samples with similar head pose in the
training set. The main contributions of this pa-
per are: 1) Large pose face alignment by fitting
a dense 3DMM; 2) A novel reflective invariant
metric, by investigating the relation between re-
flective variance and misalignment error; 3) A
Reflective Cascaded Collaborative-Regressor al-
gorithm that reduces large pose face alignment
failures greatly.

In experiments, we evaluate the effective-
ness of our proposed method in component-wise
manner on AFLW test set. We compare to 1)
RCCR without reflective feedback (CCR). 2)
RCCR with reflective feedback and 5 random
restart initialisations (RCCR). 3) RCCR with
reflective feedback and 5 smart restart initial-
ization (RCCR + SR). The comparison can be
found in our paper, which shows, by using the
reflective feedback, we achieve big improvement
over CCR, which suggests us a failure-alarm
mechanism is indeed very useful. Moreover,
by using the head pose based initialisations, we
achieve even better performance, though the im-
provement is relatively minor.

[1] Heng Yang and Ioannis Patras. Mirror, mirror on
the wall, tell me, is the error small? In Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015.
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Deep Sign: Hybrid CNN-HMM for Continuous Sign Language Recognition
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This paper introduces the end-to-end embedding
of a CNN into a HMM, while interpreting the
outputs of the CNN in a Bayesian fashion. The
hybrid CNN-HMM combines strong discrimina-
tive abilities of CNNs with sequence modeling
capabilities of HMMs. Most current approaches
in the field of gesture and sign language recog-
nition disregard the necessity of dealing with
sequence data both for training and evaluation.
With our presented end-to-end embedding we
are able to improve over the state-of-the-art on
three challenging benchmark continuous sign
language recognition tasks by between 15% &
38% relative & up to 13.3% absolute.

CNN

Preprocessing

Tracking Hybrid HMM

Tandem HMM

Global Search

Visual Model

Sign
Annotations

Ressources

Pixelwise mean
subtraction

Frame-state
Alignment Language Model

Softmax

GMM
p(x|s,w)

p(s,w|x)

argmax
w

{
p(w)max

s

{
p(st ,W |xt )
p(s,w)α · p(st |st−1 ,w)

}}

Sign-Word Output Sequence

p(w)

argmax
w

{
p(w)max

s
{p(xt |st ,w) · p(st |st−1 ,w)}

}

Training

Figure 1: Overview of the proposed CNN-HMM
hybrid approach. For clarification the tandem
approach is also depicted.

Gesture is a key part in human communica-
tion. However, it does not have a well defined
structure. Sign language on the other hand pro-
vides a clear framework with a defined inven-
tory and grammatical rules that govern joint ex-
pression by hand (movement, shape, orientation,
place of articulation) and by face (eye gaze, eye
brows, mouth, head orientation). This makes
sign languages a perfect test bed for computer
vision and human language modeling algorithms
targeting human computer interaction and ges-
ture recognition.

Following the recent popularity of CNNs
in computer vision, several works have made
use of it in gesture and sign language recogni-
tion. However, in most previous CNN-based ap-
proaches the temporal domain is not elegantly
taken into consideration. Most approaches use
a sliding window or simply evaluate the output
on the frame level. We present a hybrid mod-
eling scheme that incorporates a CNN into a
HMM. Inspired by the hybrid approach known
from speech recognition [1], we use the CNN to
model the posterior probability p(s|x) for a hid-
den state s given the input image x. In this way
only the CNN needs to be trained. Opposed to
previous works combining CNNs with HMMs,
we convert the posteriors into scaled likelihoods
using Bayes’ rule such that they neatly integrate
into the HMM-framework.

We make several contributions:

1. We are the first to embed a deep CNN in
a HMM framework in the context of sign
language and gesture recognition, while
treating the outputs of the CNN as true
Bayesian posteriors and training the sys-
tem as a hybrid CNN-HMM in an end-to-
end fashion.

2. We present a large relative improvement
of over 15% compared to the state-of-the-
art on three challenging standard bench-
mark continuous sign language data sets.

3. We analyse the impact of the alignment
quality on the hybrid performance & ex-
perimentally compare the hybrid & tan-
dem approach, which has not been done
in the domain of gesture before.

[1] Herve A. Bourlard and Nelson Morgan. Con-
nectionist speech recognition: a hybrid approach,
volume 247. Springer Science & Business Media,
1994.
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In real-world classification problems, nuisance
can cause wild variability in the data. Nuisance
corresponds for example to geometric distortions
of the image, occlusions, illumination changes
or any other deformations that do not alter the
ground truth label of the image. We propose a
probabilistic framework for efficiently estimat-
ing the robustness of state-of-the-art classifiers
and for sampling problematic nuisances.

Ingredients.
Classifier: The classifier is provided through its
conditional distribution pcl(c|x), which represents
the probability that an image x is classified as c
by the classifier.
Nuisance: We denote by pT (θ) a prior prob-
ability distribution on the nuisance set T . The
prior captures the region of interest in the nui-
sance space.

Measuring the robustness to nuisance.
We define the robustness µT (x) as the average
confidence of the classifier on the transformed
samples: µT (x) :=Eθ∼pT [pcl(`(x)|Tθ x)] , where
`(x) is the ground truth label of x, Tθ x is the im-
age x transformed by θ and where pcl(`(x)|Tθ x)
represents the probability that the transformed
image Tθ x is classified as `(x).
A global robustness measure ρT is then com-
puted by averaging µT (x) over a data distribu-
tion x∼ pd . We estimate the average robustness
ρT using a Monte-Carlo approximation.

Sampling problematic nuisances.
While ρT measures the average likelihood of
the classifier, it is also crucial to visualize the
problematic regions of the nuisance space where
the classifier has low confidence on transformed
images.
The problematic regions are mathematically de-
scribed by a posterior distribution. Sampling from
this distribution allows us to visualize the likely
“weak spots” of the classifier.

Illustrative experiments.
We evaluate the robustness to affine transforma-
tions of different CNN architectures, and show

Likely nuisances
causing misclassification

Unlikely nuisances
OR

likely nuisances not causing 
misclassification

✓

Sample these high-probability 
regions using MCMC

Posterior
probability

that:
• Deeper networks are more robust to nui-

sances,
• While dropout leads to significant improve-

ments in test accuracy, it has no effect on
the robustness,

• Data augmentation and spatial transform-
ers can lead to a quantitatively significant
boost of the robustness.

We use our sampling method to reveal the prob-
lematic nuisance vectors. The following figure
shows examples of transformed images that mis-
classify state-of-the-art networks trained on Im-
ageNet, when the nuisance set is the set of piece-
wise affine transformations.

VGG-CNN-S VGG-16

Gyromitra Hen Hen

White wolf Arctic fox Samoyed

Lampshade Sea slug Necklace

Original image
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Abstract. Various subspace clustering methods
have benefited from introducing a graph regu-
larisation term in their objective functions [2].
In this work, we identify two critical limitations
of the graph regularisation term employed in
existing subspace clustering models and provide
solutions for both of them. First, the squared
l2-norm used in the existing term is replaced
by a l1-norm term to make the regularisation
term more robust against outlying data samples
and noise. Solving l1 optimisation problems is
notoriously expensive and a new formulation
and an efficient algorithm are provided to
make our model tractable. Second, instead of
assuming that the graph topology and weights
are known a priori and fixed during learning, we
propose to learn the graph [1] and integrate the
graph learning into the proposed l1-norm graph
regularised optimisation problem. Extensive
experiments were conducted on five benchmark
datasets.

Methodology. To address the aforementioned
problems, we propose following objective func-
tion:
min

D,Y,W

1
2
‖X−DY‖2

F +λ1‖Y‖1 +λ2‖YAW‖1 +λ3‖W‖2
F

s.t. ‖di‖2 ≤ 1,WT1 = 1,W≥ 0.
(1)

where X ∈ Rr×N is a data matrix with N r-
dimensional data feature vectors as columns,
D ∈ Rr×d is a dictionary with d number of
atoms, W is an affinity matrix that captures the
topology of the data, AW is a matrix that is ob-
tained by applying eigendecomposition on W,
and Y ∈ Rd×N is a sparse code matrix. In the
following, we give explanation for each term:

(1) ‖X−DY‖2
F is the reconstruction error term eval-

uating how well a linear combination of the atoms
(columns) of the dictionary D, can approximate the
data matrix X.

(2) λ1‖Y‖1 is a sparsity regularisation term on Y,
with a weighting factor λ1 to favour a small number of
atoms to be used for the reconstruction.

(3) λ2‖YAW‖1 is our proposed robust graph regular-
isation term. Note that we are using l1-norm instead of
l2-norm weighted by λ2.

(4) λ2‖YAW‖1 + λ3‖W‖2
F is the term with proper

constraints (WT1 = 1 and W ≥ 0) for graph learning
weighted by λ2 and λ3.

The constraints, WT1 = 1 and W ≥ 0, are
there to ensure the validity of the learned graph,
while the constraint ‖di‖2 ≤ 1 (di is a column
of D with i = 1, ... ,r) enforces the learned
dictionary atoms to be compact.

Remark. Terms (3) and (4) are robust graph
regularisation and graph learning terms, while
first two terms, (1) and (2) constitute the
conventional objective function of dictionary
learning.

Optimisation. To solve the objective Eq. (1),
we develop an algorithm based on ADMM.

Experiments. Table 1 shows experiments on
benchmark datasets which are CMU-PIE (C-PIE
for short), COIL, ORL, Yale, and YaleB. CA
stands for clustering accuracy (%).
Table 1: Comparative results on C-PIE, COIL,
ORL, Yale, and YaleB. ’G’ stands for graph.

CA (%)
Methods G C-PIE COIL ORL Yale YaleB

l1G No 70.3 67.1 66.8 40.0 48.4
SSC No 72.1 58.9 55.5 38.7 52.6
LRR No 71.5 45.1 66.2 46.2 65.0
LSR No 77.9 56.0 56.5 48.5 62.4

CASS No 82.6 59.1 68.3 45.6 81.9

GSC Yes 100 80.9 61.5 43.4 74.2
Rl1G Yes 89.5 79.4 62.0 41.3 68.5
SMR Yes 85.4 65.6 57.6 45.3 73.5

NSLRR Yes 85.1 61.8 55.3 NA NA

PCAN Yes 82.5 76.5 49.1 54.4 59.2
LML Yes 90.2 80.2 46.7 46.7 60.9

SDRAM Yes 95.6 86.3 70.6 51.8 92.3

Ours Yes 100 88.1 76.3 59.6 95.2

References

[1] Feiping Nie, Xiaoqian Wang, and Heng Huang.
Clustering and projected clustering with adap-
tive neighbors. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 977–986. ACM,
2014.

[2] Miao Zheng, Jiajun Bu, Chun Chen, Can Wang,
Lijun Zhang, Guang Qiu, and Deng Cai. Graph
regularized sparse coding for image representa-
tion. Image Processing, IEEE Transactions on,
20(5):1327–1336, 2011.
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Comparison of Type 2 puzzle reconstruction results between Son et al.[2] (top row) and our
approach (bottom row). Mistakes are highlighted in red.

We propose a novel Linear Program (LP)
based formulation for solving jigsaw puzzles.
We formulate jigsaw solving as a set of succes-
sive global convex relaxations of the standard
NP-hard formulation, that can describe both jig-
saws with pieces of unknown position and puz-
zles of unknown position and orientation. The
main contribution and strength of our approach
comes from the LP assembly strategy. In con-
trast to existing greedy methods, our LP solver
exploits all the pairwise matches simultaneously,
and computes the position of each piece glob-
ally. The main advantages of our LP approach
include: (i) a reduced sensitivity to local minima
compared to greedy approaches, since our suc-
cessive approximations are global and convex
and (ii) an increased robustness to the presence
of mismatches in the pairwise matches due to the
use of a weighted L1 penalty. To demonstrate
the effectiveness of our approach, we test our al-
gorithm on public jigsaw datasets and show it
outperforms state-of-the-art methods.

Starting with an initial set of pairwise
matches, the method increasingly builds larger
and larger connected components that are con-
sistent with the LP. Our LP formulation naturally

Direct Neighbor Comp. Perfect
Gallagher [1] 82.2% 90.4% 88.9% 9

Son [2] 94.7% 94.9% 94.6% 12
Ours 95.6% 95.3% 95.6% 14

Table 1: Reconstruction performance on Type 2
puzzles from the MIT dataset, Each jigsaw has
432 pieces. Please see paper for the meaning of
the scores.

addresses the so called Type 1 puzzles[1], where
the orientation of each jigsaw piece is given and
location of each piece is unknown. However, we
show that our approach can be directly extended
to the more difficult Type 2 puzzles (see table 1
), where the orientation of the pieces is also un-
known.

[1] Andrew C Gallagher. Jigsaw puzzles with pieces
of unknown orientation. In CVPR 2012.

[2] Kilho Son, James Hays, and David B. Cooper.
Solving square jigsaw puzzles with loop con-
straints. In ECCV 2014.
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We propose a framework that detects the failures
of a tracker using its output only. The framework
is based on a tracker state-background discrim-
ination approach that generates a track quality
score, which quantifies the ability of the tracker
to remain on target.

Let St be the region defined by the estimated
tracker state xt in frame It at time t. Using mo-
tion information~ν∆t1 from a past short temporal
window ∆t1 and xt−1, we select the background
region Bt in It . We split Bt into four smaller
equally sized regions, ba

t , each with the same
width and height of St . We then determine the
distribution for St , d

′′
St

, and each of the smaller
background regions ba

t , d
′′
ba

t
, using colour dis-

tribution fields (DF) [3] (Figure 1). The track-
ing quality score yt is determined by averaging
the L1 distances measured between each of the
d
′′
ba

t
and d

′′
St

, where low (high) values of yt in-
dicate similarity (dissimilarity) between the two
regions.

Employing time series analysis, we use the
Auto Regressive Moving Average (ARMA)
model to forecast future values ŷt+l of
Y = {yt}T

t=1 over the forecast length l ≥ 1
at t. We calculate the forecasting error,

. . . .

Ԧ𝜈∆𝑡1

𝐼𝑡−∆𝑡1 𝐼𝑡−1 𝐼𝑡
𝑆𝑡

B𝑡 = 𝑏𝑡
𝑎

𝑎=1
4

𝑑
𝑆𝑡

𝑑𝑏𝑡𝑎 𝑎=1

4

𝑑
𝑆𝑡

′′

𝑑𝑏𝑡𝑎
′′

𝑎=1

4

(a) (b) (c) (d)

Figure 1: Background and tracker state region
selection. (a) xt−∆t , ..., xt−1 (blue bounding
boxes) and motion information ~ν∆t1 over a past
temporal window ∆t1; (b) background region Bt
(red bounding box) and tracker state region St
(yellow bounding box) selected at frame It ; (c)-
(d) distributions of Bt and St represented with
colour DF [3].

.

|ẽt+l | = yt+l − ŷt+l that highlights the signifi-
cant changes (tracking errors) and allows the
method to detect time instants when a tracking
error occurs.

The proposed approach Detecting Track-
ing Errors via Forecasting (DTEF) is first
trained over a dataset D11 and then tested
using 20 sequences from the Object Track-
ing Benchmark (OTB)1 dataset. Using preci-
sion (P), recall (R), F-score (F) and false pos-
itive rate (FPR), we compare DTEF with two
variations of the proposed approach: NAIVE
and RAW; one state-of-the-art (SOA) method for
tracker error detection [2]: CovF; and two SOA
features employed for video tracking [1]: Rgb-
Hist and RLHist. Results on the OTB dataset are
presented in Table 1. Finally, we demonstrate
the flexibility of DTEF via an experimental com-
parison with the respective SOA methods using
baseline tracking results of four trackers and se-
quences from the VOT2014 challenge.

DTEF NAIVE RAW CovF RgbHist RLHist
P .110 .111 .122 .087 .083 .078
R .714 .667 .405 .714 .595 .667
F .191 .190 .188 .155 .146 .140

FPR .037 .035 .019 .048 .042 .051

Table 1: Performance comparison of tracking er-
ror detection over the OTB dataset. Bold font
indicates the best result.

[1] J. Ning, L. Zhang, D. Zhang, and C. Wu. Ro-
bust object tracking using joint color-texture his-
togram. Int. Journal Pattern Recog. Artificial In-
tell., 23(07):1245–1263, Feb 2009.

[2] J.C. SanMiguel and A. Calvo. Covariance-based
online validation of video tracking. IEEE Elec.
Lett., 51(3):226–228, Feb 2015.

[3] Y. Wang, H. Chen, S. Li, J. Zhang, and C. Gao.
Object tracking by color distribution fields with
adaptive hierarchical structure. The Visual Com-
put., pages 1–13, Nov 2015.

1http://www.eecs.qmul.ac.uk/~andrea/
dtef.html
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With standard datasets publicly available, such
as COCO and Flickr in image captioning, and
YouTube2Text, MVAD and MPI-MD in video
captioning, the field has been progressing in an
astonishing speed. For instance, the state-of-the-
art results on COCO image captioning has been
improved rapidly from 0.17 to 0.31 in BLEU.
Similarly, the benchmark on YouTube2Text has
been repeatedly pushed from 0.31 to 0.50 in
BLEU score.

While obtaining encouraging results, cap-
tioning approaches involve large networks, usu-
ally leveraging convolution network for the vi-
sual part and recurrent network for the language
side. It therefore results model with a certain
complexity where the contribution of the differ-
ent component is not clear.

Instead of proposing better models, the main
objective of this work is to develop a method
that offers a deeper insight of the strength and
the weakness of popular visual captioning mod-
els. In particular, we propose a trainable oracle
that disentangles the contribution of the visual
model from the language model. To obtain such
oracle, we follow the assumption that the image
and video captioning task may be solved with
two steps. Consider the model P(w|v) where v
refers to usually high dimensional visual inputs,
such as representations of an image or a video,
and w refers to a caption, usually a sentence of
natural language description. In order to work
well, P(w|v) needs to form higher level visual
concept, either explicitly or implicitly, based on
v in the first step, denoted as P(a|v), followed by

a language model that transforms visual concept
into a legitimate sentence, denoted by P(w|a).
a referes to atoms that are visually perceivable
from v. We define the configuration of a as an
orderless collection of unique atoms. That is,
a(k) = {a1, . . . ,ak} where k is the size of the bag
and all items in the bag are different from each
other.

The above assumption suggests an alterna-
tive way to build an oracle. In particular, we as-
sume the first step is close to perfect in the sense
that visual concept (or hints) is observed with al-
most 100% accuracy. And then we train the best
language model conditioned on hints to produce
captions.

We consider a simple parametrization of
P(w|a) with Long-short term memory networks
(LSTMs) in Hochreiter and Schmidhuber [1]



p(wt | w<t ,a(k)))
ht
ct


= ψ(ht−1,ct−1,wt−1,a(k)),

(1)

where ht and ct represent the RNN state and
memory of LSTMs at timestep t respectively.

Despite its simplicity, the proposed model
serves as a “performance upper bound” in visual
captioning tasks. For the comparison of such or-
acle models with SOTA, please refer to the paper
for details.

[1] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 9(8):
1735–1780, 1997.
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Robust motion representations for action
recognition have achieved remarkable perfor-
mance in both controlled and ‘in-the-wild’ sce-
narios. Such representations are primarily as-
sessed for their ability to label a sequence ac-
cording to some predefined action classes (e.g.
walk, wave, open). Although increasingly ac-
curate, these classifiers are likely to label a se-
quence, even if the action has not been fully
completed, because the motion observed is sim-
ilar enough to the training set. Consider the case
where one attempts to drink but realises the bev-
erage is too hot. A drink-vs-all classifier is likely
to recognise this action as positive regardless.

We introduce action completion as a step
beyond the task of action recognition. It aims
to recognise whether the action’s goal has been
successfully achieved. The notion of completion
differs per action and could be infeasible to ver-
ify using a visual sensor, however, for many ac-
tions, an observer would be able to make the dis-
tinction by noticing subtle differences in motion.

We address incompletion in a supervised ap-
proach (Fig. 1), on a new dataset that contains
414 complete as well as incomplete sequences,
captured using a depth sensor, and spanning 6
actions (switch, plug, open, pull, pick and drink).
For each action, we varied the conditions so the
action cannot be completed.

Since the notion of completion differs per
action, a general action completion method
should investigate the performance of different
types of features to accommodate the various ac-
tion classes. We propose a method that chooses
the feature(s) suitable for recognising comple-
tion from a pool of depth features using ‘leave-
one-person-out’ cross validation on the training
set and automatically selecting the most discrim-
inative feature(s).

We present results on a pool of five features:
{Local Occupancy Pattern, Joint Positions, Joint Rel-
ative Positions, Joint Relative Angles and Joint Veloc-
ities} encoded by the Fourier temporal pyramid.

(a) drink vs. plug (b) comp. vs. incomp. drink

Figure 1: For a complete drink (green) and
an incomplete drink (blue) sequences from our
dataset, both are classified as drink when using
drink vs. plug classifier (a). The proposed su-
pervised action completion model (b) identifies
the incomplete sequence.

On a sequence of experiments, we show that the
various features (i) produce high and compara-
ble % accuracy for action recognition on our
dataset, yet (ii) behave differently on incomplete
action sequences with only some able to distin-
guish the subtle changes between complete and
incomplete sequences of an action.

By automatic feature selection to build the
completion model as a binary classifier, we
achieve 95.7% accuracy for recognising action
completion across the whole dataset (Fig. 2).

(a) label:
complete switch
predicted:
complete switch

(b) label:
incomplete open
predicted:
incomplete open

(c) label:
incomplete pull
predicted:
complete pull

Figure 2: Sample frames of correctly (a), (b) and in-
correctly (c) classified test sequences. Dataset is pub-
licly available.
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Search among live, user-broadcast videos
is an under addressed and increasingly relevant
challenge. Every day, more content is shared via
services like Meerkat, Periscope, and Twitch. As
streaming video becomes more prevalent, it is
necessary to develop retrieval systems that can
address the unique consequences of live video.
In contrast to pre-recorded videos, live streams
frequently are transmitted without any accompa-
nying textual description. The nature of stream-
ing video means that even if text is available,
there is no guarantee that it will adequately de-
scribe the content of a live broadcast. For this
reason, the video content itself must be used.
The full range of possible future search queries
is unknowable, which motivates the framing of
stream retrieval as a no-example retrieval prob-
lem, where visual examples of a query are as-
sumed to be unavailable beforehand.

We adapt existing approaches from the zero
shot classification community, and rely on a
word2vec semantic embedding to relate textual
queries to pre-trained visual classifier confidence
scores [2]. For a given query q, we score a
stream with

score(q,xt) = s(q)ᵀφ(xt)

where xt is the softmax scores of a deep neu-
ral network across some set of pre-trained clas-
sifiers C, s(q) denotes the semantic similarity be-
tween q and C in the semantic embedding, and
φ(xt) encodes the classifier scores in a sparse
manner.

Traditional video tasks assume the whole
video is available for, a luxury that is not pos-
sible in a streaming setting. Also, especially in
longer streams, content can change significantly
and abruptly throughout the stream. A stream
retrieval approach must provide up-to-date rep-
resentations of the stream content. We explore
three ways to emphasize only recent stream
content. Two of these methods, Mean Mem-
ory Pooling and Max Memory Pooling, perform

pooling over a fixed window from the past into
the present. We introduce Memory Welling,

w(xt) = max
(

m−1
m

w(xt−1)+
1
m

xt −β ,0
)

where the current value of the well, w, is built on
its previous state, diminished by a memory pa-
rameter m, and a constant leaking term β . Mem-
ory Wells emphasize recent, reliable content.

We test our approach and competitive base-
lines on the ActivityNet data set and a motivated
subset of the FCVID data set. We synthesize
two additional data sets of longer videos through
concatanation of random videos. Two tasks are
identified and targeted: Instantaneous Retrieval
of relevant video streams at one moment, and
Continuous Retrieval of streams relevant to a
query over a long viewing session. Scoring met-
rics for both tasks are developed, and videos are
evaluated in a simulated streaming setting. To
test responsiveness to unseen queries, the test set
queries are disjoint from the validation set.

In both target tasks, and on all data sets,
either Memory Welling or an adaptation, Max
Memory Welling, performs the strongest. We
further validate our approach through compar-
ison to state of the art on a traditional, non-
streaming video task. Max Memory Welling
demonstrates improvement over [1] on zero-shot
event retrieval within the TRECVID MED 13
data set, using the setting described in [1].

[1] M. Jain, J. van Gemert, T. Mensink, and C. G. M.
Snoek. Objects2action: Classifying and localiz-
ing actions without any video example. In ICCV,
2015.

[2] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer,
J. Shlens, A. Frome, G. S. Corrado, and J. Dean.
Zero-shot learning by convex combination of se-
mantic embeddings. ICLR, 2014.
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Figure 1: Our method and exemplary results for semantic segmentation of developing zebrafish. (1) A stacked
Random Forest is trained, and then (2) mapped to a deep ConvNet and further trained by back-propagation. (3)
Optionally, the ConvNet is mapped back to a stacked Random Forest with updated parameters.

In this paper, we propose a mapping from
the Auto-context model to a deep Convolutional
Neural Network (ConvNet), bridging the gap be-
tween these two models, and helping address
the challenge of training ConvNets with limited
training data.

Auto-context (AC) is a simple model for se-
mantic segmentation that has proven powerful
for, e.g., body-pose, facade, and brain segmen-
tation. However, AC is limited by the fact that
each classifier is trained greedily. ConvNets on
the other hand, benefit from end-to-end training,
and have demonstrated remarkable performance
when large training data sets are available.

Here we demonstrate that AC can be
mapped directly to a ConvNet, and thereby
trained end-to-end. This mapping can be seen as
an intelligent initialization of the ConvNet, en-
abling training of large models on limited data.
We also describe an approximate mapping of our
sparse, deep ConvNet back to a stacked Random
Forest with updated parameters, for more com-
putationally efficient evaluation. See Figure 1
for our proposed workflow.

Other works have explored the space be-
tween Random Forests and ConvNets [1, 2, 3].
In [2, 3], the authors map a single Random For-
est to a shallow Neural Network model. We ex-
tend this work to Auto-context and deep Con-
vNets, and apply it to semantic segmentation.

The mapping that we propose leads to an in-
teresting new ConvNet architecture that, to the
best of our knowledge, hasn’t previously been
explored. One feature of the architecture is that
it has large, sparse convolutional kernels. It also
avoids max pooling and strided convolutions,
which tend to lead to coarse outputs in seman-
tic segmentation. Another result of the initial-
ization from a stack of classifiers, is that specific
layers in the ConvNet are directly interpretable
as intermediate predictions of the net.

We experimentally verify that the mapping
outperforms stacked Random Forests for two
different applications: Kinect-based body part
labeling from depth images, and somite segmen-
tation in microscopy images of developing ze-
brafish. By directly visualizing the intermedi-
ate prediction layers, we observe that the Con-
vNet learns to smooth the intermediate predic-
tions, a strategy that was previously developed to
improve the performance of stacked classifiers.

[1] Peter Kontschieder, Madalina Fiterau, Antonio
Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In ICCV, 2015.

[2] Ishwar Sethi. Entropy nets: from decision trees
to neural networks. Proceedings of the IEEE, 78
(10):1605–1613, 1990.

[3] Johannes Welbl. Casting random forests as arti-
ficial neural networks (and profiting from it). In
GCPR, 2014.
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Figure 1: Fully-Trainable Deep Matching.

Deep Matching (DM) [3] is a popular
method for establishing quasi-dense correspon-
dences between images. An important applica-
tion of DM is optical flow, where it is used for
finding an initial set of image correspondences,
which are then interpolated and refined by local
optimisation. However, DM, as originally pro-
posed, is not a deep neural network and cannot
be trained end-to-end via backpropagation.

Our key contribution is to show that the full
DM pipeline can be formulated as a Convolu-
tional Neural Network (CNN) with a U-topology
(Fig. 1). The fine-to-coarse stage of DM was al-
ready given as a CNN in [3]. Here, we complete
the construction and show that the DM recursive
decoding stage can be implemented by convo-
lutional operators which reverse the ones used
in the fine-to-coarse stage. The architecture can
be trained using backpropagation, for which we
propose a structured-output loss.

We demonstrate the utility of the approach
by improving the performance of DM, replacing
the HOG image features with the first layers of
a pretrained classification CNN. We then train
it end-to-end on an image matching task using
synthetic data, showing that the accuracy of the
matches improves (Table. 1). We further use [2]
to interpolate the matches and give dense optical
flow, which also sees an improvement.

We compare to FlowNet [1], an alternative
end-to-end trainable CNN architecture for image
matching, noting the significant advantage of the
DM architecture that is further improved by the
ability to train from data.

Method Training Acc@10 EPE
(matches) (flow)

FlowNet [1] Flying Chairs — 4.76
DM-HOG — 89.39% 3.72
DM-CNN Pretrained 89.48% 3.63
DM-CNN Flying Chairs 90.03% 3.50

Table 1: Sintel Final training set performance.
DM variants evaluated on Sintel Final training set. EPE
(endpoint-error, in pixels) gives mean distance between pre-
dicted and correct flow vectors. Acc@10 [3] assigns each
pixel a nearby match, measuring the proportion correct within
10px, hence illustrating the quality of the quasi-dense matches.

[1] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip
Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick
van der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional net-
works. In IEEE ICCV, 2015.

[2] Jérôme Revaud, Philippe Weinzaepfel, Zaïd Harchaoui,
and Cordelia Schmid. Epicflow: Edge-preserving inter-
polation of correspondences for optical flow. In IEEE
CVPR, 2015.

[3] Jérôme Revaud, Philippe Weinzaepfel, Zaïd Harchaoui,
and Cordelia Schmid. Deepmatching: Hierarchical de-
formable dense matching. IJCV, 2015.
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We tackle the problem of detecting fast incom-
ing objects from a moving camera (e.g. on a fly-
ing robot) before an impact. We detect these ob-
jects using the optical flow computed from an
uncalibrated camera without extracting any fea-
ture points [1].

We calculate (and compensate) the motion
induced by the camera and the time-to-contact
(TTC) [3] to infer the position and the closeness
of the incoming objects, respectively. We divide
the optical flow into a grid of g×g pixel cells and
we detect motion that is dissimilar from the one
induced by the moving camera. For each cell j
we compute

α̂ j =
(

1+ e−(m j−M)
)−1

, (1)

where m j is the compensated motion within the
cell and M is the 98% percentile of the over-
all compensated motion in the frame. We use
this motion to adaptively learn the background
motion model while reducing background mo-
tion noise. Unlike [2], our strategy to adaptively
learn the background motion adapts to different
camera velocities and scene depths.

We merge the optical flow information and
use a Bayesian collision avoidance method to lo-
cate object-free regions (whose centre is repre-
sented as safe point) on the image plane. The
flying robot can then use this safe point to infer
where to go and avoid the object. The likelihood
function used by the Bayesian collision avoid-
ance uses measurements from the compensated
motion to fit a Gaussian with an active variance
that is inversely proportional to the object close-
ness, which is measured based on the TTC.

Experiments show that our method to detect
incoming objects with a moving camera outper-
forms baselines and alternative state-of-the-art
methods. Moreover, our approach to learn the
background motion reduces false positive detec-
tions.

Our method can be synergistically used with
other features and combined with other collision
detection methods.

0 2 4 6 8 10 12 14

object

static objects

lens distortion

original 
frame

compensated motion 
magnitude 
mapped Sigmoid 

map 50th percentile 
values buffer

Figure 1: Example of spurious motion removal.
(a) Original frame. (b) Magnitude of the com-
pensated motion after mapping via a sigmoid
function. (c) Difference from the learnt back-
ground indicating the presence of an incoming
object.

[1] G. Alenya, A. Negre, and J.L. Crowley. Time to
contact for obstacle avoidance. In European Con-
ference on Mobile Robots, pages 19–24, Mlini,
Croatia, Sep. 2009.

[2] O. Barnich and M. Van Droogenbroeck. ViBE:
a universal background subtraction algorithm for
video sequences. Trans. on Image Processing, 20
(6):1709–1724, Jun. 2011.

[3] Y. Watanabe, F. Sakaue, and J. Sato. Time-
to-contact from image intensity. In Proc. of
Computer Vision and Pattern Recognition, pages
4176–4183, Boston, MA, USA, Jun. 2015.
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Decomposing an image into its intrinsic compo-
nents (e.g. reflectance and shading) is a fun-
damental concept in computer vision. This pa-
per proposes a novel high-resolution multi-view
dataset of complex multi-illuminant scenes with
precise reflectance and shading ground-truth as
well as raw depth and 3D point cloud.

Our dataset challenges the intrinsic image
methods by providing complex coloured cast
shadows, highly textured and colourful surfaces,
and specularity. This is the first publicly avail-
able multi-view real-photo dataset at such com-
plexity with pixel-wise intrinsic ground-truth.
Our work improves over the state-of-the-art in-
trinsic datasets [1, 2]. In the effort to help evalu-
ating different intrinsic image methods, we pro-
pose a new perception-inspired metric that is
based on the reflectance consistency. We provide
the evaluation of three intrinsic image methods
using our dataset and metric.

Fig. 1 demonstrates an example of a scene
captured with six different cameras under dif-
ferent illumination conditions along with its raw
depth, point cloud, and a rough surface re-
construction. Here the advantage of using re-
flectance instead of the captured pixel colour for
the 3D surface colour is evident. In total the
dataset consists of 20 illumination conditions,
5 scenes (Fig. 2), and 6 cameras. Our com-
plete dataset consists of 600 high-resolution im-
ages along with their ground-truth and is pub-
licly available online at:

http://www.cg.informatik.uni-
siegen.de/data/iccv2015/intrinsic/

Figure 1: Examples of different views and il-
luminations (A-F), rough point cloud (G), raw
depth (H), 3D surface (I), and ground-truth re-
flectance (J).

Figure 2: The proposed scenes present complex
shapes and coloured textures.

We believe that our dataset and metric can
help in improving the quality of intrinsic image
methods in complex scenes and lighting condi-
tions. Please refer to our paper for more infor-
mation and formulas.

[1] R. Grosse et. al. Ground truth dataset and base-
line evaluations for intrinsic image algorithms. In
IEEE ICCV, 2009.

[2] Sh. Beigpour et. al. A comprehensive multi-
illuminant dataset for benchmarking of the intrin-
sic image algorithms. In IEEE ICCV, 2015.
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A novel method is proposed for accurate estimation of local
affine transformations for a pair of images satisfying the epipo-
lar constraint. The method returns the closest, in least squares
sense, affine transformation to an initial estimate consistent
with the fundamental matrix.

The contributions of the paper: (i) the introduction of two
novel constraints for a local affine transformation making it
consistent with the fundamental matrix, and (ii) a method es-
timating an EG-L2-Optimal affinity – transformation which is
consistent with the epipolar geometry (EG) –, by enforcing the
proposed constraints.

An affine correspondence consists of a point pair p1, p2 and
a local affine transformation A mapping the neighborhood of
the points.

p2

n1 n2

v1

v2

e1 e2C1 C2

p1

The constraints state that the 2× 2 matrix A transforms the
normal n1 of the epipolar line related to point p1 into βn2,
where n2 is the normal of the epipolar line related to point p2
and β ∈R is a scalar. This statement is equivalent to n1A−T =
βn2. It is proven as well that β is determined by the epipolar
geometry.

The method requires an affine correspondence p1,p2,A′, i.e.
estimated by an affine-covariant detector. The points p1 and
p2 are optimally be corrected w.r.t. the epipolar geometry, in
least squares sense, by the method of [4]. The proposed tech-
nique corrects A′ by simultaneously minimizing ||A−A′||2F
and enforcing the introduced constraints using a closed-form
approach. It is proven that ||A−A′||2F has both geometric and
algebraic interpretations.

The processing time of the method is ≈0.04 ms in C++.

Evaluation. The method is validated on synthetic data and
publicly available benchmarks. The corrected affinities are al-
ways more accurate than the output of the affine-covariant de-
tector. As a side-effect, the detectors are compared – the most
accurate is the Hessian-Affine augmented by view-synthesis
a la ASIFT.

Conclusions. The algorithm has negligible time demand and
always makes the input affinities more accurate. In problems
involving local affine transformations in rigid scenes, the pro-
posed method should always be used.

Application 1. Using the proposed results the detection and
segmentation of multiple planes becomes more accurate [1].

Application 2. Using equation n1A−T = βn2 the fundamental
matrix is estimable from two affine correspondences.

Application 3. Surface normal estimation benefiting from pre-
cise affine correspondences [2].

Application 4. Precise affine correspondences significantly
improve camera calibration as well as 3D reconstruction [3].

Application 5. In the paper, we use the method to compare
the geometric precision of affine-covariant feature detectors.

[1] D. Barath, J. Matas, and L. Hajder. Multi-H: Efficient
recovery of tangent planes in stereo images. In BMVC,
2016.

[2] D. Barath, J. Molnar, and L. Hajder. Novel methods for
estimating surface normals from affine transformations.
In VISIGRAPP Selected Papers, 2016.

[3] I. Eichhardt and L. Hajder. Improvement of camera cali-
bration using surface normals. In ICPR, 2016.

[4] R. I. Hartley and P. Sturm. Triangulation. CVIU, 1997.
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Transitional actions belong to a class between
actions for short-term action prediction (see Fig-
ure 1). Early action recognition is necessary
for producing action predictions in the early
frames of an objective action. Earlier predic-
tion in the initial frames of an objective action
is desirable for early action recognition prob-
lems, but the solutions depend on the action it-
self. On one hand, within the setting of a short-
term action prediction, understanding a pend-
ing human action change is more natural if we
have a firm grasp on transitional actions. In a
traffic scene, short-term action predictions are
particularly crucial for avoiding accidents be-
tween humans and vehicles. Figure 1 shows se-
quential actions that include Walk straight, Walk
straight - cross, and cross. Where Walk straight
and cross are conventional action definitions, our
proposal adds a transitional action between ac-
tions (here Walk straight - cross) in order to pro-
vide a better action approach to predictions. Our
proposed short-term predictions achieve earlier
prediction than so-called early activity recogni-
tion, since they can recognize a dangerous cross
action while it is transitional. Intuitively, the
recognition difficulty arising from action and
transitional action is that they tend to partially
overlap each other. We believe that the use of
a subtle motion descriptor (SMD) will allow us
to identify sensitive differences between actions
and transitional actions.

In this paper, we address the recognition of
transitional action for short-term action predic-
tion. We also propose a discriminative tempo-
ral convolutional neural network (CNN) feature
that can be used for recognizing transitional ac-
tions in order to overcome the difficulty of indis-
tinguishable feature classification in transitional

Figure 1: Recognition of transitional actions for
short-term action prediction: Identification of
transitional actions allow us to understand the
next activity at time t5 before an early action
recognition approach at time t9.

actions. To accomplish this, we employ an SMD
that captures subtle differences between consec-
utive frames. Our paper contains two main con-
tributions: (i) the definition of transitional action
for short-term action prediction that achieves
earlier prediction than early action recognition,
and (ii) identifying CNN-based SMD to create a
clear distinctions between action and transitional
action. The feature is simply updated from a
spatio-temporal CNN feature Pooled Time Se-
ries (PoT) proposed in [1].

Our CNN-based SMD demonstrated the
best rate of success on three different trial
datasets. Even when using the shortest (3-frame)
feature accumulation for recognition tuning,
we confirmed outstanding results with 85.78%
(NTSEL), 69.77% (UTKinect), and 49.93%
(Watch-n-Patch) on the three different datasets.

[1] M. S. Ryoo, B. Rothrock, and L. Matthies. Pooled
motion features for first-person videos. CVPR,
2015.
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Multi-H – an efficient method for the recovery of the tangent
planes of a set of point correspondences satisfying the epipolar
constraint is proposed. The problem is formulated as a search
for a labeling minimizing an energy that includes a data and
spatial regularization terms. The number of planes is con-
trolled by a combination of Mean-Shift and α-expansion.

The input of Multi-H are point correspondences with lo-
cal affine transformations and the epipolar geometry. We
use Matching On Demand with view Synthesis (MODS)
method [3] since it provides accurate local affinities, the funda-
mental matrix F and point correspondences consistent with F.
Using Homography from Affine transformation and Funda-
mental matrix (HAF) method [1] a homography is estimated
for every single correspondence.

The alternating minimization stage of the algorithm repeats:

1. Mean-Shift is applied to the density function built on the
homographies to reduce the complexity of the problem and to
find the modes in the homography space. This procedure as-
sumes that many points have the same tangent plane and these
planes form a mode in the space of homographies.
2. α-expansion is applied to the correspondences assigning a
label to each. A label is associated with a homography.
3. Least-squares homography re-fitting step uses the HAF
method to re-estimate the homographies exploiting the label-
ing provided by Step 2.

Convergence is reached when both the number of the clusters
and the energy remain unchanged. It is guaranteed since the
first step does not increase the number of clusters, the others
decrease the energy, and the set of labeling is finite.

The speed of Multi-H was measured on two sets consisting of
100 and 500 correspondences. The processing time for the 100
and 500 correspondences were 0.04 and 0.80 sec. on a desktop
PC with Intel Core i5-4690 CPU, 3.50 GHz using 4 cores.

Test 1. – Tangent plane estimation is accurately solved by
Multi-H as it refines the initial estimates by partitioning the
correspondences based on the similarity of their tangents. The
figure below shows the recovered surface normals coloured by
their labels in two images of fountain-P11 dataset.

The table below shows the improvement in surface normal es-
timation between selected frames – angular errors in degrees.

Frames Affine Detector EG-L2-Opt Multi-H
1 – 2 35.7◦ 35.5◦ 14.4◦
1 – 5 19.0◦ 16.7◦ 7.0◦
3 – 5 24.9◦ 23.1◦ 9.0◦
5 – 9 20.0◦ 17.8◦ 7.1◦
6 – 8 22.5◦ 19.9◦ 8.8◦

Test 2. – Multiple plane recovery is a long-standing prob-
lem [2]. The combination of Multi-H with a compatibility
criterion ||HT F +FT H||F > θ leads to results superior to the
state-of-the-art multi-plane fitting techniques, where H is a ho-
mography, F the fundamental matrix, and θ a threshold.

mean median
J-Linkage (ECCV 2008) 25.50 24.48
SA-RCM (CVPR 2012) 28.30 29.40
T-Linkage (CVPR 2014) 24.66 24.53
RPA (BMVC 2015) 17.20 17.78
Grdy-RansaCov (CVPR 2016) 26.85 28.77
ILP-RansaCov (CVPR 2016) 12.91 12.34
Multi-H (BMVC 2016) 4.40 2.41

The table above compares the mean and median misclassifi-
cation errors on the AdelaideRMF dataset. Every algorithm,
including Multi-H, has been tuned separately on each image
pair to allow comparison with the literature. Results, using a
fixed set-up, are shown in the table below.

T-Linkage SA-RCM RPA Multi-H
johnsa 34.28 36.73 10.76 9.33
johnsb 24.04 16.46 26.76 10.14
ladysymon 24.67 39.50 24.67 4.49
neem 25.65 41.45 19.86 2.00
old 20.66 21.30 25.25 1.79
sene 7.63 20.20 0.42 0.00
mean 22.82 29.27 17.95 4.79
median 24.36 29.02 22.27 3.74

Conclusions. Multi-H is accurate, outperforms state-of-the-
art multi-homography fitting techniques for both fixed and per-
image parameter setting. In most applications, Multi-H will
run significantly faster than the affine-covariant detectors pro-
viding the input.

Recovered dominant planes
[1] D. Barath and L. Hajder. Novel ways to estimate ho-

mography from local affine transformations. In VISAPP,
2016.

[2] H. Isack and Y. Boykov. Energy-based geometric multi-
model fitting. IJCV, 2012.

[3] D. Mishkin, J. Matas, and M. Perdoch. MODS: Fast and
robust method for two-view matching. CVIU, 2015.
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Different from the conventional wide variety of
discriminative Dictionary learning (DL) litera-
tures, our work casts an alternative view on this
problem. One major purpose of this paper is to
jointly learn a feature projection that improves
DL. Instead of keep exploiting additional dis-
crimination from the dictionary representation,
we consider optimizing the input feature to fur-
ther improve the learned dictionary. We be-
lieve such process can considerably influence
the quality of learned dictionary, while a better
learned dictionary may directly improve subse-
quent classification performance.

Given that mid-level object parts are of-
ten discriminative for classification, we aim to
learn a feature projection that mines these dis-
criminative patterns. It is well-known that non-
negative matrix factorization (NMF) [1] can
learn similar part-like components. In the light
of NMF and projective NMF (PNMF) [2], we
consider the projective self-representation (P-
SR) model where the set of training samples
YYY is approximately factorized as: YYY ≈ MMMPPPYYY .
The model jointly learns both the intermedi-
ate basis matrix MMM and the projection matrix PPP
with non-negativity such that the additive (non-
subtractive) combinations leads to learned pro-
jected features PPPYYY accentuating spatial object
parts. In the paper, we propose a novel NMF-like
feature projection learning framework on top of
the PSR model to simultaneously incorporate la-
bel information with discriminative graph con-
straints. One shall see, our proposed framework
can be viewed as a tradeoff between NMF and
feature learning [4].

The dictionary representation is further dis-
criminatively learned given the projected in-
put features. An overview of the joint non-

Figure 1. An illustration of JNPDL.

negative projection and dictionary learning (JN-
PDL) framework is illustrated in Fig. 1. The
construction of discriminative graph constraints
in both non-negative projection and dictionary
learning follows the graph embedding frame-
work [3]. While the inputs of graph constraints
are essentially the same, they form different reg-
ularization terms for the convenience of opti-
mization. Finally, a discriminative reconstruc-
tion constraint is also adopted so that coding co-
efficients will only well represent samples from
their own classes but poorly represent samples
from other classes. We test JNPDL in both im-
age classification and image set classification
with comprehensive evaluations, showing the
excellent performance of JNPDL.

[1] Daniel D Lee and H Sebastian Seung. Learning the parts
of objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999.

[2] Xiaobai Liu, Shuicheng Yan, and Hai Jin. Projective non-
negative graph embedding. IEEE T. IP, 19(5):1126–1137,
2010.

[3] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang
Zhang, Qiang Yang, and Stephen Lin. Graph embedding
and extensions: a general framework for dimensionality
reduction. IEEE T. PAMI, 29(1):40–51, 2007.

[4] Will Zou, Shenghuo Zhu, Kai Yu, and Andrew Y Ng.
Deep learning of invariant features via simulated fixations
in video. In NIPS, 2012.
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A MultiPath Network for Object Detection

Sergey Zagoruyko, Adam Lerer, Tsung-Yi Lin, Pedro O. Pinheiro,
Sam Gross, Soumith Chintala, Piotr Dollár
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Figure 1: Proposed MultiPath architecture. COCO contains
objects at multiple scales, in context and among clutter, and
under frequent occlusion. Moreover, the COCO evaluation
metric rewards high quality localization. To addresses this, we
propose the MultiPath network pictured above, which contains
three key modifications: skip connections, foveal regions, and
and an integral loss. Together these modifications allow in-
formation to flow along multiple paths through the network,
enabling the classifier to operate at multiple scales, utilize con-
text effectively, and perform more precise object localization.
Our MultiPath network, coupled with DeepMask object pro-
posals [4, 5], achieves major gains on COCO detection.

The recent COCO dataset presents several new
challenges for object detection. In particular, it
contains objects at a broad range of scales, less
prototypical images, and requires more precise
localization. To address these challenges, we
test three modifications to the standard Fast R-
CNN object detector: (1) skip connections that
give the detector access to features at multiple
network layers, (2) a foveal structure to exploit
object context at multiple object resolutions, and
(3) an integral loss function and corresponding
network adjustment that improve localization.

The result of these modifications is that in-
formation can flow along multiple paths in our
network, including through features from mul-
tiple network layers and from multiple object
views. We refer to our modified classifier as
a ‘MultiPath’ network. We couple our Multi-
Path network with DeepMask object proposals,
which are well suited for localization and small
objects, and adapt our pipeline to predict seg-
mentation masks in addition to bounding boxes.
The combined system improves results over the
baseline Fast R-CNN detector with Sel-Search
by 66% overall and by 4× on small objects.

Figure 2: Selected detection results on COCO. Only high-
scoring detections are shown. While there are missed objects
and false positives, many of the detections are quite good.

AP AP50 AP75 APS APM APL

ResNet [3] 27.9 51.2 27.6 8.6 30.2 45.3

MultiPath 25.0 45.4 24.5 7.2 28.8 39.0

ResNet [3] 37.1 58.8 39.8 17.3 41.5 52.5

MultiPath 33.2 51.9 36.3 13.6 37.2 47.8

ION [1] 30.7 52.9 31.7 11.8 32.8 44.8

Fast R-CNN* [2] 19.3 39.3 19.9 3.5 18.8 34.6

Faster R-CNN* [6] 21.9 42.7 — — — –

Table 1: Top: COCO test-standard segmentation results.
Bottom: COCO test-standard bounding box results (top meth-
ods only). Leaderboard snapshot from 01/01/2016. *Note:
Fast R-CNN and Faster R-CNN results are on test-dev as re-
ported in [6], but results between splits tend to be quite similar.

Our system placed second in both the COCO
2015 detection and segmentation challenges,
without using ResNets. Source code is available.

[1] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-outside net:
Detecting objects in context with skip pooling and recurrent neural
nets. In CVPR, 2016.

[2] R. Girshick. Fast R-CNN. In ICCV, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[4] P. O. Pinheiro, R. Collobert, and P. Dollár. Learning to segment
object candidates. In NIPS, 2015.

[5] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learning to
refine object segments. In ECCV, 2016.

[6] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In NIPS,
2015.
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Fig. 1: Overview of the proposed method

We propose Fast Eigen Matching, a method
for accelerating the matching and learning pro-
cesses of the eigenspace method for rotation in-
variant template matching (RITM).

Correlation-based template matching is one
of the basic techniques used in computer vision.
Among them, rotation invariant template match-
ing (RITM), which locates a known template in
a query irrespective of the template’s translation
and orientation, has been widely put to use in
many industrial applications. A naive imple-
mentation of RITM requires intensive computa-
tion since one needs to correlate query f with
N rotated templates TTT (Fig.1 left). Eigenspace
methods takes advantage of the fact that a set of
correlated images TTT can be approximately rep-
resented by a small set of eigenimages. Once
eigenimages and it’s 2D-Fourier transform are
computed in learning process, matching process
of RITM can be performed very efficiently using
these 2D-Fourier transformed eigenimages[1].

It is also important to speedup the learn-
ing process, especially for applications such
as global robot localization, where a template
changes frame by frame and efficient online
learning is required. The existing eigenspace
methods are not feasible for problem settings of
this kind, because it requires a lot of time for
generation of rotated templates, SVD and 2D-
FFT.

To speed up the matching and the learning
process of existing Eigenspace methods, we pro-
pose Fast Eigen Matching by exploiting FFT and
Hankel Transform. Our contributions are as fol-
lows:

Speedup the Matching process By focusing
on the circularity of in-plane rotation and con-

T

!!!

∑

k

φk(r)

!"#$%#&'

()
*+
#,
+

-.+%,$#.&

/+)0)$,1

/)2.+3&.#4,

50
.6
#.
2

/)2.+

∑

k

/+,76)80*%,1

Fig. 2: The learning algorithm.

centration of power spectrums to low frequency,
we compute fast-eigenimages HHH by expanding a
templates using Fourier basis, which leads to the
use of FFT in a matching process (Fig.1 left).

Speedup the Learning process By utilizing
the fact that Fourier expansion in polar coor-
dinates is efficiently transformed to frequency
domain using Hankel transform[2], our method
computes 2D-Fourier transform of each fast-
eigenimages H̃̃H̃H in polar coordinate (Fig.1 right
Fig.2). This computation is equivalent to ex-
isting learning method, i.e., time-consuming ro-
tated template generation, numerical SVD and
2D-FFTs in Cartesian Coordinates, but substan-
tially boosts the learning process by avoiding
these time-consuming computation.

Our experiments revealed that the learning,
matching, and total processes respectively be-
comes 120, 3, and 36 times faster, while keeping
comparable matching performance compared to
previous method. As a representative example,
we show an application to global localization
with a Particle Filter.

[1] Gou Koutaki and Keiichi Uchimura. Occlu-
sion Robust Pattern Matching Using Shape
Based Eigen Templates. IEEJ Transactions
on Electronics, Information and Systems,
133(1):134–141, 2013.

[2] Robert Piessens. The hankel transform.
2000.
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Recoding Color Transfer as a Color Homography
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Figure 1: Pipeline of color-homography-based color transfer recoding.

The color homography theorem shows that col-
ors across a change in photometric viewing con-
dition are related by a homography [1]. In
this paper, we propose a color-homography-
based color transfer decomposition which en-
codes color transfer as a combination of chro-
maticity shift and shading adjustment. Our ex-
periments show that the proposed color trans-
fer decomposition provides a close approxima-
tion to many popular color transfer methods. We
believe that our color transfer model is useful
and fundamental for developing simple and ef-
ficient color transfer algorithms. Our model also
enables users to amend the imperfections of a
color transfer result or extract a concise form
of the original desired effect for an efficient re-
application (see our paper for examples).

In Figure 1, we start with the outputs of the
prior-art algorithms. Assuming we relate source
image Is to target image It with a pixel-wise cor-
respondence, we represent the RGBs of Is and It
as two n×3 matrices A and B respectively where
n is the number of pixels. These n× 3 matri-
ces can be reconstituted into the original image
grids. The chromaticity mapping is modeled as
a 3× 3 linear transform but because of the rel-

ative positions of light and surfaces there might
also be per-pixel shading perturbations. Assume
the Lambertian image formation is an accurate
physical model,

DAH ≈ B (1)

where D is an n× n diagonal matrix of shad-
ing factors and H is a 3× 3 chromaticity map-
ping matrix. A color transfer can be decomposed
into a diagonal shading matrix D and a homog-
raphy matrix H. The homography matrix H is a
global chromaticity mapping. The matrix D can
be seen as a change of surface reflectance or po-
sition of illuminant. Equation 1 can be solved by
Alternating Least Squares [1]. To apply the ex-
tracted color transfer effect to a different scene,
the shading adjustment D can be further mod-
eled as a smooth brightness-to-shading function
f as follows:

diag(D)≈ f (brightness(AH)) (2)

[1] Graham D. Finalyson, Han Gong, and Robert B.
Fisher. Color homography color correction. In
Color Imaging Conference. Society for Imaging
Science and Technology, 2016.
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Despite much research interest in facial land-
mark estimation in recent years, relatively little
work has been done to handle the full range of
head poses encountered in the real world (e.g.,
beyond ±45◦ rotation). As a result, the large
majority of face alignment algorithms are lim-
ited to near fronto-parallel faces, and break down
on profile faces. We propose an approach to face
alignment that can handle 180◦ of head rotation.

The foundation of our approach is cascaded
shape regression (CSR), which has emerged as
the leading strategy (see, e.g., [2]). To better
handle a wide range of head poses, we extend
the 2D CSR approach to 3D. That is, instead of
fitting a 2D face model to single 2D images, we
fit a 3D face model to single 2D images (3D-to-
2D). Intuitively, as the range of head poses in-
creases, the 3D geometry of the face becomes
increasingly important in explaining its 2D im-
age projection.

Recent facial landmark estimation meth-
ods, including 3D-to-2D approaches [3], employ
local optimization algorithms at each cascade
level, which can fail on face collections with
large head pose variation. It is unlikely that a
single cascade of generic domain maps (from
input features to output landmark updates) will
consistently find the true solution. We therefore
partition the shape regression problem into a set
of simpler viewpoint domains, and learn a sepa-
rate cascade of regressors for each. Each view-
point domain corresponds to an automatically
learned range of camera viewpoints/head poses,
as shown in Figure 1. At test time our algorithm
adaptively chooses which CSR to apply.

Despite a recent trend toward modeling face
shape nonparametrically (e.g., directly updating
landmark coordinates), we adopt a parametric
model and show empirically that there are no
significant differences in accuracy between para-
metric and nonparametric shape models.

CSR methods commonly use off-the-shelf
feature mapping functions (e.g., SIFT) to pro-
duce features from the image. Instead, we em-
ploy regression random forests [1] to learn local
binary features that predict ideal shape parame-

Figure 1: The first four modal viewpoints found
for V = 8 viewpoint domains. The modal occlu-
sion state is stored for each viewpoint domain
(green is visible, red is occluded).

Figure 2: Qualitative results on faces from BU-
4DFE [4]. Top row: estimated visibility of each
landmark (green is visible, red is occluded). Bot-
tom row: estimated 3D shape.

ter updates.
Results demonstrate quantitatively that the

proposed approach is significantly more accurate
than recent work. Figure 2 shows a sample of
qualitative results.

[1] Leo Breiman. Random forests. Machine Learn-
ing, 45:5–32, 2001.

[2] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian
Sun. Face alignment at 3000 fps via regressing lo-
cal binary features. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2014.

[3] Sergey Tulyakov and Nicu Sebe. Regressing a 3D
face shape from a single image. In IEEE Interna-
tional Conference on Computer Vision, 2015.

[4] Lijun Yin, Xiaochen Chen, Yi Sun, Tony Worm,
and Michael Reale. A high-resolution 3d dy-
namic facial expression database. In IEEE Inter-
national Conference on Automatic Face and Ges-
ture Recognition, 2008.
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Figure 1. Overview
of our end-to-end
method. Our system
consists of an initial
network for semantic
segmentation, and then
additional modules for
instance segmentation.
Please refer to our
paper for details.

Object detection and semantic segmentation
have been two of the most popular Scene Under-
standing problems within the Computer Vision
community. In this paper, we focus on the prob-
lem of Instance Segmentation. Instance Seg-
mentation lies at the intersection of Object De-
tection – which localises different objects at a
bounding box level, but does not segment them –
and Semantic Segmentation – which determines
the object-class label of each pixel in the image,
but has no notion of different instances of the
same class. As shown in Fig. 1, the task of in-
stance segmentation localises objects to a pixel
level.

Many recent instance segmentation works
have built on the “Simultaneous Detection and
Segmentation” (SDS) approach of Hariharan et
al. [2]. These methods all involve first detect-
ing the various objects in an image before refin-
ing these detections into instance-level segmen-
tations.

We present a different approach to instance
segmentation, where we initially perform a
category-level, semantic segmentation of the in-
put image, classifying each pixel into one of K
fixed categories. The resulting semantic seg-
mentation is then refined into an instance-level
segmentation, where the object class of each in-
stance segment is obtained from the previous
semantic segmentation. Both of these stages,
while conceptually different, are fully differ-
entiable and the entire system can be imple-

mented as a neural network. We are able to rea-
son about instances because our semantic seg-
mentation network incorporates a differentiable
Higher Order Conditional Random Field (CRF)
which uses the cues from the output of an object
detector. This CRF is inserted as another layer
of a neural network [1, 4]. The object detection
cues not only improve category-level segmenta-
tions, but the original detection scores are also
calibrated during inference. This makes our sys-
tem robust to false-positive detections, and helps
us to reason about instances in the second part
of the network. Our paper has full details on this
formulation.

Our simple, bottom-up method is able to ef-
fectively leverage the progress made by state-of-
the-art semantic segmentation and object detec-
tion networks to perform the related task of in-
stance segmentation. This is emphasised by our
state-of-the-art performance on the VOC 2012
dataset.
[1] Anurag Arnab, Sadeep Jayasumana, Shuai Zheng, and

Philip H. S. Torr. Higher order potentials in end-to-end
trainable conditional random fields. In ECCV, 2016.

[2] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and
Jitendra Malik. Simultaneous detection and segmenta-
tion. In ECCV, pages 297–312. Springer, 2014.

[3] P. Krähenbühl and V. Koltun. Efficient inference in fully
connected CRFs with Gaussian edge potentials. In NIPS,
2011.

[4] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-
Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang
Huang, and Philip Torr. Conditional random fields as re-
current neural networks. In ICCV, 2015.
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Single image horizon line estimation is one of
the most fundamental geometric problems in
computer vision. Knowledge of the horizon line
enables a wide variety of applications, including:
image metrology, geometry-aware object detec-
tion, and automatic perspective correction. De-
spite this demonstrated importance, progress on
this task has stagnated. We believe the lack of
a suitably large and diverse evaluation dataset is
the primary cause. Existing datasets [2, 3] are
often small and were created to focus on eval-
uating methods that use a particular geometric
cue (e.g., orthogonal vanishing points). Methods
that perform well on such datasets often perform
poorly in real-world conditions.

We introduce Horizon Lines in the Wild
(HLW), a new dataset for single image horizon
line estimation. HLW is several orders of mag-
nitude larger than any existing dataset for hori-
zon line detection (containing 100553 images),
has a much wider variety of scenes and camera
perspectives, and wasn’t constructed to highlight
the value of any particular geometric cue. The
dataset (including models and sample code) is
available for download at our project website [1].

Using HLW, we investigate methods for di-
rectly estimating the horizon line using convolu-
tional neural networks (CNNs), including both
classification and regression formulations. We
focus on the GoogleNet architecture and ex-
plore the impact of design and implementation
choices on the accuracy of the resulting model.
Additionally, we propose two post-processing
strategies for aggregating horizon line estimates
across subwindows.

Our approach is fast, works in natural and
man-made environments, does not fail catas-
trophically when vanishing point detection is
difficult, and outperforms all existing methods
on the challenging real-world imagery contained
in HLW. Further, when combined with the recent
method by Zhai et al. [4], which uses a CNN to
provide global context for vanishing point esti-

Figure 1: Example results showing the esti-
mated distribution over horizon lines (ground
truth dash green and predicted horizon magenta).

Table 1: Quantitative evaluation.
HLW ECD YUD

Ours 69.97% 83.96% 85.33%
Ours (average) 71.16% 83.60% 86.41%
Ours (optimize) 70.66% 86.05% 86.11%

[4] (CNN = Orig.) 58.24% 90.80% 94.78%
[4] (CNN = Ours) 65.50% 91.29% 95.46%

mation, we obtain state-of-the-art results on two
existing benchmark datasets [2, 3].

Our main contributions are: 1) a novel ap-
proach for using structure from motion to auto-
matically label images with a horizon line, 2) a
large evaluation dataset of images with labeled
horizon lines, 3) a CNN-based approach for di-
rectly estimating the horizon line in a single im-
age, and 4) an extensive evaluation of a variety
of CNN design choices.

[1] Horizon Lines in The Wild project website.
http://hlw.csr.uky.edu/.

[2] Olga Barinova, Victor Lempitsky, Elena Tretiak,
and Pushmeet Kohli. Geometric image parsing in
man-made environments. In ECCV, 2010.

[3] Patrick Denis, James Elder, and Francisco
Estrada. Efficient edge-based methods for esti-
mating manhattan frames in urban imagery. In
ECCV, 2008.

[4] Menghua Zhai, Scott Workman, and Nathan Ja-
cobs. Detecting vanishing points using global im-
age context in a non-manhattan world. In CVPR,
2016.
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Volume-based reconstruction is usually ex-
pensive both in terms of memory consumption
and runtime. Especially for sparse geometric
structures, volumetric representations produce a
huge computational overhead. We present an ef-
ficient way to fuse range data via a variational
Octree-based minimization approach by taking
the actual range data geometry into account. We
transform the data into Octree-based truncated
signed distance fields and show how the opti-
mization can be conducted on the newly created
structures. The challenge is to uphold speed and
a low memory footprint without sacrificing the
solutions’ accuracy during optimization.

We construct Octrees f ∗i from TSDFs fi in a
top-to-bottom manner. Starting from root node
n, we define the spread s of values subsumed by
node n in f ,

s f (n) =
∣∣∣∣ max

x∈Ω3(n)
f (x)− min

x∈Ω3(n)
f (x)

∣∣∣∣ (1)

with Ω3(n) being the subvolume that node n rep-
resents. Initially, Ω3(n)=Ω3 and the spread will
be maximal. From here we recursively apply
splitting rules until the partitioning is finished.

We define a functional over the Octrees as

E(u∗) :=
∫

Ω3

D(f∗,w∗,u∗)
∑i w∗i + γ

+λS(∇u∗) dx, (2)

and to solve for u∗ we determine the steady state

Figure 1: Left: Memory usage between dense
and Octree variant during optimization. Cen-
ter/Right: Octree-slice at iterations 1 and 100.

Figure 2: Meshed result and reconstruction dif-
ference between dense and Octree version.

of our PDE with a constantly evolving Octree u∗

∂E
u∗

= λ div(S∇u∗(∇u∗))− Du∗(f∗,w∗,u∗)
∑i w∗i + γ

.

(3)
We conduct the optimization by having at

all times only one version of u∗ in memory
and adjusting the structure while we recursively
traverse into each node of u∗. Finally, it is
shown on three different kinds of data (synthetic,
Kinect, high-precision depth scanner) that the
presented method performs very well and can
decrease both the runtime and memory require-
ments while retaining a reconstruction quality
that is on par with their dense pendants.
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We introduce a new deformable model for image
segmentation by reformulating a region-based
active contours energy into a geodesic contour
energy through a Finsler metric.

Let Ω ⊂ R2 be the image domain and γ :
[0,1]→ Ω be a regular curve with outward nor-
mal vector N . Given a function f : Ω→ R of
interest, we consider the curve evolution scheme
∂γ/∂τ = f (γ)N , where τ denotes time. This
curve evolution equation can be regarded as a
gradient descent, thus a minimization procedure
for the functional F(γ) =

∫
K f (x)dx, where K is

the region inside the closed curve γ := ∂K.
A complete active contours energy with a

curve length regularization is defined by

E(γ) = α F(γ)+
∫ 1

0
P(γ(t))‖γ̇(t)‖dt, (1)

where P is an edge-based potential function, and
α > 0 is a constant.
Reformulation as Finsler Geodesic Energy:
Suppose V⊥ : Ω→ R2 to be a continuously dif-
ferentiable vector field defined over the domain
Ω such that V⊥ satisfies the divergence equa-
tion ∇ ·V⊥(x) = α f (x), ∀x ∈ Ω, where f is
the first order derivative function used in (1) and
∇ ·V⊥(x) denotes the divergence value of a vec-
tor V⊥(x). Letting M be the counter-clockwise
rotation matrix with rotation angle θ = π/2, by
divergence theorem, the regional energy F in (1)
can be expressed as αF(γ) =

∫
K ∇ ·V⊥(x)dx =∫ 1

0 〈V(γ(t)), γ̇(t)〉dt, where V = MTV⊥. We in-
troduce a Finsler metric F : Ω×R2→ R+:

F(x,u)=P(x)‖u‖+〈V(x),u〉, ∀x∈Ω,∀u∈R2.

This metric should obey the smallness condition
‖V(x)‖< P(x), which is difficult to be satisfied.
Therefore, assuming that ∀x ∈ Ω, P(x) ≥ 1, we
make use of the following condition:

‖V(x)‖< min
y∈Ω
{P(y)}= 1, ∀x ∈Ω. (2)

The energy E (1) is converted to the Finsler
geodesic energy L(γ) = ∫ 1

0 F(γ(t), γ̇(t))dt. The
minimization procedure of L is solved inside a
neighbourhood U instead of the whole domain
Ω. This means that we only require the vector
field V⊥ defined over U . In order to satisfy (2),
it is natural to select the vector field V⊥ by min-
imizing an energy for all x ∈U

min
{∫

U
‖V⊥‖2

}
, s.t.∇ ·V⊥(x) = α f (x). (3)

Note that ‖V⊥‖∞ is bounded by the area of U .
To obtain a vector field obeying ‖V⊥‖∞ < 1,
one can choose a tubular neighbourhood U with
small width hence a small area. On the other
hand, U is regarded as the search space for the
next evolutional curve. A small U may there-
fore make the algorithm fall into undesirable lo-
cal minimas of L. Thus we make use of a non-
linear mapping increasing function T (x) = 1−
exp(−x), ∀x > 0. The vector field V̄ is defined
as V̄(x) = T (‖V⊥(x)‖)M−1V⊥(x)/‖V⊥(x)‖,
where the condition (2) will be immediately sat-
isfied. Based on V̄ , the new Finsler metric is de-
fined by F̄(·,u) = P(x)‖u‖+ 〈V̄(·),u〉 and the
respective geodesic energy is defined by L̄ =∫ 1

0 F̄(γ(t), γ̇(t))dt.
The minimization of E (1) is transferred to

the minimization of L̄. Note that since in general
we induce L̄ with a nonlinear mapping T , there
is in fact slight difference in the minimization
problems. The use of the non-linear mapping T
is reasonable: 1) Minimizing E is to find a path
γ , for which the direction γ̇(t) for each t ∈ [0, 1]
should be as opposite to V

(
γ(t)

)
as possible and

the norm ‖V
(
γ(t)

)
‖ should be as large as possi-

ble, giving the relevance between the minimiza-
tion problems of E and L̄. 2) When the Finsler
geodesics evolution scheme tends to stabilize,
one can reduce the width of tubular neighbour-
hood U . Thus T (‖V‖)≈ ‖V‖ as ‖V‖ is small.
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In this work, we propose a new algorithm for
boosting Deep Convolutional Neural Networks
(BoostCNN) to combine the merits of boosting
and these networks. To learn this new model, we
propose a novel algorithm to incorporate boost-
ing weights into the deep learning architecture.
More specifically, in each iteration of boost-
ing, we train a deep network to approximate the
boosting weights, i.e. minimizing

Lse(w,g) = ∑
xi∈D

M

∑
j=1

(g j(xi)−w j(xi))
2,

where g(x) is a deep network, w(x) are boost-
ing weights, M is the number of classes and D
is the training set. Experiments show that the
proposed method is able to achieve state-of-the-
art performance on several fine-grained classifi-
cation tasks such as bird, car, and aircraft classi-
fication, see Table (1) as an example.

In addition we also show that it is possi-
ble to use networks of different structures within
the proposed boosting framework. In this case,
at each boosting iterations, we train these net-
works independently to approximate the boost-
ing weights and the network that leads to the best
performance will be added to the ensemble. Ex-
periment show that, this not only results in su-
perior performance but also reduces the required
manual effort for finding the right network struc-
ture, see Table (1).

Our open source implementation is based on
Caffe framework and it is available on Github1.

1http://github.com/mmoghimi/BoostCNN

Method Accuracy
BoostCNN 85.6%

BoostCNN (heterogeneous) 86.2%
Bilinear CNN (B-Net) 84.1%

Krause et al. 82.0%
Pose Normalized CNN 75.7%

Part-based RCNN 73.9%

Table 1: Performance comparison for bird clas-
sification on CUB200 dataset.
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1 Introduction

Recent advances in machine learning have en-
abled the recognition of high-level categories of
materials with an accuracy of up to 80% [1].
With these techniques, we can construct a per-
pixel material labeling from a single image. We
observe that groups of materials have distinct
chromaticity footprints (see Figure 1). We pro-
pose a novel combination of techniques, where
we use a material classifier to predict the domi-
nant material category of objects, which in turn
is useful to constrain reflectances in the context
of the intrinsic images problem [2]. Preliminary
evaluation indicates our method has promise. In
Figure 1, the chromaticities in YUV color space
plotted in heatmap colors, from random samples
of different material categories. Blue represents
UV values that are the least frequent, red those
that are the most frequent. The plots show that
various subgroups of materials have different
characteristics. Plastic has a much wider range
of chromaticity values than sky. Wood spans a
limited range of unsaturated colors, while metal
has quite a few outliers due to strong specular
reflections. This suggests we can use knowledge
of the material in a scene to predict the chro-
maticities and thereby improve estimation of the
underlying reflectance.

Figure 1: Chromaticity plots in heatmap colors.

2 Our approach

Using recent deep learning techniques, we
segment objects in areas of homogeneous

materials. We assign a material label to each
pixel in these regions. Areas with different
materials form islands within the space of
chromaticity distributions. If the category is
known, it makes sense to use this knowledge to
properly constrain the chromaticity values and
place more stringent priors on the reflectance of
segmented objects parts.

This prior is useful in the context of intrinsic im-
age decomposition, where it can be used to con-
train reflectance estimation. Preliminary evalu-
ation of our method on the MIT dataset [2] is
shown in Table 1. It shows the MSE error met-
ric of the estimation and the ground truth data.
The normal prior trains chromaticity on 10 other
images from the MIT dataset. Our method trains
the chromaticity prior on images from specific
material categories in OpenSurfaces and consis-
tently performs better.

Table 1: Preliminary evaluation of our method
on the MIT dataset, showing the MSE error met-
ric of the estimation and the ground truth data.

normal prior our prior Difference
MSE MSE

cup2 25.8316 22.4774 14.92%
frog2 35.4718 29.8646 18.77%
paper2 33.3270 30.0913 10.75%
pear 31.8777 27.6916 15.11%
potato 29.2384 26.2526 11.37%
raccoon 27.5501 24.2536 13.59%
sun 36.1633 32.7922 10.28%
teabag1 43.5110 37.6781 15.48%
squirrel 40.1366 35.4141 13.34%

[1] Sean Bell, Paul Upchurch, Noah Snavely, and
Kavita Bala. Material recognition in the wild with
the materials in context database. Computer Vi-
sion and Pattern Recognition (CVPR), 2015.

[2] Roger Grosse, Micah K. Johnson, Edward H.
Adelson, and William T. Freeman. Ground-truth
dataset and baseline evaluations for intrinsic im-
age algorithms. In International Conference on
Computer Vision, pages 2335–2342, 2009.
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Figure 1: Densely-labeled samples from the syn-
thetic dataset.
Are video games realistic enough to be used in
the training of computer vision models to ad-
dress practical, real-world problems? We ex-
plore this idea and deliver a proof of concept
by experimenting with the synthetic RGB im-
ages that we sample from a video game. We
collect over 60,000 synthetic samples with sim-
ilar conditions to the real-world CamVid [1] and
Cityscapes [2] datasets. We provide several ex-
periments to demonstrate that the synthetically
generated RGB images can be used to improve
the performance of deep neural networks on both
image segmentation and depth estimation.
Dataset. We capture the synthetic dataset by
sampling the game every second while an au-
tonomous driver is wandering in the city. Each
sample contains the RGB image, semantic seg-
mentation, depth image, and the surface nor-
mals. See Fig. 1.
Experiments. We use the FCN8 [3] architec-
ture for the dense image classification task, and
for the depth estimation experiments we use the
approach of Zoran et al. [4].
Results. We show that in a cross-dataset set-
ting, the CNNs that we obtain from synthetic
data have a similar test error as the networks that
we train on real-world data (Fig. 2). Further-
more, the synthetically generated RGB images
can provide similar or better results compared to
the real-world datasets if a simple domain adap-
tation technique is applied (Tab. 1). We also
show that pre-training on synthetic data results
in a better initialization and final local minima in
the optimization. For the depth estimation task,
we present similar improvements.
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Figure 2: The cross-dataset per-class accuracy.
The baseline is trained on the target dataset, the
real is trained on the CamVid dataset, and the
synthetic is trained on synthetic data only.

Cityscapes
Model Pixel Acc. Class Acc. IoU
Baseline 83% 77% 50%
Real 83% 77% 50%
Synthetic 84% 79% 51%
Mixed 84% 79% 52%

Table 1: Evaluation of different pre-training
strategies.
Conclusion. Our results suggest that video
games with photorealistic environments are po-
tentially useful for a variety of computer vision
tasks as they can offer an alternative way to com-
pile large realistic datasets for training and eval-
uation.

[1] Gabriel J. Brostow, Julien Fauqueur, and Roberto
Cipolla. Semantic object classes in video: A high-
definition ground truth database. Pattern Recogni-
tion Letters, 2009.

[2] Marius Cordts, Mohamed Omran, Sebastian
Ramos, Timo Rehfeld, Markus Enzweiler, Ro-
drigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The Cityscapes dataset for seman-
tic urban scene understanding. In CVPR, 2016.

[3] Jonathan Long, Evan Shelhamer, and Trevor Dar-
rell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015.

[4] Daniel Zoran, Phillip Isola, Dilip Krishnan, and
William T. Freeman. Learning ordinal relation-
ships for mid-level vision. In ICCV, 2015.
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SDF-TAR is a real-time SLAM system which
employs volumetric registration in RGB-D data.
It is based on the SDF-2-SDF registration en-
ergy [1] that minimizes the per-voxel difference
of a pair of signed distance fields (SDFs). The
energy is used both in the GPU frame-to-frame
tracking module, and in the concurrent CPU
batch pose refinement module. To minimize run-
time and memory consumption, registration is
done only over several limited-extent volumes
(LEVs), anchored at locations of high curvature.

LEVs The original SDF-2-SDF registration
uses regular voxel grids, which become too
memory-intensive if scanning large spaces with
a fine resolution is desired. To tackle this is-
sue, we carry out registration in a number of
partial volumes (dubbed LEVs), which guaran-
tee an upper bound on the runtime and memory
requirements. We set them at the most geomet-
rically discriminative regions of a scene, namely
at the locations of highest curvature. These an-
chor points are very fast to compute as the sec-
ond order derivative directly from the depth im-
age, followed by a non-maximum suppression
step. This allows us to select peaks sufficiently
far apart, so that volumes do not overlap. Ex-
periments show that this strategy leads to higher
tracking accuracy than taking the same numbers
of uniformly spaced or randomly placed LEVs.

Registration To estimate the camera pose ξ ,
represented via 6-element twist coordinates, of
an SDF φc with weight field ωc relative to a ref-
erence SDF φr with weight field ωr generated
from the identity pose, we minimize the sum of
direct per-voxel differences in all p LEVs Ωi:

ESDF (ξ ) = 1
2

i = 1..p

∑
LEV Ωi

(
∑

voxels∈Ωi

(
φrωr−φc(ξ )ωc(ξ )

)2
)
. (1)

Parallel tracking and refinement Tracking is
carried out in a frame-to-frame fashion on the
GPU, using a first-order Taylor approximation of

Figure 1: Overview: GPU frame-to-frame track-
ing, and concurrent CPU batch pose refinement.

Eq. 1 which yields a 6×6 linear system in every
iteration. Pose refinement is done jointly over
batches of 2b frames concurrently on the CPU,
until the next batch becomes available. The sec-
ond half of a batch are the most recently tracked
b frames, while the first half are the previous b
frames that have already been optimized once.
The first b/2 poses are kept fixed for stability. As
tracking ensures a good initialization, this opti-
mization follows a simple gradient descent over
the 6-element pose vector of every camera.

Results We evaluate tracking precision on the
TUM RGB-D benchmark [2]. Via the use of
LEVs, SDF-TAR disregards regions that could
impede registration, leading to considerably bet-
ter rotational and on-par translational motion es-
timation with related volumetric techniques. In
addition, we achieve higher reconstruction fi-
delity on the 4 objects of the CoRBS dataset [3].

[1] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic.
SDF-2-SDF: Highly Accurate 3D Object Recon-
struction. In Proc. ECCV, 2016.

[2] J. Sturm, N. Engelhard, F. Endres, W. Burgard,
and D. Cremers. A Benchmark for the Evaluation
of RGB-D SLAM Systems. In Proc. IROS, 2012.

[3] O. Wasenmüller, M. Meyer, and D. Stricker.
CoRBS: Comprehensive RGB-D Benchmark for
SLAM using Kinect v2. In Proc. WACV, 2016.
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In this paper, we propose a non-parametric
Bayesian framework for multi-modal hash learn-
ing that takes into account the distance super-
vision (similarity/dissimilarity constraints). Our
model embeds data of arbitrary modalities into
a single latent binary feature with the ability
to learn the dimensionality of the binary fea-
ture using the data itself. Given supervisory in-
formation (labeled similar and dissimilar pairs),
we propose a novel discriminative term and de-
velop a new Variational Bayes (VB) algorithm
which incorporates that term into the proposed
Bayesian framework.

Let TTT = [XXX ,YYY ] be the observed bi-modal
data matrix where XXX = [x1,x2, ...,xd ]M×d and
YYY = [y1,y2, ...,yd ]N×d denote the first modal and
the second modal data matrix respectively, and
ZZZ = [z1,z2, ...,zd ]K×d denotes the latent binary
code matrix.

In our VB framework, we truncate the length
of the binary codes (K) and we set it to a fi-
nite but large number. If K is large enough,
the analyzed multi-modal data using this num-
ber of bits, will reveal less than K bits. In or-
der to incorporate the information of the simi-
larity/dissimilarity constraints into the VB algo-
rithm, we first define a regularizer for the binary
code zi as

α(zi) =
1
|Di| ∑

j:(i, j)∈D
KL(qzi(zi)||qz j (z j))

− 1
|Si| ∑

j:(i, j)∈S
KL(qzi(zi)||qz j (z j)) (1)

where KL(p||q) denotes the KL divergence be-
tween two distributions p and q, and S(D) de-
notes the set of similar (dissimilar) pairwise con-
straints. Intuitively, for each binary code z, α(z)
should be large such that it best agrees with those
constraints.

By defining the regularizer Ω(ZZZ) =

∑d
i=1 α(zi) for the binary code matrix ZZZ using

the set of similar/dissimilar pairs, we add this
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Figure 1: The result of category retrieval for
image-to-image queries. (a) PASCAL-Sentence
Dataset; (b) SUN Dataset (Euclidean ground
truth computed from visual data); (c) SUN
Dataset (Class label ground truth)

regularizer to the objective function of VB and
solve the new optimization problem using the
Coordinate Descent method.

We evaluate the proposed method on
two benchmark bi-modal datasets: (1) The
PASCAL-Sentence 2008 dataset [1] consists of
1000 images categorized into 20 classes. (2)
The SUN-Attribute dataset [2] contains 102 at-
tribute labels for each of the 14340 images from
717 categories. We compare the performance of
the proposed method against five state-of-the-art
hashing methods (Fig. 1) using precision-recall
curve as an accuracy measure. As can be seen,
the proposed method outperforms the other state
of the art (multi-modal) hashing methods.

[1] Ali Farhadi, Mohsen Hejrati, Mohammad Amin
Sadeghi, Peter Young, Cyrus Rashtchian, Julia
Hockenmaier, and David Forsyth. Every picture
tells a story: Generating sentences from images.
In Computer Vision–ECCV 2010, pages 15–29.
Springer, 2010.

[2] Genevieve Patterson and James Hays. Sun at-
tribute database: Discovering, annotating, and
recognizing scene attributes. In CVPR, pages
2751–2758. IEEE, 2012.

Tuesday
13:40-14:40

#103



104
Tu

es
da

y
13

:4
0-

14
:4

0

Learning to Invert Local Binary Patterns

Felix Juefei-Xu
felixu@cmu.edu

Marios Savvides
msavvid@ri.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
USA

De-Appearance
Re-Appearance

Original Face LBP Face Recovered Face

Match

F F−1

Figure 1: Flowchart of the method. The de-
appearance step uses LBP for the forward map-
ping F and obtains the LBP face (glyph) in the
middle. The re-appearance step tries to learn the
inverse mapping F−1 from the LBP domain to
the pixel domain. The recovered face is of high
fidelity as compared to the original face.

We have proposed to invert the local binary pat-
terns (LBP) descriptor. The success of the in-
version gives rise to two applications: face de-
appearance and re-appearance. The flowchart of
the algorithm is shown in Figure 1.

The de-appearance, based on image-LBP
forward mapping, is thorough in the sense that
not only the identity information but also the
soft-biometric information of the subject is re-
moved. The intuition behind using LBP for de-
appearance is straightforward because LBP is a
local difference operator and most of the COTS
FRS cannot deal with LBP faces / glyphs. They
either can not locate the LBP faces from the
scene, or the match scores are horribly low.

The re-appearance yields face reconstruc-
tion with high fidelity and also enables secure
application with a unique encryption key. The
re-appearance is achieved by learning the inverse
mapping of the LBP descriptors through an `0-
constrained coupled dictionary learning scheme
that jointly learns two overcomplete dictionaries
in both the pixel and the LBP domains such that
inverse mapping from the LBP domain to the
pixel domain is made possible without knowing
the mapping function explicitly. The enforce-
ment of the sparsity level as well as the sharing
of sparse coefficient between the two domains

are the added constraints that can uniquely de-
termine the inverse mapping F−1.

Obtaining a consistent sparse encoding be-
tween the two domains allows for a more
meaningful reconstruction. Given a novel de-
appearanced image yLBP in the LBP domain, we
first obtain the sparse representation x in DLBP.
We then obtain the reconstruction using Dx. By
forcing consistent sparse representations x dur-
ing training, we optimize for a low reconstruc-
tion error for both domains jointly and simul-
taneously. A simple rearrangement can lead to
solving the formulation using the standard K-
SVD dictionary learning approach [1] as previ-
ously observed [2]:

argmin
D,DLBP,X

∥∥∥∥
(

Y
YLBP

)
−
(

D
DLBP

)
X
∥∥∥∥

2

F
(1)

subject to ∀i,‖xi‖0 ≤ K

The procedure also comes naturally with
high selectivity when reconstructing the faces
with various LBP encryption keys. We have
shown the effectiveness of our proposed ap-
proach on the FRGC ver 2.0 database which in-
volves large-scale fidelity test and face verifica-
tion experiments using the state-of-the-art com-
mercial and academic face matchers.

[1] Michal Aharon, Michael Elad, and Alfred Bruck-
stein. K-SVD: An Algorithm for Designing Over-
complete Dictionaries for Sparse Representation.
IEEE Transactions on signal processing, 54(11):
4311–4322, 2006.

[2] Zhuolin Jiang, Zhe Lin, and L.S. Davis. Label
consistent K-SVD: Learning a discriminative dic-
tionary for recognition. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 35(11):
2651–2664, Nov 2013.
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In this paper we propose an approach for learn-
ing hierarchical compositional active basis mod-
els. Our contribution is three-fold: First, we
introduce a greedy EM-type algorithm to auto-
matically infer the complete structure of a com-
positional active basis model (CABM). Second,
we formulate the pattern model and the learning
process in a fully probabilistic manner. Finally,
based on the statistical framework, we augment
the pattern model with an implicit geometric
background model that reduces the models sen-
sitivity to pattern occlusions and structured clut-
ter. We demonstrate that probabilistic CABMs
are capable of recognising patterns under com-
plex non-linear distortions that can hardly be
represented by a finite set of training data.
Probabilistic hierarchical compositional models
have been proposed as object representation e.g.
in [1, 2, 3]. However, in contrast to [1], we au-
tomatically learn the structure of the hierarchy.
The work in [2, 3] is most related to our method.
In difference to [3] we embed our model in a
statistical inference framework. Compared to
[2], we use fully generative compositional units
instead of invariant features as part representa-

tions. Furthermore, we do not make hard deci-
sions on the detection of parts during learning.
Instead the full part likelihoods are used in the
structure induction process.
In order to demonstrate the robustness of the pro-
posed object representation, we evaluate it on
a complex forensic image analysis task (Fig.1).
We learn CABMs for 1175 reference impres-
sions. Subsequently, the posterior probability of
300 probe images under each reference model is
inferred within a Bayesian estimation setup. Ex-
perimental results show that the forensic image
analysis task is processed with unprecedented
quality.

[1] Jifeng Dai et al. Unsupervised learning of dictio-
naries of hierarchical compositional models. In
CVPR, 2014.

[2] Long Zhu et al. Unsupervised structure learn-
ing: Hierarchical recursive composition, suspi-
cious coincidence and competitive exclusion. In
ECCV, 2008.

[3] Sanja Fidler and Aleš Leonardis. Towards scal-
able representations of object categories: Learn-
ing a hierarchy of parts. In CVPR, 2007.

   (a)              (b)           (c)           (d)          (e)           (f)           (g)             (h)

Figure 1: Overview over the process of footwear impression recognition. (a) A typical probe image.
(b) The corresponding reference impression; (c-g) The learning result for each layer of the compo-
sitional hierarchy. The learned CABMs are illustrated with different colours in their mean position
(bottom), together with an encoding of reference impression (top). (h) An overlay of the final CABM
over the probe image with the spatial transformation that maximises the posterior probability.
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Figure 1: Overview of extracting a loglet-SIFT part descriptor. (a) An image example. (b) The
Fourier spectrum of the image. (c) Filter and crop the spectrum with the filter banks. The process
with x direction is shown as an example. (d) Pyramids of the gradient maps representing multi-scale
structures are obtained directly from the filtered spectrum. (e) At a landmark, patches with the same
size in pixels are extracted as a multi-scale local descriptor. (f) The patches represent coherent scales
and domain sizes forming a feature pyramid. (g) The Loglet-SIFT descriptor is obtained like SIFT,
by accumulating directional gradients from each of the gradient patches.

Deformable Part Model (DPM) have
emerged as the leading approach for accurate
landmark detection in applications such as face
alignment. A DPM describes an object by local
parts and the spacial relationships of the parts.
Part descriptors seek a representation of local
structures which preserves intrinsic properties
and discriminative information, while exhibiting
invariance to changes such as illumination, scale
and variations in appearance across instances.
We propose a new local feature descriptor
called loglet-SIFT, which enhances a number of
invariances, i.e., the invariance to illumination
by the local pooling of SIFT and the suppression
of slow varying mean level by the wavelets, as
well as the invariances to noise by SIFT, and
to sample shift by loglets. An overview of the
proposed method can be found in Fig 1.

We integrate our descriptor into a DPM
driven by a supervised descent method and vali-
date its performance in the face alignment sce-
nario. We compare the performance of our
Fourier domain designed filters with spatially
designed gradient filters, and compare our de-
scriptor with conventional SIFT. We further
present the comparison against several state-of-
the-art methods on two popular datasets: HE-
LEN and 300-W. Experimental results show
that the new descriptor improves the perfor-
mance of the DPM by a significant margin.
We achieve state-of-the-art performance on HE-
LEN and 300-W common dataset, and com-
parable performance on the 300-W challenging
dataset. The proposed descriptor can be readily
integrated in other gradient and SIFT based de-
formable part models.
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In this paper, we address the problem of
jointly estimating the latent image and the
depth/blur map from a single space-variantly
blurred image using dictionary replacement.
While most of the dictionary-based deblurring
methods consider planar scenes with space-
invariant blur, we handle 3D scenes with space-
variant blur caused by either camera motion or
optical defocus. For a given blurred image, the
dictionary blurred with the corresponding blur
kernel provides the best representation with the
least error. We formulate our problem of blur
map and latent image estimation as a multi-label
MRF and solve it using graph-cut.

An image X degraded by space-invariant
blur h can be modeled by convolution as

Y = h⊗X = h⊗D◦Λ = Db ◦Λ (1)

h⊗D is denoted as Db, a blurred version of dic-
tionary D. This implies that when kernel h is
known (as in non-blind deblurring), the signal X
can be recovered from Y using the blur-invariant
representation Λ. Dictionary replacement-based
deblurring techniques, in fact, work on this prin-
ciple.

Let Y be the observed blurred image of a 3D
scene and h0 be the blur kernel corresponding
to the most blurred region in the image. From
the blur-depth relation, we know that the blur
at any other position is a scaled down version
of h0. Hence, the problem of depth estimation
boils down to estimating the scale of the blur ker-
nel at each location. With the underlying idea
that for a given sparsity, the dictionary blurred
with the correct scale will represent the blurred
patch with minimum error, we formulate this as
a Markov Random Field (MRF) problem.

argmin
i

DCi(k)+ ∑
k′∈N

SC(īk′ , ik) (2)

where DCi(k) is the data cost and SC is the edge
aware smoothness cost.

Input Result by [2] Our result Depthmap

We compared our method with NCSR [1],
Hu et al. [2] (blind) and natural prior-based
[3] deblurring techniques and showed that our
method outperforms others both quantitatively
and qualitatively. In our experiments, we in-
cluded space-variant blur caused by defocus ef-
fect as well as motion blur. We also gave two
applications of our method in blur magnifica-
tion and image reblurring. We also considered

Blur Magnification

Reblurring
the case of blur due to object motion. As our
method works on local patches and does not as-
sume any global camera motion constraint, it
performs well in these scenario too.

[1] Weisheng Dong, Lei Zhang, and Guangming
Shi. Centralized sparse representation for image
restoration. In ICCV, pages 1259–1266. IEEE,
2011.

[2] Zhe Hu, Jia-Bin Huang, and Ming-Hsuan Yang.
Single image deblurring with adaptive dictionary
learning. In ICIP, pages 1169–1172. IEEE, 2010.

[3] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural
l0 sparse representation for natural image deblur-
ring. In CVPR, pages 1107–1114, 2013.
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Most color image cameras today acquire only
one out of the R, G, B values per pixel by means
of a color filter array (CFA) in the hardware pro-
ducing the so called ‘CFA image’. In-built soft-
ware routines undertake the task of obtaining
the rest of the color information at each pixel
through a process termed demosaicing. Stud-
ies in [1] have shown that raw CFA images cap-
tured by a camera are corrupted predominantly
by Poisson noise which affects demosaicing re-
sults. While there exist several approaches in the
literature to perform demosaicing, most of them
do not fully account for the Poisson nature of
the noise in the raw CFA images. In this pa-
per, we present two simple but principled meth-
ods that infer dictionaries in situ from the noisy
CFA images, both taking into account the Pois-
son nature of the noise. These dictionaries are
used to denoise the noisy CFA images prior to
demosaicing by exploiting the patch-level non-
local similarity present in CFA images formed
under periodic patterns such as the Bayer pat-
tern and the sparsity of the coefficients of a lin-
ear combination of dictionary elements to ex-
press these patches. The denoised CFA image
can be given as input to any off-the-shelf de-
mosaicing routine to generate the full RGB im-
age from the denoised CFA data. Our first ap-
proach, which we term the ‘Poisson Penalty Ap-
proach’ (PPA), is based on the direct minimiza-
tion of an energy function which is the sum
of the negative log likelihood of the Poisson
noise model and a weighted sparsity-promoting
term. Patches from the noisy CFA image are ex-
pressed as a non-negative sparse linear combi-
nation of dictionary columns, also constrained
to be non-negative. Here, the dictionary as well
as the sparse coefficients are learned in situ from
the noisy patches in the CFA image. Our sec-
ond approach is termed the ‘Variance Stabiliser
Approach’ (VSA). To denoise a Poisson cor-
rupted CFA image Y using this approach, we
first compute its Anscombe transform given by
Z = 2

√
Y +3/8, denoise Z using a dictionary-

based image denoising algorithm suited for the

Figure 1: In each row, left to right: noisy image
acquired by camera (post in-built demosaicing),
output of NeatImage, output of PPA (with ap-
propriate parameters), output of local VSA (with
appropriate parameters). See supplemental ma-
terial for a clearer view.
Gaussian noise model with a fixed, known vari-
ance (which equals 1 in this case), and obtain
the final image as W = Z2/4− 3/8. The spe-
cific denoising algorithm we use is the spatially
varying PCA approach with a Wiener filter. We
have performed extensive experiments on both
synthetic and real data. Some results on real
data captured using a Canon camera are shown
in Figure 1 and comparisons are drawn between
the noisy image displayed by the camera (af-
ter in-built demosaicing without denoising), the
Poisson Penalty Approach, the Variance Stabi-
lizer Approach, and a commerically available
tool called NeatImage which denoises the RGB
image after demoisaicing the noisy CFA image.
Both the approaches clearly outperform the re-
sults obtained using NeatImage. Our methods
have been tested on Bayer pattern CFA images
but would work equally well on any other peri-
odic CFA pattern.

[1] H. J. Trussell and R. Zhang. The dominance of
poisson noise in color digital cameras. In ICIP,
pages 329–332, Sept 2012.

#108



109

Factorized Binary Codes for Large-Scale Nearest Neighbor Search

Frederick Tung
ftung@cs.ubc.ca

James J. Little
little@cs.ubc.ca

Department of Computer Science
University of British Columbia
Vancouver, Canada

Nearest neighbor search is a ubiquitous problem
in computer vision. Given a previously unseen
query point q ∈ Rd , we seek its closest matches
in a database X ∈ Rn×d . One class of tech-
niques for nearest neighbor search is hashing al-
gorithms for constructing compact binary codes.
Hashing algorithms transform the original data
points into compact bit string signatures that re-
quire significantly less storage space and can be
compared quickly using bit operations.

We can think of the bits in a binary code
as the decisions of a set of hash functions or
hyperplanes, possibly in some kernelized space.
These hyperplanes are learned or generated by
the hashing algorithm. In matrix form, we have

Y = sgn(XW) (1)

where X ∈ Rn×d , W ∈ Rd×c, Y ∈ {0,1}n×c, and
c is the number of hash functions, or the number
of bits in the generated binary code.

Typically, nearest neighbor search perfor-
mance improves as the number of hash functions
increases, i.e. as c increases. However, as the
number of hash functions increases, the matrix
Y of binary codes also increases in size, lead-
ing to higher storage requirements. For example,
if we wish to improve retrieval performance by
doubling the number of hash functions, we have
to store binary codes that are twice the length.

In this paper, we present a novel factorized
binary codes approach that uses an approximate
matrix factorization of the binary codes to in-
crease the number of hash functions while main-
taining the original storage requirements. Fig. 1
illustrates the factorized binary codes approach.
Given X, W, and Y as defined in Eq. (1), define
a ‘long’ code length cl > c, and form the matrix
Wl ∈ Rd×cl

, which appends (cl − c) new hash
functions to the c existing hash functions in W.
The new hash functions are generated using the
same procedure as the existing hash functions,
according to the underlying hashing algorithm.
The augmented matrix Wl produces ‘long’ bi-
nary codes Yl ∈ {0,1}n×cl

. We approximate Yl

Figure 1: Graphical overview of the factorized
binary codes approach

as the Boolean product of two factor matrices S
and B, both of which are also binary:

Yl ≈ S◦B (2)

where S ∈ {0,1}n×k, B ∈ {0,1}k×cl
, ◦ denotes

the Boolean product, and k is set such that the
factor matrices require no more storage than the
original binary codes Y ∈ {0,1}n×c (in Fig. 1,
the areas highlighted in orange are the same).
Given a query q ∈ Rd , the ‘long’ binary code
yq ∈ {0,1}cl

is computed using the augmented
set of hash functions Wl and matched with the
approximate binary codes Ỹl as reconstructed
using S and B. Fig. 2 shows experimental results
on the LM+SUN dataset with 384-dimensional
Gist descriptors.
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In this paper, we propose an RGB-D visual
odometry method that both minimizes the photo-
metric error and aligns the edges between frames.
The combination of the direct photometric infor-
mation [1] and the edge features leads to high-
er tracking accuracy and enables the approach
to deal with challenging texture-less scenes. In
contrast to traditional line feature based method-
s [2], we involve all edges rather than only line
segments, avoiding the aperture problem and the
uncertainty of endpoints. Instead of explicitly
matching edge features, we design a dense rep-
resentation of edges to align them, bridging the
direct methods and the feature-based methods in
tracking. Image alignment and feature matching
are performed in a general framework including
both pixels and salient visual landmarks.

To track the camera pose, every new frame
Fc is aligned to a reference frame Fr which is
a carefully selected keyframe. First, the visual
edges are extracted in Fc and Fr. Then, error
caused by camera pose at Fc is estimated: non-
edge points p in Fr are reprojected to Fc using

Figure 1: Overview of our approach

ω(p,d,ξ ) followed by the computation of pho-
tometric error; meanwhile, edge points er in Fr
are reprojected to a distance field derived from
edges in Fc holding the minimal distance to the
nearest edge point per pixel. The bottom picture
of middle column in Fig.1 illustrates a distance
field, whose intensity reflects the value of dis-
tance field: whiter regions are further to edges.
By multiplying a weight α , we combine these
two types of error and formulate an energy func-
tion. We apply Levenberg-Marquardt algorithm
to minimize the proposed non-convex objective
function.

Evaluations on real-world benchmark dataset-
s show that our method achieves competitive re-
sults in indoor scenes. Especially, it outperform-
s the state-of-the-art algorithms in texture-less
scenes.

[1] J. Engel, T. Schops, and D. Cremers. LSD-SLAM:
Large-scale direct monocular SLAM. In Proceed-
ings of ECCV, pages 834–849, 2014.

[2] K. Hirose and H. Saito. Fast line description
for line-based SLAM. In Proceedings of BMVC,
2012.
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Estimating the shape and appearance of a three
dimensional object from flat images is a challeng-
ing research topic that is still actively pursued.
Among the various techniques available, Pho-
tometric Stereo (PS) is known to provide very
accurate local shape recovery in terms of sur-
face normals. In this work we propose to min-
imise non-convex variational models for PS that
recover the depth information directly.

Photometric Stereo consists in finding a depth
map z that best explains all image irradiance equa-
tions (IIEs) Ii = R(z;si,ρ), for several images
Ii, considered under different lightings si, with
i ∈ {1, . . . ,m}. The function R describes our re-
flectance model in terms of the depth z, the light-
ing si, and the albedo ρ . We assume Lambertian
reflectance, neglect shadows, and require m > 3.

Our approach uses a variational framework
with a least-squares penalisation on the IIEs aug-
mented with a zero-th order Tikhonov regulari-
sation. The obtained energy (1) is non-convex
and we make use of matrix differential theory
and recent developments in non-convex and non-
smooth optimisation to determine good minimis-
ers.

min
z,ρ

{
ER (z,ρ; I)+

λ
2
‖z− z0‖2

}
(1)

Here, ER represents the reprojection criterion
based on the IIEs.

Our numerical strategy uses recent findings
of Ochs et al. [2]. They proposed a novel method
to handle such tasks, called iPiano. Inspired by
the heavy-ball method, it separates non-smooth
and non-convex parts in an efficient splitting strat-
egy. Further benefits include a thorough conver-
gence theory. The algorithm makes explicit use
of the derivative of the smooth terms in the cost
function, which in our case involves derivatives
of matrix-valued functions, and we will employ

Figure 1: Test data, 3D-reconstructions obtained,
3D-reconstruction results using the full pipeline,
consisting of a preprocessing, followed by classic
PS and finally our proposed method.

as a technical novelty, matrix differential theory
[1] to derive the resulting scheme.

Figure 1 presents some visualised results. It
consists of two scenes captured under 20 different
known illuminants. The experimental setups also
demonstrate that our framework performs consis-
tently better than alternative approaches such as
[3] in terms of the mean angular error.

[1] J. R. Magnus and H. Neudecker. Matrix Differ-
ential Calculus with Applications in Statistics and
Econometrics. John Wiley & Sons, 3rd edition,
2007.

[2] P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano:
Inertial proximal algorithm for non-convex opti-
mization. SIAM Journal on Imaging Sciences, 7
(2):1388–1419, 2014.

[3] R. J. Woodham. Photometric method for deter-
mining surface orientation from multiple images.
Optical Engineering, 19(1):134–144, 1980.
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Overview This paper presents a novel tech-
nique for Shape from Light Field (SfLF), that
utilizes deep learning strategies. Our model is
based on a fully convolutional network, that in-
volves two symmetric parts, an encoding and a
decoding part, leading to a u-shaped network ar-
chitecture. By leveraging a recently proposed
Light Field (LF) dataset, we are able to effec-
tively train our model using supervised training.
To process an entire LF we split the LF data into
the corresponding Epipolar Plane Image (EPI)
representation and predict each EPI separately.
This strategy provides good reconstruction re-
sults combined with a fast prediction time. In the
experimental section we compare our method to
the state of the art. The method performs well
in terms of depth accuracy, and is able to outper-
form competing methods in terms of prediction
time by a large margin.

Contribution The proposed method is in-
spired by the method of Heber and Pock [2], that
uses a conventional Convolutional Neural Net-
work (CNN) in a sliding window fashion to pre-
dict depth information. They showed that CNNs
have a large capacity to learn from data to pre-
dict the orientation of the lines in the EPIs. How-
ever, due to the sliding window approach, their
method suffers from considerable high compu-
tational costs. Compared to [2] we were able
to significantly reduce the computation time by
predicting complete EPIs at once using u-shaped
networks, cf. Figure 1. Besides drastically re-
ducing the prediction time we were also able
to reduce the errors in homogeneous regions,
because the proposed model can overcome the
patch-nature of the network proposed in [2].
Our experiments demonstrate that the proposed
method is able to predict an entire 4D disparity
field within a few seconds. Moreover, due to the
fact that our network architecture does not in-
clude any fully connected layer, our method also
allows to process LFs with varying resolutions.
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Figure 1: Illustration of the proposed u-shaped
network architecture. The encoding and decod-
ing parts of the network are highlighted in pur-
ple and green, respectively. The pinhole connec-
tions are marked in blue.

LF ground truth Tao [4]

Heber [1] Jeon [3] proposed

Figure 2: Comparison to state-of-the-art meth-
ods on the synthetic POV-Ray dataset.

[1] Stefan Heber and Thomas Pock. Shape from light field meets robust PCA.
In Proceedings of the 13th European Conference on Computer Vision,
2014.

[2] Stefan Heber and Thomas Pock. Convolutional networks for shape from
light field. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[3] H. G. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. W. Tai, and I. S. Kweon.
Accurate depth map estimation from a lenslet light field camera. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1547–1555, June 2015.

[4] Michael W. Tao, Sunil Hadap, Jitendra Malik, and Ravi Ramamoorthi.
Depth from combining defocus and correspondence using light-field cam-
eras. In International Conference on Computer Vision (ICCV), December
2013.
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Motivations The goal of Shape-from-
Template (SfT) is to register and reconstruct
the 3D shape of a deforming surface from
a single image and a known deformable 3D
template. Most SfT methods use only motion
information and require well-textured surfaces
which deform smoothly. Consequently they
are unsuccessful for poorly-textured surfaces
with complex deformations such as creases.
However, Shape-from-Shading methods permit
to reconstruct textureless surfaces and complex
deformations since it uses all image pixels and
the photometric relationship. We overcome the
shortcomings of previous attempts by proposing
a novel, (i) fully-integrated approach to combine
shading constraints with SfT in order to (ii)
reconstruct complex deformations on all visible
regions, both textured and textureless, (iii)
without any a priori photometric calibration.

Template, illumination and camera modeling
We define the template as a texture-mapped thin
shell 3D mesh in a known reference pose with
M vertices. At each time t, each vertex is de-
formed into the unknowns 3D camera coordi-
nates xt ∈ R3×M . We upgrade the template with
an photometric texture map which defines how
each point of the template’s surface reflects light.
We assume Lambertian model and compute this
map using an intensity-based segmentation of
the texture-map. It gives constant albedo regions
with α = {α1, ...,αK}, the K unknown albedo
values. The scene is illuminated by an unknown
illumination l which is constant over time, fixed
in the camera coordinates and modeled by spher-
ical harmonics (4 and 9 coefficients). The cam-
era has a linear response, βt ∈ R+, which is un-
known and time-varying.

Integrated cost function The deformation xt
is constrained by image data and deformation
priors (isometry and smoothing constraints), and

Input image Ground truth Best method of the 
state-of-the-art

Ours

Figure 1: 3D renderings for the input image n◦6
of the floral plane dataset.

l, βt and α are constrained by the shading term
and the batch of images. We use the shading
relationship to enforce similarity between the
modeled and the measured pixel intensities. As
it uses all image pixels, mis-alignement may in-
duce errors. Thus, we use motion and bound-
ary constraints to align the projected 3D sur-
face with its input image. We also use a ro-
bust smoothing based on an M-estimator, which
permits piecewise constant 3D reconstructions,
such as creases.

Strategy solution The integrated cost function
is large scale and highly non-linear, but all con-
straints are sparse with respect to xt . We use a
cascaded initialization for the four types of un-
knowns: first xt , then using a batch of input im-
ages l, βt and finally α . Using Gauss-Newton
iterations with line-search, a refinement process
minimizes the whole integrated cost function for
the batch of images. We found that a dense mesh
with vertices of order O(104) is sufficient to cap-
ture the creases.

Experimental results We compare our ap-
proach on three datasets with four SfT methods
and we see that our method is capable of cap-
turing non-smooth deformations, better than oth-
ers, as figure 1 shows, using shading without any
a priori photometric calibration, which was not
possible with previous methods in SfT or SfS.
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Physics 101: Learning Physical Object Properties from Unlabeled Videos
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Introduction We study the problem of learn-
ing physical properties of objects from unlabeled
videos. Humans can learn basic physical laws
when they are very young [1], which suggests
that such tasks may be important goals for com-
putational vision systems.

There have been early efforts to build com-
puter vision systems with the physical knowledge
of an early child. Recently, researchers started
to tackle concrete scenarios for understanding
physics from vision [2], some involving deep
learning. Different from these, we aim to de-
velop a system that can infer physical properties,
e.g. mass and density, directly from visual in-
put. Our method is general and easily adaptive to
new scenarios, and is more efficient compared to
analysis-by-synthesis approaches [3].

Physical World Model There exist highly in-
volved physical processes in daily events in our
physical world. We can divide all involved
physical properties into two groups: the first is
the intrinsic physical properties of objects like
mass, many of which we cannot directly measure
from the visual input; the second is the descrip-
tive physical properties, e.g. velocity of objects,
which characterize the scenario in the video. The
second group of parameters are observable, and
are determined by the first group, while both of
them determine the content in videos.

Physics 101 Dataset We collected a dataset of
101 objects made of different materials and with
various masses and volumes. We started by col-
lecting videos of them from multiple viewpoints
in four scenarios: objects slide down an inclined
surface and possibly collide with another object;
objects fall onto surfaces made of different ma-
terials; objects splash in water; and objects hang
on a spring. These seemingly straightforward
setups require understanding multiple physical
properties, e.g., material, mass, volume, density,
coefficient of friction, and coefficient of restitu-
tion. We called this dataset Physics 101.

Method Our method is a CNN consisting of
three components. The bottom component is a

Unlabeled videos

Predictions

Estimation
Physical Laws

Estimated position of object after collision Ground truth

Material: wooden

Volume: 173 cm
3

Mass: 110 g

Material: plastic

Volume: 50 cm
3

Mass: 28 g

Figure 1: Overview of our model, which learns directly
from unlabeled videos, produces estimates of physical
properties of objects based on the encoded physical
laws, and generalizes to tasks like outcome prediction

visual property discoverer, which aims to dis-
cover physical properties like material or volume
which could at least partially be observed from
visual input; the middle component is a physics
interpreter, which explicitly encodes physical
laws into the network structure and models latent
physical properties like density and mass; the top
component is a physical world simulator, which
characterizes descriptive physical properties like
distances that objects traveled, all of which we
may directly observe from videos. Our network
corresponds to our physical world model, and
learns object properties from unlabeled data.
Evaluation We demonstrate that our frame-
work develops some physics competency by ob-
serving videos. We also show that our generative
model can transfer learned physical knowledge
from one scenario to the other, and generalize
to other tasks like predicting the outcome of a
collision.
[1] Renée Baillargeon. Infants’ physical world. Current directions in

psychological science, 13(3):89–94, 2004.

[2] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum.
Simulation as an engine of physical scene understanding. PNAS,
110(45):18327–18332, 2013.

[3] Jiajun Wu, Ilker Yildirim, Joseph J Lim, William T Freeman, and
Joshua B Tenenbaum. Galileo: Perceiving physical object proper-
ties by integrating a physics engine with deep learning. In NIPS,
2015.
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Conventional zero-shot learning (ZSL) methods
recognise an unseen instance by projecting its
visual features to a semantic space that is shared
by both seen and unseen categories [1, 2].
However, we observe that such a one-way
paradigm suffers from the visual-semantic
ambiguity problem. As shown in Fig. 1, the
semantic concepts (e.g. attributes or classes)
cannot explicitly correspond to visual patterns,
and similar visual features may come from
different classes. Such a problem can lead to
a huge variance in the visual features for each
attribute.

In this paper, we propose the Visual-
Semantic Ambiguity Removal (VSAR) algo-
rithm to address such a problem. In particular,
we propose a novel latent attribute space V to
mitigate the gap between visual and semantic
spaces X and A:

J = ‖X −U1V‖2
F +α‖A−U2V‖2

F +λR, (1)

where U1 and U2 are two projection matrices.
R is a Dual-graph regularisation that combines
two supervised graphs WX and WA that model
the intrinsic data structures in X and A. In the
embedding space V , we expect that if the ver-
tices in both graphs are connected, each pair of
embedded points vi and v j are also closed to
each other. However, for the visual-semantic
ambiguity problem, WX and WA usually give
contradictory results. To compromise such con-
flict, we linearly combine the two graphs, i.e.
Wi j =WXi j +αWAi j . The resulted regularisation
is:

R=
1
2

N

∑
i, j=1
‖vi− v j‖2Wi j = Tr(VLVT ), (2)

where D is the degree matrix of W , Dii = ∑i wi j .
L is known as graph Laplacian matrix L=D−W

Figure 1: Visual Ambiguity (in blue oval): the
image of a carriage is taken with a building
background. It cannot recover the semantic dis-
tance (blue question mark) to the building cat-
egory. Semantic Ambiguity (in red oval): the
cup printed with a wolf and the cup-like build-
ing share the same name which can lead to a
large visual variance (the red question mark).
After embedding to the latent attribute space us-
ing VSAR, such ambiguity is mitigated.
and Tr(.) computes the trace of a matrix.

Once we obtain the latent attribute em-
bedding V of the seen data, performing zero-
shot recognition is straightforward via least-
square approximation between V and {A,X}.
During the test, given unseen category names
and their attributes in pairs: {Yu,Au}. We
firstly embed all unseen attributes Au into the
latent embedding space as references: Vu =
VAT (AAT )−1Au. Given a test unseen instance
x̂, its embedded latent attribute representation is:
v̂=VX T (XX T )−1x̂. Finally, we adopt a simple
NN classifier to predict the category label ĉ:

ĉ = argmin
c
‖v̂− vc‖2, where vc ∈ Vu. (3)

[1] Zeynep Akata, Florent Perronnin, Zaid Har-
chaoui, and Cordelia Schmid. Label-embedding
for attribute-based classification. In CVPR, 2013.

[2] Christoph H Lampert, Hannes Nickisch, and Ste-
fan Harmeling. Learning to detect unseen ob-
ject classes by between-class attribute transfer. In
CVPR, 2009.

Tuesday
13:40-14:40

#115



116
Tu

es
da

y
13

:4
0-

14
:4

0
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Recovery of scene flow (a dense 3D velocity
vector field) of a dynamic scene from monoc-
ular image sequences is an emerging field in
computer vision. Being sensitive to occlusions,
existing Monocular Scene Flow (MSF) meth-
ods are either limited in handling non-rigid de-
formations [5], or make strong assumptions on
scene [2] and camera motion [1]. To over-
come these limitations, we propose a framework
for MSF estimation based on Non-Rigid Struc-
ture from Motion (NRSfM) [4] techniques —
NRSfM-Flow. In the continuous domain, re-
lation between a shape S(p, t), camera motion
R(t) and scene flow Θ(p, t) can be expressed as

Θ(p, t) =
∂R(t)

∂ t
S(p, t)+R(t)

∂S(p, t)
∂ t

. (1)

To enhance reconstruction accuracy and speedup
computations, two preprocessing steps are pro-
posed — Translation Resolution (TR) and Re-
dundancy Removal (RR). With TR, translation
of the scene is resolved using a sparse point
tracker. Using RR, frames with insufficient di-
versity are dropped according to the criterion

∥∥∥∥
∫

Ψ̂

∫ tb

ta
ΞΞΞ(v, t) dt dv̂

∥∥∥∥
2
≥ ε, (2)

where ΞΞΞ(v, t) is a continuous optical flow func-
tion, v̂ ∈ Ψ̂ ⊂ R2 are 2D points observed at a
reference time τ , and ε is a scalar threshold.
Our approach can handle long image sequences
with non-rigid deformations and self-occlusions,
with no strong assumptions such as a known
camera motion. Performance is demonstrated on
several synthetic and real image sequences (see
Fig. 1 for an example). With this paper we hope,
on the one hand, to draw attention to model-
based approaches for MSF estimation and, on
the other, to highlight importance of the differ-
ential interpretation of the NRSfM problem.

Figure 1: Experimental results on the barn owl sequence [3]:
(a) frame 51; (b) scene flow between frames 51 and 52; (c)
geometry + scene flow; (d) shaded geometry (Poisson) from a
novel viewpoint; (e) optical flow between frames 51 and 52;
(f) projection of the 3D motion field into the image plane.

[1] N. Birkbeck, D. Cobzaş, and M. Jägersand. Depth
and scene flow from a single moving camera. In
3D Data Processing Visualization and Transmis-
sion (3DPVT), 2010.

[2] N. Birkbeck, D. Cobzaş, and M. Jägersand. Ba-
sis constrained 3d scene flow on a dynamic proxy.
In International Conference on Computer Vision
(ICCV), pages 1967–1974, 2011.

[3] P. Dinning. Barn Owl at Screech Owl Sanctu-
ary. https://www.youtube.com/watch?
v=xmou8t-DHh0, 2014. [online; accessed on
12.05.2016; usage rights obtained from the au-
thor].

[4] R. Garg, A. Roussos, and L. Agapito. Dense vari-
ational reconstruction of non-rigid surfaces from
monocular video. In Computer Vision and Pattern
Recognition (CVPR), pages 1272–1279, 2013.

[5] D. Xiao, Q. Yang, B. Yang, and W. Wei. Monoc-
ular scene flow estimation via variational method.
Multimedia Tools and Applications (An Interna-
tional Journal), pages 1–23, 2015.
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In this paper, we demonstrate the use of shape-
from-shading (SfS) to improve both the qual-
ity and the robustness of 3D reconstruction of
dynamic objects captured by a single camera.
Unlike previous approaches that made use of
SfS as a post-processing step, we offer a princi-
pled integrated approach that solves dynamic ob-
ject tracking and reconstruction and SfS as a sin-
gle unified cost function. Moving beyond Lam-
bertian SfS, we propose a general approach that
models both specularities and shading while si-
multaneously tracking and reconstructing gen-
eral dynamic objects. Solving these problems
jointly prevents the kinds of tracking failures
which can not be recovered from by pipeline ap-
proaches.

Figure 1: The reflected intensity is the product of
albedo and diffuse shading plus specularities.

Our proposed approach is an online template-
based method that captures both the 3D geom-
etry and the reflectance properties (Figure 1) of
the non-rigid object. Our main novelty is the
photometric error data term of the energy cost
that is minimized for each new frame. It models
the photometric error as follows

ED = ∑
i∈V

∥∥I(π (R(si)+ t))− ρ̂ρρ il ·Y (R(ni(SSS)))−βββ i
∥∥

ε

For each vertex, it penalizes the difference be-
tween its projected and its estimated intensities

as a function of albedo ρ̂ρρ , diffuse shading l ·Y (···)
and specular highlights βββ .
We tested our method on synthetically rendered
sequences, using the results from [1], and on real
sequences. We compare against [2] and show
state-of-the-art results both qualitatively (Fig-
ure 2) and quantitatively (Table 1).

Figure 2: From top to bottom: synthetic input se-
quence, results from Yu et al., and our results.

LF SF LC SC
Yu et al. [2] 7.29 7.93 9.18 9.28

Ours 2.73 2.89 3.42 3.84

Table 1: Comparison of RMS error (in mm.) with Yu
et al. on 4 different synthetic sequences.

[1] Levi Valgaerts et al. Lightweight binocular facial
performance capture under uncontrolled lighting.
SIGGRAPH Asia, 2012.

[2] Rui Yu et al. Direct, dense, and deformable: Non-
rigid 3d reconstruction from rgb video. ICCV,
2015.
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Figure 1: RNN (bottom) recognizes multiple
objects more accurately than a state of the art
frame-level model (top).

In this paper, we introduce a framework for im-
proving object detection in videos by captur-
ing temporal context and encouraging tempo-
rally consistent predictions. First, we train a
pseudo-labeler, that is, a domain-adapted con-
volutional neural network for object detection.
The pseudo-labeler is first trained individually
on the subset of labeled frames, and then sub-
sequently applied to all frames. Then we train a
recurrent neural network (RNN) that takes as in-
put sequences of pseudo-labeled frames and op-
timizes an objective that encourages both accu-
racy on the target frame and consistency across
consecutive frames.

The approach incorporates strong supervi-
sion of target frames, weak-supervision on con-
text frames, and regularization via a smooth-
ness penalty. Building on YOLO, a domain-
adapted frame-level object detection model [3],
we demonstrate that for the sparsely anno-
tated YouTube Objects dataset [2], our method
achieves mean Average Precision (mAP) of
68.73 on test data, as compared to a best pub-
lished result of 37.41 [4] and 61.66 for YOLO
alone.

As with YOLO [3], our fine-tuned pseudo−
labeler takes 448× 448 frames as input and re-

gresses on category types and locations of possi-
ble objects at each one of 7×7 non-overlapping
grid cells. For each grid cell, the model out-
puts class conditional probabilities as well as 2
bounding boxes and their associated confidence
scores.

Then, to incorporate temporal context, we
train an RNN with gated recurrent units (GRUs)
[1] to refine the provisional predictions. This net
takes as input sequences of pseudo-labels. For
this recurrent model, we demonstrate an efficient
and effective training strategy. The objective en-
courages predictions to be close to true labels
(for labeled frames), not to deviate too far from
the pseudo-labels, and to be similar across ad-
jacent frames. As demonstrated experimentally,
our framework proves effective, achieving state-
of-the art mAP and producing compelling visual
examples.

[1] KyungHyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder
approaches. In Proc. Workshop on Syntax, Seman-
tics and Structure in Statistical Translation, 2014.

[2] Alessandro Prest, Vicky Kalogeiton, Christian
Leistner, Javier Civera, Cordelia Schmid, and Vit-
torio Ferrari. Youtube-objects dataset v2.0, 2014.
URL calvin.inf.ed.ac.uk/datasets/
youtube-objects-dataset. University of
Edinburgh (CALVIN), INRIA Grenoble (LEAR),
ETH Zurich (CALVIN).

[3] Joseph Redmon, Santosh Kumar Divvala, Ross B.
Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In CVPR,
2016.

[4] Subarna Tripathi, Serge J. Belongie, Youngbae
Hwang, and Truong Q. Nguyen. Detecting tem-
porally consistent objects in videos through object
class label propagation. WACV, 2016.
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In this paper we present an outlier rejection
method for absolute pose estimation. We focus
on the special case when the orientation of the
camera is known. The problem is solved by pro-
jecting to a lower dimension where we are able
to efficiently compute upper bounds on the max-
imum number of inliers. The method guarantees
that only correspondences which cannot belong
to an optimal pose are removed. Once the major-
ity of the outliers have been removed the prob-
lem is greatly simplified and can be solved using
standard methods (e.g. RANSAC [1]).

If the orientation is known we can w.l.o.g.
assume that R = I, by rotating the image points.
Each 2D-3D correspondence then constrains the
translation t to a cone,

K=

{
t ∈ R3

∣∣∣∣ ‖X− t‖ ≤ 1
cos(ε)

〈x, X− t〉
}
, (1)

and we are interested in finding the translation
which satisfies as many cones as possible.

To remove outliers we want to determine if
a given cone K0 can be part of an optimal solu-
tion. If the answer is negative we can discard the
correspondence safely.

In our outlier rejection scheme we first or-
thogonally project each intersection K0 ∩Ki to
the center line in K0.

K0

Ki

Each intersection gives an interval on the line
and by finding the maximum number of over-
lapping intervals we get an upper bound for any
solution which includes K0.

Finding the projection of the intersection be-
tween the cones is a convex problem and can
be solved using standard solvers. For our appli-
cation these are however too slow for practical
use. Instead we form a polyhedral approxima-
tion of the cone K0. This allows us to find a
closed form solution to the projection problem.
In experiments we show that the errors intro-
duced by the planar approximation are negligi-
ble and that the closed form solution gives sig-
nificant speed-ups compared to using the stan-
dard solvers. For some instances the runtime
went from 20-30 minutes to a couple of millisec-
onds.

We evaluate our method on a new dataset
for metric localization from a single image for a
car driving through a tunnel. The poor lightning
conditions and repetitive textures makes match-
ing difficult and there are a large number of out-
liers. See Figure 1 for an example image and
localization result.

Figure 1: Left: Input image with SIFT features
(blue points). Right: Camera pose in world co-
ordinate frame.

We compare running our outlier rejection fol-
lowed by a few iterations of RANSAC with per-
forming RANSAC on original correspondences.
Our approach gives improved performance, both
in terms of localization accuracy and computa-
tion time.

[1] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the
perspective-three-point problem for a direct computation of absolute cam-
era position and orientation. In Computer Vision and Pattern Recognition
(CVPR), Colorado Springs, US, 2011.
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Figure 1: Reference image, disparity map and
confidence computed by CCNN for Motorcycle
and Playtable frames of the Middlebury 2014
training dataset.

In this paper, we propose a novel approach,
referred to as Confidence Convolutional Neu-
ral Network (CCNN)1, to predict the correct-
ness of stereo matching by deploying a Convolu-
tional Neural Network (CNN). In literature this
is usually carried out by means of confidence
measures [1] which encode the degree of reli-
ability of the disparity assigned to each pixel
by considering different cues: cost volume, ref-
erence image, disparity map and so on. Al-
though some standalone measures are quite ef-
fective [1], recent works proved that combining
a pool of them, within a machine learning frame-
work, enables to significantly improve the over-
all effectiveness. In particular, Park & Yoon [2]
represents state-of-the-art in this field, obtaining
the best results according to the Area Under the
Curve (AUC) evaluation protocol defined by Hu
and Mordohai [1].

This paper proposes the first method that

1The source code of CCNN and the trained network
is available here: http://vision.disi.unibo.it/
~mpoggi

Dataset/Alg. Opt. Park&Yoon CCNN
KITTI/BM 0.137 0.179 0.175

KITTI/SGM 0.038 0.124 0.099
Middl./BM 0.093 0.114 0.107

Middl./SGM 0.042 0.093 0.074
Table 1: Average AUC on KITTI 2015 and
Middlebury 2014 training datasets with BM and
SGM algorithms. The lower, the better. Values
closer to optimum are in bold.

allows to obtain a confidence measure inferred
from scratch by a CNN deploying as input cue
only the disparity map computed by a stereo
algorithm. This strategy makes our proposal
suited even for out-of-the-box 3D sensors that
typically do not provide the cues required by
other methods.

For a fair comparison, we trained the pro-
posed CCNN and Park & Yoon [2] on KITTI
2012 (more than 6 million samples), using the
Block Matching stereo algorithm (BM). This
provides more than 6 million samples for train-
ing. Then, we evaluated CCNN and Park &
Yoon on KITTI 2015 training dataset process-
ing the output of BM and Semi-Global Match-
ing (SGM). We also cross-evaluated the two ap-
proaches, with BM and SGM stereo algorithms,
on Middlebury 2014 training dataset. Table 1
reports average AUCs for CCNN and Park &
Yoon, computed on KITTI 2015 and Middlebury
2014, for BM and SGM, in order to assess their
effectiveness. Observing the table, we can no-
tice that our proposal always outperforms state-
of-the-art.

[1] Xiaoyan Hu and Philippos Mordohai. A quantita-
tive evaluation of confidence measures for stereo
vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), pages 2121–
2133, 2012.

[2] Min-Gyu Park and Kuk-Jin Yoon. Leveraging
stereo matching with learning-based confidence
measures. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
June 2015.
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Periodic patterns and motions are ubiquitous in
both natural and man-made environments. Sev-
eral well established tools and techniques such
as the Fourier Transform [2] can be used to
analyse purely periodic signals. However, in
many real life scenarios, periodic signals appear
as segments of larger signals containing non-
periodic parts. The detection and characteriza-
tion of such periodic parts is an interesting prob-
lem that is not yet fully addressed.

In this work we propose a method that, given
a time series representing a periodic signal that
has a non-periodic prefix and tail, estimates the
start, end and period of the periodic part of the
signal. The resulting method has a small num-
ber of free parameters, is unsupervised and can
detect short periodic events occurring in the con-
text of extended non-periodic activities.

Consider as input a univariate time series
x =< x1,x2, . . . ,xN >. Assuming that this time
series is periodic between times b and e and
that the period of that part of the signal is l,
our goal is to estimate b, e and l. We formu-
late this task as an optimization problem in a
search space defined by b, e and l. A candidate
triplet (b,e, l) defines n = b(e−b)/lc segments:
si =< xb+l·(i−1), . . . ,xb+l·i−1 >, i∈ {1 . . .n}. We
quantify the total dissimilarity of these segments
as the mean squared error among all pairs of seg-
ments: εs(l) = 1

n·l ∑n
i=1 ∑n

j=i+1 ||si− sj||22, where
|| · ||22 denotes the squared L2 norm. Based on this
quantity, we formulate an appropriate objective
function that is optimized using Particle Swarm
Optimization (PSO) [1]. PSO is a stochastic
method that iteratively improves a candidate so-
lution with regard to a given measure of quality.

The core of the proposed framework is a
method that, given a univariate time series con-
taining a periodic part, detects the start, the end
and the period length of that part. In practice,
several phenomena can be more effectively rep-
resented as multivariate time series. We consider
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Figure 1: Left: the proposed method aims to find
a periodic part within a larger, non-periodic sig-
nal. Right: indicative result on a video. Our
method detects the start, the end and the period
of the periodic motion (jumping). Top frame:
The highest point of the jump, begin of an esti-
mated period. Bottom frame: The highest point
of the next jump, begin of next period.

multivariate time series as a set of synchronized,
univariate time series. We apply the core period-
icity detection method to each of them. Then, we
employ a simple yet effective voting method to
aggregate partial results towards characterizing
the periodicity of the event that is represented
with the multivariate time series.

We present the results we obtained using the
proposed method. We first evaluate the perfor-
mance of the method on synthetically generated
sequences, determining appropriate parameters
for PSO. Given these parameters, we evaluate
the performance of the method under the pres-
ence of varying amounts of noise. Finally, we
present results in real-world data. Specifically,
we present results on detecting periodic activi-
ties using motion capture or video data as input.

[1] Maurice Clerc and James Kennedy. The particle
swarm-explosion, stability, and convergence in a
multidimensional complex space. Evolutionary
Computation, IEEE Transactions on, 6(1):58–73,
2002.

[2] Jean Baptiste Joseph Fourier. The analytical the-
ory of heat. The University Press, 1878.
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(a) (b)

Figure 1: (a) Examples of persons wearing black
suits; (b) Examples of images of the same person but
wearing different clothing.
Person re-identification is critical in surveil-
lance applications. Current approaches rely on
appearance-based features extracted from a sin-
gle or multiple shots of the target and candidate
matches. These approaches are at a disadvantage
when trying to distinguish between candidates
dressed in similar colors (Figures 1(a)) or when
targets change their clothing (Figures 1(b)). In
this paper we propose a dynamics-based feature
to overcome this limitation. The main con-
tributions of this paper are: (i) A novel
dynamics-based and Fisher vector encoded fea-
ture DynFV for re-id; (ii) Three new challeng-
ing “appearance impaired” datasets for re-id per-
formance evaluation; and (iii) A comprehensive
evaluation of the effect of choosing different spa-
tio, spatio-temporal, and dynamics-based fea-
tures on the performance of (unsupervised) re-id
methods.

We propose to use soft-biometric character-
istics provided by sets of dense, short trajecto-
ries (tracklets), which have been shown to carry
useful invariants [1]. All tracklets are encoded
by using pyramids of dense trajectories with
Fisher vector encoding [2], as illustrated in Fig-
ure 2 and described in detail in the paper.

To illustrate the need for dynamic-based
features we collected three challenging
“appearance-impaired” datasets. Two of
them consist of video sequences of people
wearing black/dark clothing. They are subsets

(a) (b) (c) (d) (e)
a

a
a

Figure 2: Pipeline of the proposed dynamics-based
feature extraction.
of the iLIDS-VID and PRID 2011 datasets and
we named them iLIDSVID BK and PRID 2011
BK, respectively. The third dataset, named the
Train Station dataset (TSD), has sequences of
persons with different clothing and accessories
(Figure 1(b)). We compare unsupervised re-id
performance when using different combinations
of five different types of features. After com-
bining LDFV and DynFV, the rank-1 accuracies
have relative improvements of 142.1% on
average for all three new datasets (Figure 3).
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Figure 3: CMC curves for iLIDSVID, PRID and the
BK extension datasets
[1] B. Li, O. Camps, and M. Sznaier. Cross-view ac-

tivity recognition using hankelets. In CVPR, pages
1362–1369, 2012.

[2] F. Perronnin, J. Sánchez, and T. Mensink. Improv-
ing the fisher kernel for large-scale image classifi-
cation. In ECCV, pages 143–156. 2010.
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In computer vision, the extraction of effec-
tive features for the detection and description of
important image regions is a key step for many
applications. Traditionally, these features are ex-
tracted using hand engineered detectors and de-
scriptors. Approaches adopting this paradigm
are generally referred to as keypoint-based or
feature-based approaches. Recently, the reintro-
duction of neural networks into many computer
vision tasks broadly replaced hand-engineered
feature-based approaches. Neural network based
approaches generally learn the feature extrac-
tion as part an end-to-end pipeline. While these
approaches have shown great success in tasks
such as object detection and classification, other
tasks such as structure-from-motion (SfM) still
depend on purely engineered features, e.g. SIFT,
to detect and describe keypoints.

In this paper, we propose a model that learns
what constitutes a good keypoint, is capable
of capturing keypoints at multiple scales and
learns to decide whether two keypoints match.
We achieve multiscale keypoint detection with a
fully-convolutional network that recursively ap-
plies convolutions to regresses keypoint scores.
With each successive convolution, the network
evaluates image patches, i.e., keypoints, at a
larger scale. By extracting the keypoint fea-
ture map after each convolution we obtain a fea-
ture map that resembles a keypoint scale-space.
To learn descriptors for keypoint matching, we
leverage a triplet network to learn an embedding
where patches of matching keypoints are closer
to each other than non-matching patches. Figure
1 provides an overview of our proposed model.

There is currently no large-scale dataset for
learning both keypoint detectors and descriptors
from image patches. Furthermore, finding train-
ing examples to train deep neural networks for
this task poses a serious challenge, as collect-
ing human annotated examples would be pro-
hibitively expensive. Therefore, we create our
own dataset by following a self-supervised ap-

Input Image Keypoint Responses

DescriptorsExtracted Patches

Non-Maximum-Suppression

Fully-Convolutional 
Recursive Network

Patch Descriptor
Network

Figure 1: Proposed architecture for learning to
detect and describe keypoints at multiple-scales.

proach. We utilize SfM to construct a large-scale
model of 1.3 million 3D points, which are used
to extract matching patches with varying pho-
tometric properties such as scale, illumination,
perspective. Although those feature detections
and matches were determined originally with en-
gineered features, SfM factors in the underlying
geometry. This allows to learn features that ex-
tend upon their engineered counterparts.

We evaluate the proposed model both quan-
titatively and qualitatively and show its capablity
of identifying multiscale keypoints as well as
matching them. We show that the descriptors
outperform previous approaches and demon-
strate the transferability to unseen datasets with
different statistics; Figure 2 shows an example.

Figure 2: Qualitative evaluation on “Wall’ image
from the Oxford dataset.
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This paper presents an incremental strategy for
learning hash functions with kernels for large-
scale image search. Despite the fact that new im-
ages are added to online photo databases every
day, no supervised hashing method learns hash
functions incrementally for newly added images.
We identified three main objectives for our su-
pervised hashing method – as being incremental
and parallelizable, avoiding overfitting by better
generalization, and balancing +1/−1 in learned
binary codes.

To address this problem, we introduce Su-
pervised Incremental Hashing (SIH); a method
based on binary and multi-class SVMs. SIH
treats binary codes as intermediate variables be-
tween the feature space and the semantic space.
In the first stage of classification, binary codes
are considered as class labels by a set of binary
SVMs; each corresponds to one bit. In the sec-
ond stage, binary codes become the input space
of a multi-class SVM. We formulate our hashing
objectives in a joint optimization task that pro-
vides better generalization with regularizations
and maximizes the entropy by balancing binary
codes.

We describe an algorithm that solves the
optimization problem efficiently by an incre-
mental strategy. In this approach, the NP-
hard problem of finding optimal binary codes
is solved via cyclic coordinate descent and the
SVMs are trained in a parallel fashion. Con-
sidering a dataset with class information, SIH
can be adapted to modifications like adding new
classes, deleting existing classes, and adding im-
ages to existing classes efficiently. Furthermore,
we present an upper bound for the convergence
of our method when these changes happen.

Figure 1 shows a simulation of our incre-
mental SVM approach on a sample dataset with
6 classes represented by colors in part (a). As-
signments of +1 and −1 are indicated by filled
and empty shapes, respectively. Part (b) shows
the changes in the hyperplanes during training.

(a) (b)

(c) (d)

Figure 1: A simulation of SIH.

Increasing transparency of the lines indicates
earlier iterations of the execution. In part (c),
the number of data points is increased to 600 by
adding new points from the same distributions
in (b). Red lines represent the hyperplanes when
our method is initialized with the solution at (b)
shown by a black line. Finally, in part (d) two
classes are deleted from the dataset.

We evaluate our method on three large-
scale datasets: CIFAR10, MNIST, and NUS-
WIDE. Our method outperforms the state-of-
the-art hashing methods in retrieval performance
while it has competitive execution time. The
significance of our incremental strategy is ob-
served when it is applied on dynamic datasets
where new images are added and existing im-
ages are delete. Our incremental hashing strat-
egy reaches the same retrieval performance as
the from-scratch hashing strategy while requir-
ing shorter training time.

Experiments validate that the incremental
hashing strategy for dynamic datasets is capable
of updating hash functions efficiently. Besides,
the proposed approach provides higher quality
codes with well-balanced bits and better gener-
alization.
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Motivation. Image pyramid is a common s-
trategy in detecting objects with different scales
in an image. The computation of features at ev-
ery scale of a finely-sampled image pyramid is
the computational bottleneck of many modern
face detectors.

Contributions. In this paper, we propose a
new architecture of fully convolutional network
framework for fast face detection. In our detec-
tor, face models at different scales are trained
end-to-end and simultaneously. And more im-
portantly, different scale models share the same
convolutional feature maps. During testing, on-
ly images at octave-spaced scale intervals need
to be processed by our detector. And faces of d-
ifferent scales between two consecutive octaves
can be detected by multi-scale models in our
system. This makes our detector very efficien-
t and can run about 100 FPS on a GPU for V-
GA images. Meanwhile, our detector shows su-
perior performance over most of state-of-the-art
ones [1] [2] [3] on three challenging benchmark-
s, including FDDB, AFW, and PASCAL faces,
shown in Fig. 1-3.

[1] Lichao Huang, Yi Yang, Yafeng Deng, and Yinan
Yu. Densebox: Unifying landmark localization
with end to end object detection. arXiv, 2015.

[2] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan
Brandt, and Gang Hua. A convolutional neural
network cascade for face detection. In CVPR,
pages 5325–5334, 2015.

[3] Shuo Yang, Ping Luo, Chen-Change Loy, and X-
iaoou Tang. From facial parts responses to face
detection: A deep learning approach. In ICCV,
pages 3676–3684, 2015.

Figure 1: Results on the FDDB dataset.

Figure 2: Results on the AFW dataset.

Figure 3: Results on Pascal faces dataset.
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In this paper, we propose a new approach
for localizing objects in weakly labeled data.
The novelty of our method is to introduce the
concept of “attention” in weakly supervised
learning. Our approach starts with generating
a set of candidate object regions in each image
using standard object proposal techniques.
For each object proposal, instead of directly
predicting its class label, we first compute an
“attention score”. This attention score indicates
the importance of each object proposal. We
then combine the object proposals in the image
using their respective attention scores to form a
whole image feature vector. This feature vector
is then used to classify this image. Since the
feature vector for whole image classification
is obtained from candidate regions using their
attention scores, this will focus the model to
learn to assign high attention scores to regions
that contain the object of interest. The overview
of our approach is illustrated in Fig. 1.

Object proposals: Given a collection of weakly
labeled images, the first step of our approach is
to generate a shortlist of object proposals in each
image. We use the edge boxes method, which is
a commonly used technique for generating ob-
ject proposals. Each proposal is a bounding box
that may contain any object.

Let x be the input image and K be the
number of object proposals generated on the
image x. We represent each proposal as a fixed
length feature vector xi (i = 1,2, ...,K).

Proposal attention: For each object proposal xi,
we then compute an attention score si indicating
how likely this object proposal contains the ob-
ject of interest. This is achieved by applying a
linear mapping on xi followed by a softmax op-
eration. Let wa denote a vector of parameters
for the linear mapping, the attention score si is

Figure 1: An overview of our architecture.

calculated as:

gi = w>a xi (1a)

si =
exp(gi)

∑K
j=1 exp(g j)

, i = 1,2, ...,K (1b)

Without loss of generality and to simplify the no-
tation, we use a linear mapping without the bias
term in Eq. 1 by assuming that the feature vector
x already has 1 appended to the end.
Image-level classification: Since our data are
labeled only at the image-level, we need to use
a learning method where the loss function is
based on image-level labels. In our work, we use
the attention scores to combine the object pro-
posals to get an image-level feature vector z as
z = ∑K

i=1 sixi. This image-level feature z is then
used to classify the whole image by a linear clas-
sifier with parameters wc:

f (x;{wa,wc}) = w>c z (2)

where f (x;{wa,wc}) is the score of classifying
z to be a positive class.

Once the learning is done, we localize the
object in weakly labeled data directly using the
attention scores. For example, suppose the ob-
ject of interest is “dog”. For each positive “dog”
image, we simply choose the object proposal
that has the highest attention score si as the lo-
calized dog instance in this image.
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Figure 1: Overall workflow of our model

Image captioning task has become a highly
competitive research area with application of
convolutional and recurrent neural networks, es-
pecially with the advent of long short-term mem-
ory (LSTM) architecture. However, its primary
focus has been a factual description of the im-
ages, mostly objects and their actions. While
such focus has demonstrated competence, de-
scribing the images with non-factual elements,
namely sentiments of the images expressed via
adjectives, has mostly been neglected. We at-
tempt to address this issue by fine-tuning an ad-
ditional convolutional neural network solely de-
voted to sentiments, where dataset on sentiment
is built from a data-driven, multi-label approach.

Building a dataset on sentiments accompa-
nies a number of challenges. First, because sen-
timents are subjective by nature, it is difficult to
label the images in a reliable way. We handle
this problem by treating the images as having
multiple labels. We utilize Binary Relevance [1]
in which m training examples xi whose associ-
ated labels form a set Y are viewed as following:

D j = {(xi,φ(Yi,y j))|1≤ i≤ m}

where φ(Yi,y j) =

{
1, if y j ∈ Yi

0, otherwise
(1)

Then, the set of labels for unseen example is de-
termined by the obtained binary classifiers gj for
q classes:

Y = {y j|g j(x) > 0,1≤ j ≤ q} (2)
Second issue is the financial cost of building
such dataset. We remark that the viewers’ com-

ments associated with the images frequently re-
flect the dominant sentiments of the images, and
exploit them with natural language processing
techniques and SentiWordNet [2] to automati-
cally label the images, building a large, weakly-
supervised sentiment dataset at zero cost.

Figure 2: Example of generated modifying terms
from each model.

We fine-tune a separate convolutional neu-
ral network on our sentiment dataset. Roughly
inspired by the mechanism in which two hemi-
spheres of human brain perform separate func-
tions of logical and emotional perception, we
juxtapose two separate convolutional neural net-
works, for object and sentiment classification,
respectively. We train the obtained representa-
tion using two networks with captions, and com-
pare the results with various baseline models.
Since automatic evaluation metrics are not de-
signed to handle sentiment terms, we mainly re-
sort to human evaluation as our primary metric.
Although ground truth captions contain only a
limited amount of sentiment terms, the results
demonstrate that our features were able to learn
better mapping between the images and senti-
ment terms than baseline models.

[1] M. Boutell, J. Luo, X. Shen, and C. Brown.
Learning Multi-label Scene Classification. Pat-
tern Recognition, Vol. 37, pp.1757-1771, 2004.

[2] S. Baccianella, A. Esuli, F. Sebastiani. SentiWord-
Net 3.0: An Enhanced Lexical Resource for Senti-
ment Analysis and Opinion Mining. In Language
Resources and Evaluation, 2010.
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Inspired by the overcomplete autoencoders, we
introduce Fisher convolutional autoencoders to
learn separable filters in a distributed network.
These stacked autoencoders employ the linear
discriminant analysis to impose the maximum
distinction among texture classes whilst holds
the minimum separation within each individual
one. A network of stacked Fisher autoencoders
learns banks of separable filters in parallel and
makes an ensemble of deep features with higher
separability for better classification. This adjusts
the depth of stacks automatically with respect to
the capability of each separable filter to extract
high order convolutional features for the textures
of dataset under study.

(a) (b)

(a) (c) (d)

(a) (e) (f)

Figure 1: (a) initial filters; (b) UIUC; (c) KTH-
TIPS2-a; (d) KTH-TIPS2-b; (e) FMD; (f) DTD.

The figure shows examples of initials and
their corresponding learned separable filters
from different texture banks. It can be seen
that for some filters the changes across various
datasets is smaller than the others because they
are responsible to extract common features in the
texture patterns. In contrast, the filters with high
deformations usually connect to deeper stacks of
autoencoders capturing high-order convolutional
representations.

Dataset DSIFT [1] Proposed
UIUC 97.2±0.8 90.1±0.8
KTH-a 82.5±5.3 85.5±4.9
KTH-b 69.3±0.9 70.1±0.7
FMD 58.1±1.7 71.8±2.2
DTD 58.6±2.0 59.1±1.3

Table 1: Mean accuracy of texture recognition
for dense SIFT and our descriptors.

We conduct our experiments on publicly
available datasets varying in number of classes
and quality of textures on a standard platform.
The results prove supremacy of our descriptors
over popular dense SIFT features for the purpose
of texture understanding.

Dataset SOA [1][2] Ours
UIUC 99.3±0.4 96.3±0.1
KTH-a 84.7±1.5 86.0±2.3
KTH-b 81.1±2.4 82.3±0.9
FMD 82.4±1.5 85.7±3.0
DTD 74.7±1.0 85.9±1.4

Table 2: Mean accuracy of texture recognition
for others (SOA) and our framework (Ours).

Our experiments also confirm that the Fisher
convolutional autoencoders are successful on
imposing distinction among highly-correlated
texture patterns when joined the pre-trained deep
local descriptors like DeCAF and VGG.

[1] Ken Chatfield, Karen Simonyan, Andrea Vedaldi,
and Andrew Zisserman. Return of the devil in
the details: Delving deep into convolutional nets.
arXiv preprint arXiv:1405.3531, 2014.

[2] Mircea Cimpoi, Subhransu Maji, Iasonas Kokki-
nos, and Andrea Vedaldi. Deep filter banks for
texture recognition, description, and segmenta-
tion. International Journal of Computer Vision,
pages 1–30, 2015.
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Skew and motion blur are significant challenges
when camera and scene of interest are in two
different media. Skew occurs due to spatially
varying refraction on a dynamic water surface,
whereas motion blur results from multiple inten-
sities impinging on the imaging sensor during
camera exposure time due to time varying refrac-
tion. In this paper, we propose a technique to re-
store underwater images degraded by attenuated
water waves. Following others [4] [2], we also
assume that the static camera is looking verti-
cally downwards and imaging a planar scene but
through spatially decaying periodic water waves
(such as waves due to breeze in shallow water
bodies). Also, we allow for the attenuation fac-
tor as well as the direction of the water waves to
undergo changes during the exposure time of the
camera (a situation not handled by the state-of-
the-art work in [3]). We propose a shot detection
method that automatically segments a captured
video into groups of frames wherein each group
is governed by a dominant water wave direction
(i.e. unidirectional) and a single exponential fac-
tor of attenuation. Within each segment, we av-
erage the frames and show that the blur induced
at different pixel locations are scaled versions of
each other and model these scale factors through
a virtual depth map. Note that despite the scene
being planar, the blur induced due to attenuated
water waves is space-variant in nature. We pose
deskewing of the planar scene as equivalent to
a space-variant deblurring problem correspond-
ing to a 3D scene with depth profile being the
same as that of the virtual depth map. We pro-
pose an alternating framework to solve for the
latent image from a single blurred observation.
The procedure can likewise be repeated for other
segments too, if needed.

We compare our latent image estimation re-
sults with the state-of-the-art space-variant de-
blurring approach [5] along with state-of-the-art
deskewing methods [4], [2]. The input to [4] [2]
should be in the form of video, while a single

blurred image is used for [5] and our proposed
algorithm. For synthetic experiments, we use
the model described in [1] to simulate a decay-
ing envelope of the water waves which is given
as h(x, t) = A(x)sin(ωxx+ωyy− t), where A(x)
denotes the decaying amplitude of the sinusoid,
ωx and ωy are the spatial frequencies. In all our
experiments, the decaying function is given by
A(x) = A0 exp(d f .(dd

T x)), where d f is the de-
cay factor and dd is the decay direction. We
used laminated textured sheets kept at the bot-
tom of an aquarium for indoor experiments. The
field-of-view was kept large enough to witness
the effect of wave attenuation in the captured
video. The source of waves is a fan that acts
as a wind blower. We additionally performed
outdoor experiments in swimming pool. Here
the source of waves was the breeze as well the
flow due to water circulation. For all examples,
our method outperformed competitive methods,
qualitatively and quantitatively.

[1] An-Kuo Liu and Stephen H Davis. Viscous atten-
uation of mean drift in water waves. Journal of
Fluid Mechanics, 81(01):63–84, 1977.

[2] Omar Oreifej, Guang Shu, Teresa Pace, and
Mubarak Shah. A two-stage reconstruction ap-
proach for seeing through water. In Computer Vi-
sion and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 1153–1160. IEEE, 2011.

[3] Karthik Seemakurthy and Ambasamu-
dram Narayanan Rajagopalan. Deskewing
of underwater images. Image Processing, IEEE
Transactions on, 24(3):1046–1059, 2015.

[4] Yuandong Tian and Srinivasa G Narasimhan. See-
ing through water: Image restoration using model-
based tracking. In Computer Vision, 2009 IEEE
12th International Conference on, pages 2303–
2310. IEEE, 2009.

[5] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural
l0 sparse representation for natural image deblur-
ring. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
1107–1114, 2013.
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The goal of this work is to retrieve images con-
taining both a target person and a target scene
type (e.g Barack Obama on the beach) from a
large dataset of images. At run time this com-
pound query is handled using a face classifier
trained for the person, and an image classifier
trained for the scene type.
We make three contributions: first we propose
a hybrid convolutional neural network archi-
tecture that produces place-descriptors that are
aware of faces and their corresponding descrip-
tors. We show that our jointly trained Place-
CNN is able to ignore large faces in the images;
and it produces descriptors that are amenable to
the combination rule we choose - the relevance
of a database image to the compound query is
computed as the minimum of the query face and
query place classification scores.

Figure 1: Hybrid network architecture. The net-
work is used to generate face-descriptors and face-
aware place-descriptors (v f ace and vplace) for the face
crop and the whole image respectively.

Second, we propose an image synthesis system
to render high quality fully-labelled face-and-
place images (as shown in Figure 2), and train
the network only from these synthetic images.
This synthesis system alleviates the difficulty of
collecting training data and the problem of se-
vere class-imbalance.
Some examples are shown in Figure 3. The au-
tomatic face search and replacement system suc-
cessfully deals with different lighting condition
and head poses, as well as accessories like hats
and glasses.

Figure 2: Automatic synthetic rendering pipeline.
Replacing the face of the unknown person in the air-
port with the celebrity face (Gage Golightly).

Figure 3: Example images from the synthetic
dataset. The first row shows the synthetic images, and
the second and third row show the close-up of the orig-
inal and replaced face inside the blue box respectively.

Third, To test our method, and to facilitate re-
search in compound query retrieval, we col-
lect and annotate a ‘Celebrity In Places’ (CIP)
Dataset of real images containing celebrities in
different places. We test the compound query
retrieval on the CIP dataset plus distractor im-
ages. As shown in the full paper, retrieval perfor-
mance for compound queries is significantly im-
proved using the face-aware place-descriptors.
Figure 4 shows the top 2 retrieved images of var-
ious queries in a dataset of 73k images using our
method.
Audrey Hepburn

golf course
Eleanor Tomlinson

boat
Anthony Rapp

stage
Barack Obama

beach

Figure 4: Examples of top ranking images re-
turned by our retrieval system.
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In this work, we propose a semi-supervised
video object segmentation algorithm, which re-
quire user annotations about a desired object at
the first frame. Figure 1 is an overview of the
proposed algorithm. For each frame, we esti-
mate initial distributions and simulate multiple
random walkers (MRW) [1]. We perform these
two-step processes from the second to the last
frames sequentially to yield a segment track.

First, we estimate initial distributions of the
foreground and the background based on the
segmentation results of previous frames. To this
end, we minimize an energy function, which
consists of three terms: color Markov energy,
motion Markov energy, and guidance energy.
Second, we simulate MRW using the two initial
distributions. The movements of the foreground
agent pf and the background agent pb are mod-
eled by

p(θ+1)
f = (1− ε)Acp(θ)

f + εr(θ)f , (1)

p(θ+1)
b = (1− ε)Acp(θ)

b + εr(θ)b , (2)

where rf and rb are the restart distributions. Ac
is a transition matrix. With probability 1−ε , the
agents move on the graph according to the tran-
sition matrix Ac. On the other hand, with prob-
ability ε , the foreground and background agents
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Figure 1: An overview of the proposed algorithm. Using segmentation labels at previous frames,
we initialize foreground and background distributions for each frame. Then, we simulate MRW
using the inference restart rule and the interactive restart rule. For the segmentation, we compare the
foreground and background probabilities at each superpixel.

are forced to restart with the distributions rf and
rb, respectively. We use a restart rule, which is a
hybrid of inference and interactive restart rules.
The inference restart rule is time-invariant and
inferred from the previous segmentation labels.
The time-variant interactive restart rule encour-
ages repulsive interactions between the agents.

Experimental results demonstrate that the
proposed algorithm outperforms the state-of-
the-art conventional algorithms on the SegTrack
v2 dataset [2]. To summarize, this paper has
three main contributions:

- Development of an effective restart rule
for MRW that yields spatially precise and
temporally consistent segment tracks.

- Fixation of parameters, which ensures
segmentation qualities on general videos.

- Remarkable performance achievement on
the SegTrack v2 dataset.

[1] C. Lee, W.-D. Jang, J.-Y. Sim, and C.-S. Kim.
Multiple random walkers and their application to
image cosegmentation. In CVPR, pages 3837–
3845, 2015.

[2] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M.
Rehg. Video segmentation by tracking many
figure-ground segments. In ICCV, pages 2192–
2199, 2013.
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Figure 1: (a) Viewing a UCF-101 ‘biking’ video as a 3D volume. Notice that we are able to detect multiple
action instances in both space and time. (b) Top-down view.

In this work, we propose an approach to the
spatiotemporal localisation (detection) and clas-
sification of multiple concurrent actions within
temporally untrimmed videos. Our framework
is composed of three stages. In stage 1, ap-
pearance and motion detection networks are em-
ployed to localise actions from colour images
and optical flow. In stage 2, the appearance net-
work detections are boosted by combining them
with the motion detection scores, in proportion
to their respective spatial overlap. In stage 3,
sequences of detection boxes most likely to be
associated with a single action instance, called
action tubes, are constructed by solving two en-
ergy maximisation problems via dynamic pro-
gramming. While in the first pass, action paths
spanning the whole video are built by linking de-
tection boxes over time using their class-specific
scores and their spatial overlap, in the second
pass, temporal trimming is performed by ensur-
ing label consistency for all constituting detec-
tion boxes.

We demonstrate the performance of our al-
gorithm on the challenging UCF101, J-HMDB-
21 and LIRIS-HARL datasets, achieving new
state-of-the-art results across the board and
significantly increasing detection speed at test

time. We achieve a huge leap forward in
action detection performance when compared
to the top competitor [2], and report a 20%
and 11% gain in mAP on UCF-101 and J-
HMDB-21 datasets respectively. The proposed
appearance+motion fusion strategy improves
the mAPs by 9.4%, 3.6% and 2.5% on the UCF-
101, J-HMDB-21 and LIRIS HARL datasets re-
spectively. Further, our 2-pass energy maximi-
sation algorithm contributes to a great extent to
significantly boost the performance. Finally, we
demonstrate that our action detection pipeline is
relatively faster in training and test time detec-
tion speeds than the state-of-the-art [1, 2]. Sam-
ple qualitative results are provided in the supple-
mentary video 1, and on the project web page 2,
where the code and the pretrained models have
also been made available.

[1] G Gkioxari and J Malik. Finding action tubes. In IEEE
Int. Conf. on Computer Vision and Pattern Recognition,
2015.

[2] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia
Schmid. Learning to track for spatio-temporal action lo-
calization. In IEEE Int. Conf. on Computer Vision and
Pattern Recognition, June 2015.

1https://www.youtube.com/embed/vBZsTgjhWaQ
2http://sahasuman.bitbucket.org/bmvc2016
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Exploiting Random RGB and Sparse Features for Camera Pose Estimation
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Figure 1: Pipeline. Our method first trains a re-
gression forest using random RGB features. At
test time, the camera pose is initially estimated
by the random forest predictions, and then is re-
fined by sparse feature matching.

1 Overview
We extend recent advances in scene coordinate
regression forests [2] for camera relocalization
in RGB-D images to use RGB features, enabling
camera relocalization with only a single RGB
image at test time. Furthermore, we integrate the
random RGB features and sparse feature match-
ing in an efficient and accurate way, broadening
the method for fast sports camera calibration in
highly dynamic scenes.

2 Methodology
Fig.1 shows the pipeline of our method. Dur-
ing training, the scene information is encoded in
a random forest. At test time, an initial cam-
era pose is calculated using the random forest
predictions with real-time response. A nearest
neighbor (NN) image is queried using the ini-
tial camera pose. The camera pose is refined by
sparse feature matching between the test image
and the NN image. In our method, the labels can
be any information associated with pixel loca-
tions.

The random RGB features We use features
based on pairwise pixel comparison:

fφ (p) = I(p,c1)−I(p+δ ,c2) (1)

where δ is a 2D offset and I(p,c) indicates an
RGB pixel lookup in channel c. Our feature does
not require depth information, and so is suitable
for large scale sports camera calibration.

Methods SCRF[2] PoseNet[1] Ours
Train RGB-D RGB RGB-D
Test RGB-D RGB RGB
Avg. Err 0.08m,1.60◦ 0.44m,10.4◦ 0.17m,5.26◦

Table 1: 7 Scenes results.

(a)
(b) (c)

Figure 2: Sports camera calibration examples,
best viewed in color. The court lines are over-
laid on the images to indicate the accuracy of
calibration.

Pose Refinement The 2D-3D correspon-
dences are found by SIFT feature matching
between the test image and the NN image. Then,
the camera pose P is optimized by minimizing
the reprojection error:

P∗ = argmin
P

∑
k

d(xk,PXk)
2 (2)

where x are the feature locations in the image,
and X are the correspondent 3D world coordi-
nates associated with the NN image.

3 Evaluation
Our method is evaluated on the 7 Scenes dataset
and a new basketball dataset using standard met-
rics. Table 1 shows quantitative results in 7
Scenes dataset. Fig.2 illustrates qualitative re-
sults in the basketball dataset. Experiment re-
sults demonstrate the efficacy of our approach,
showing superior or on-par performance with the
state of the art.

[1] Alex Kendall, Matthew Grimes, and Roberto
Cipolla. PoseNet: A convolutional network for
real-time 6-DOF camera relocalization. In ICCV,
2015.

[2] Jamie Shotton, Ben Glocker, Christopher Zach,
Shahram Izadi, Antonio Criminisi, and Andrew
Fitzgibbon. Scene coordinate regression forests
for camera relocalization in RGB-D images. In
CVPR, 2013.
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Overview In this paper, we study the sensitiv-
ity of CNN outputs with respect to image trans-
formations and noise in the area of fine-grained
recognition. We answer the following questions:
(1) how sensitive are CNNs with respect to im-
age transformations encountered during wild im-
age capture?; (2) can we increase the robustness
of CNNs with respect to image degradations?
and (3) how can we predict CNN sensitivity?

To answer the first question, we provide an
extensive empirical sensitivity analysis of com-
mon CNN architectures (AlexNet, VGG19, and
GoogleNet) across various types of image de-
gradations. We perturb test images of different
datasets with noise types including Gaussian and
pepper noise, random color shifts, and differ-
ent geometric image transformations. This al-
lows for predicting CNN performance for new
domains comprised by images of lower quality
or captured from a different viewpoint. Our ex-
periments show that even small random noise
can lead to a dramatic performance decrease.

The question naturally arises if it is possible
to increase the robustness either during testing
or by adapting the learning. we analyze two in-
tuitive ideas for increasing robustness: data aug-
mentation by applying input dropout to the train-
ing data and image pre-processing.

After the empirical analysis, the question re-
mains whether we can quickly detect images with
unstable CNN outputs. This question goes be-
yond a pure sensitivity study but asks for un-
certainty estimates often available for Bayesian
methods but not for CNNs. We present a novel
approach (Figure 1) for estimating the sensitivity
given an input using a first-order approximation
of the output change.
Take-home message The experiments show
that the influence especially of common inten-
sity noise is severe even at low noise levels. The

Increasing noise level

???

CNN

CNN gradient map

Sensitivity
score

of the image

???

CNN

???

CNN

Orchard 
Oriole

CNN

Figure 1: How sensitive are CNNs with respect
to image noise and transformations? We study
this question and show how to predict CNN sen-
sitivity for a given image.

reason is a domain shift between noise-free train-
ing and perturbed test data. From our study, we
can draw several conclusions:

1. The training images should have the same
noise level as the test images and care has
to be taken even for small noise applied
to intensities.

2. Data augmentation during training or im-
age pre-processing are no solutions as they
decrease the accuracy on noise-free im-
ages dramatically and are only beneficial
for high noise levels at best.

3. Noise sensitivity depends on the CNN ar-
chitecture and VGG19 has shown to be
the most robust one.

4. Sensitivity of CNN outputs can be pre-
dicted for small noise levels with our tech-
nique allowing for uncertainty estimates
of CNN outputs.

These conclusions can be seen as guidelines es-
pecially for developers of real-world applications,
where, for example, cheap camera sensors de-
liver low quality images but the training was done
on relatively noise-free datasets like ImageNet.
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Shape recovery from shading information
has recently regained importance as latest Pho-
tometric Stereo-based techniques have been im-
proved in terms of appearance of reflective ob-
jects. However, 3D scanners based on this tech-
nology do not provide reliable reconstructions as
long as the considered irradiance equation ne-
glects additive bias such as ambient light. We
present a new approach based on ratios of differ-
ences of images where perspective viewing ge-
ometry, non-linear light propagation, both spec-
ular and diffuse reflectance plus the additive bias
of the ambient light are tackled simultaneously.
Contribution. Our approach for PS extends
the model presented in [1] by considering non-
negligible ambient light as an additional pixel-
wise component to the usual irradiance model.
Theory. We assume the following irradiance
equation for the ith light source:

Ii(x,y)= ρ(x,y)ai(x,y)(n(x,y)·hi(x,y,z))
1

c(x,y) +A(x,y)
(1)

where ρ is the albedo, c is a material property, ai
is the light attenuation, all in (0,1]. The ambient
light A(x,y) is a pixel-wise unknown of the prob-
lem, independent from li. First, we preliminary
manipulate the irradiance equation as follows:

(ρai)
cn ·hi = (Ii−A)c ≈ Ii

c− cIc−1
i A (2)

where the approximation comes from truncating
the Binomial expansion to the first two terms.
This simplifies to (using γi =

ac
i

Ic−1
i

):

Ii− cA≈ ρcγi
n
|n| ·hi. (3)

Then, we consider two pairs of irradiance
equations, namely the ith, jth and the qth, rth; in
order to let the ambient light cancel out together
with the albedo, we concider the following ratio:

Ii− cA− I j + cA
Iq− cA− Ir + cA

≈
ρc

|n|
[
γin ·hi− γ jn ·h j

]

ρc

|n|
[
γqn ·hq− γrn ·hr

] . (4)

By using the parameterization of the normal
in terms of the depth from [2], a variational prob-
lem for the unknown depth is solved.
Experiments. We evaluated the algorithm on
various real data sets: a marble Buddha statue
(1(a)), a shiny plastic head(1(b)), a plaster
mask(1(c)) and a plaster print of teeth(1(d)).

(a) Buddha (b) Head (c) Mask (d) Teeth

Figure 1: Two samples from each object (rows
1-2), the respective ambient light (row 3) and the
corresponding reconstructions.

[1] R. Mecca and Y. Quéau. Unifying diffuse
and specular reflections for the photometric
stereo problem. In WACV, 2016.

[2] T. Papadhimitri and P. Favaro. A new per-
spective on uncalibrated photometric stereo.
In CVPR, 2013.

Acknowledgments R. Mecca is a Marie Curie
fellow of the “INdAM”, Italy.
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This paper focuses on answering multiple choice
questions from the Visual Madlibs dataset [2]
which was created by asking people to write
fill-in-the-blank descriptions about persons (ac-
tion, attribute, location), objects (affordance, at-
tribute, location), and high-level concepts as fu-
ture and past events.

We posit that in order to truly understand
an image and answer questions about it, it is
necessary to leverage rich and detailed global
and local information. To explore this assertion,
we represent the images by using CNN archi-
tectures trained on task-specific sources to rec-
ognize more than 200 scenes, 900 actions and
300 attributes (see Fig. 1). We extract the fea-
tures both from the whole image and from re-
gions selected to best match people and objects
mentioned in the answers. We project both the
visual and textual information in a joint CCA-
embedding space [1] and at test time, we select
the putative answer which obtains the highest
cosine similarity with the image features. Fi-
nally we integrate multiple cues, through low-
level visual feature stacking and high-level CCA
score combinations. Our results show a signifi-
cant improvement over the previous state of the
art (see Tab. 1), and indicate that answering dif-
ferent question types benefits from examining a
variety of image cues and carefully choosing in-
formative image sub-regions.

[1] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A
multi-view embedding space for modeling inter-
net images, tags, and their semantics. IJCV, 2014.

[2] L. Yu, E. Park, A. C. Berg, and T. L. Berg. Visual
Madlibs: Fill in the blank Image Generation and
Question Answering. In ICCV, 2015.

Future Question:!
One or two seconds after this picture was taken!
•  the dog continued walking away!
•  the man started to smile!
•  the child ate the food ✔ !
•  the woman chewed the sandwich!

Scene Question:!
The place is a !
•  train station ✔ !
•  grassy hillside!
•  sidewalk bench!
•  ski trail!

Person Action Question:!
The person/people is/are!
•  sailing!
•  paddling the boat ✔ !
•  laying!
•  sitting!

Predictions!
Actions: hold, eat, pick-up-donut, eating-sitting!
Attributes: little boy, young boy, child, kid!

Predictions!
Scenes: train-station/platform, train-railway, 

railroad-track, subway-station/platform!

Predictions!
Actions: ride, sit-on, row-boat!

Figure 1: Our method uses multiple deep net-
works trained on external knowledge sources to
predict action, attribute, scene, and other diverse
features from specific regions in the image. A
CCA model trained on these features allows to
score the putative answers and select the correct
one for different different types of questions.

Question Type Baseline CCA
VGG Ensemble

a)

Interesting Easy 79.53 83.20
Hard 55.05 57.70

Past Easy 80.24 86.36
Hard 54.35 60.00

Future Easy 80.22 86.88
Hard 55.49 62.39

b)

Person Easy 53.56 68.50
Attribute Hard 42.58 55.90

Person Easy 84.71 88.34
Action Hard 68.04 71.65

Person Easy 84.95 85.70
Location Hard 64.67 63.92

Person Object Easy 73.63 78.93
Relationship Hard 56.19 58.63

c)

Object Easy 50.35 58.94
Attribute Hard 45.41 54.50

Object Easy 82.49 87.29
Affordance Hard 64.46 68.37

Object Easy 67.91 70.03
Location Hard 56.71 58.01

Table 1: Improvement in accuracy by combining
CCA scores from multiple cues.
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LSTM for Image Annotation with Relative Visual Importance

Geng Yan1

Yang Wang2

Zicheng Liao1

1 College of Computer Science
Zhejiang University

2 Department of Computer Science
University of Manitoba

Figure 1: Illustration of the LSTM model. (Top)
In our model, the image feature is used as an in-
put to the LSTM at each time step. (Bottom) In
the LSTM model used for image captioning, the
image feature is only used to start the initial state
in the LSTM model.

We consider the problem of image annota-
tions that takes into account of the relative visual
importance of tags. Humans have the remark-
able ability to selectively process very narrow
regions of the scene that are important to us. So
when asked to annotate an image, we only men-
tion a subset of the objects appearing in the im-
age, and we mention the important objects first.
In this paper, we propose a method for produc-
ing such ranked tag list for a given image. Such
a ranked tag list can be useful for various appli-
cations including image retrieval, image parsing
and image caption generation.

Our proposed approach combines the con-
volutional neural network (CNN) for images and
the LSTM for sequential data. Fig. 1 illustrates
our model and compare it with the RNN model
for image captioning.
Image representation: Following prior
work (e.g. [1]), we represent an image as a
4096-dimensional CNN feature vector using
pre-trained VGGNet. We then use a fully
connected layer to reduce the dimension to d.
In other words, given an input image Im, we
represent it as a d-dimensional feature vector as:

I = WI ·CNN(Im)+bI (1)

where WI ∈ Rd×4096 and bI ∈ Rd are the pa-
rameters to be learned. CNN(Im) is the 4096-
dimensional CNN feature extracted on the image
I.
LSTM for tag list prediction: We modify the
standard LSTM, so that the hidden state at each
time step considers the image feature v(I) as one
of the inputs. In other words, our LSTM model
is defined as follows:

it = σ(W (i)I +U (i)ht−1) (2)

ft = σ(W ( f )I +U ( f )ht−1) (3)

ot = σ(W (o)I +U (o)ht−1) (4)

c̃t = tanh(W (c)I +U (c)ht−1) (5)
ct = ft ⊙ ct−1 + it ◦ c̃t (6)
ht = ot ⊙ tanh(ct) (7)

At each time step t, we need to predict a tag
from a vocabulary of size V . We use another lin-
ear layer to project the hidden state ht into a vec-
tor of dimension V , followed by a softmax oper-
ator. This will give us the probability of choos-
ing each of the V possible tags as the predicted
tag at time t:

zt = W (z)h(t) +b(z) (8)

pt,v =
exp(zt,v)

∑V
k=1 exp(zt,k)

(9)

where zt ∈ RV , and pt,v denotes the probability
of picking the v-th tag in the vocabulary as the
predicted tag at time t.

We demonstrate the effectiveness on the
PASCAL2007 dataset and the LabelMe dataset.

[1] A. Karpathy and L. Fei-Fei. Deep visual-semantic
alignments for generating image descriptions. In
IEEE Conference on Computer Vision and Pattern
Recognition, 2015.
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Figure 1: Top - OnionNet: the first stage (S1, orange) shares its intermediate feature maps (visualized
as cubes) with the second stage (S2, blue). Bottom - A traditional cascade: stages are independent
and S2 has to be evaluated fully, recomputing certain features (purple).

The focus of our work is speeding up eval-
uation of deep neural networks in retrieval sce-
narios. A popular approach to reduce time spent
on negative examples is to set up a cascade of
classifiers of increasing strength, called stages.
As these are trained for the same or a similar ob-
jective, the question is how much their features
(should) have in common. Without any sharing,
a representation presumably at least as powerful
as in the previous stage has to be rebuilt in the
following one.

We address this by proposing OnionNet,
a novel feature-sharing cascaded architecture
where the next stage extends the feature map set
of the previous stage, preventing repeated com-
putation. Crucially, the architecture is flexible:
the next stage may add both new layers as well
as new feature channels. We construct our cas-
cades by gradually increasing the width, possi-
bly in addition to depth. This is beneficial as the
lowest layers tend to be the most expensive ones
to compute while producing weak classifiers on
their own.

Figure 1 illustrates a two-stage OnionNet

cascade consisting of two branches with the
same layer organization. Each takes the same
input and is terminated by its own output layer.
The core idea is that the branches are linked be-
fore every convolutional layer. The feature maps
of the first stage (S1) are used as additional in-
put to the following convolutional layer in the
second stage (S2) but not the other way round,
creating a one-way dependence. The model
is trained end-to-end under a joint loss, which
makes the cascade learn the proper allocation of
features between the stages.

OnionNet is applied to three important
tasks: patch matching, proposal-based object de-
tection, and image retrieval. We demonstrate
good speed-ups due to cascades and show that
OnionNet sharing can bring further gain atop
of it, with only a marginal decrease in preci-
sion. Specifically, we achieve 2.8x, 2.9x, and
1.7x running time reduction in each respective
application. Furthermore, we provide a system-
atic study in theory and on a synthetic bench-
mark that sheds further light into the time cost
behavior of cascaded architectures.
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Line reconstruction using prior knowledge in single non-central view
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Line projections in non-central systems contain
more geometric information than central sys-
tems. The four degrees of freedom of the 3D
line are mapped to the line-image and the 3D
line can be theoretically recovered from 4 pro-
jecting rays (i.e. line-image points) from a single
non-central view [3]. If the non-central system
is properly calibrated we obtain a metric recon-
struction of the 3D line. In practice, extraction
of line-images is considerably more difficult and
the resulting reconstruction is imprecise and sen-
sitive to noise.

In this paper we explore the reconstruction
accuracy improvements when we impose geo-
metrical constraints [1] exploiting prior knowl-
edge. In particular, when the lines of the scene
are arranged in two orthogonal directions and we
know prior information about the direction of
one of this directions (typically the vertical di-
rection), the complexity of line fitting reduces,
the accuracy of the metric reconstruction im-
proves, and the extraction procedure is simpli-
fied.

Figure 1: Consider a Manhattan setting with hor-
izontal lines LH and vertical lines LV . A non-
central circular panoramic system is considered
in unknown position and orientation but the ver-
tical direction u of lines LV in its own reference
system is known.

The first restriction considers a 3D line par-

allel to a plane, and takes advantage of the prior
knowledge of the vertical direction to fit hori-
zontal lines. In this case only three rays are
needed to fit the 3D line. The second restric-
tion considers a 3D line with known direction,
and again takes advantage of the prior knowl-
edge of the vertical direction for fitting verti-
cal lines. Both formulations are integrated in
a line-extraction pipeline, which is tested with
synthetic and real non-central circular panora-
mas [2].

(a) (b)
Figure 2: (a) Extraction and (b) reconstruc-
tion example from synthetic single non-central
panorama.

In addition, we evaluate the performance
of the robust extractor and the accuracy of the
proposal in comparison with the unconstrained
method. We conclude that the proposal outper-
forms the unconstrained algorithm and provides
good results taking into account typical accuracy
of standard commercial IMUs (error around 0.5
deg).

[1] Jesus Bermudez-Cameo, Joao P. Barreto, Gonzalo
Lopez-Nicolas, and Jose. J Guerrero. Minimal so-
lution for computing pairs of lines in non-central
cameras. In ACCV, 2014.

[2] Marc Menem and Tomás Pajdla. Constraints on
perspective images and circular panoramas. In
BMVC, pages 1–10, 2004.

[3] Seth Teller and Michael Hohmeyer. Determining
the lines through four lines. Journal of graphics
tools, 4(3):11–22, 1999.
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Figure 1: Given an image, we estimate the key points, generate object
parts accordingly, and predict attributes of each part. The learning is
end-to-end in a single deep neural network.

We focus on the problem of object attribute recognition. Previous part-
based attribute recognition approaches perform part detection and at-
tribute recognition in separate steps. The parts are not optimized for
attribute recognition and therefore could be sub-optimal. In this paper,
we present an end-to-end deep learning approach to overcome the limi-
tation.

In our network architecture, instead of training part detector and at-
tribute classifier separately, both key point estimation and attribute recog-
nition are learned jointly in a multi-task setting. Figure 1 shows the ex-
ample of our pipeline. We firstly estimate object key points as an auxil-
iary task. Because the definition of key point is clear, their annotation is
less ambiguous than part bounding boxes. From the key points, the ob-
ject parts are generated adaptively, with free parameters to be learned for
adjusting its spatial extent. This adaptive part generation is inspired by
the recent spatial transformer network [1], which can learn image spatial
transformation from the image classification goal. Instead of applying
the transform to the whole image [1], we apply a spatial transform for
each part and use the bilinear sampler [1] to warp the image features for
subsequent attribute recognition. The whole network is learned end-to-
end in a multi-task setting, with attribute classification as the main task
and key point prediction as the auxiliary one.

The network framework is illustrated in Figure 2. It consists of a
convolutional network for feature extraction, a localization network for
key point estimation, an adaptive bounding box generator for each part,
and part based feature sampler and attribute classifier.

Key Point Estimation As shown in Figure 2, three fully-connected lay-
ers are appended on the top of the convolutional features as the regression
network, with the output dimensions 2N (N is the number of key points).
We use L2 distance loss for key point estimation, ∑N

i ‖p̂i − pi‖22 , where
p̂i , pi ∈ R2 are the normalized ground truth and estimation for key point
i.

For each part

Convolutional
Layers

. . .
Bilinear
Sampler

Key
 Points

(x, y)

 θ

Classification

Localization 

Adaptive 
Bounding Box

Generator

Figure 2: Overview of network architecture. It consists of initial con-
volutional feature exaction layers, a key point localization, an adaptive
bounding box generator for each part, and the final attribute classifica-
tion network for each part.

Adaptive Part Generation Some attributes are clearly associated with
certain object parts. We specify a subset of key points Pt for each part
t. The initial part bounding box bt = [wt ,ht ,xt ,yt ] encodes the origin
and size of a rectangle area that covers all key points in Pt , and can
be obtained by finding the maximum and minimum of the subset. The
final bounding box is defined as [wt (1+∆w),ht (1+∆h),xt +∆x ,yt +∆y],
with additional adjustment parameters ∆ = [∆w ,∆h ,∆x ,∆y] to be learned
adaptively.
Bilinear Sampling and Attribute Recognition For each part bounding
box, the convolutional feature maps are warped accordingly. We use the
Bilinear Sampler in [1] that warps the local feature via bilinear inter-
polation, and it serves as a bridge that allows the gradient of attribute
classification flow into the localization network. The warping employs a
2×3 affine transformation, parameterized as

θt =

[
wt (1+∆w) 0 xt +∆x

0 ht (1+∆h) yt +∆y

]
. (1)

The transformation θt warps the local coordinates, the corresponding
content can be sampled by bilinear interpolation subsequently. For at-
tribute parsing, the Softmax multi-class classifier is adopted.

Our approach is validated on human attribute recognition on two
datasets, via extensive experiment comparison. The comparable results
show the effectiveness of jointly training of localization and classification
task.

[1] Max Jaderberg, Karen Simonyan, and Andrew Zisserman. Spatial
transformer networks. In Advances in Neural Information Process-
ing Systems (NIPS), 2015.
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In this paper, inspired by the mechanism of
memory and prediction in our brains [2], we pro-
pose a straightforward and effective memory-
based gait recognition method (MGR) to real-
ize the memory and recognition process of the
gait sequences. Because of various covariates in-
cluding carrying, clothing, surface and view an-
gle, we extract the robust 2D joint location in-
formation via the joint extraction model as the
gait features. Compared to the traditional neu-
ral network, the memory neuron network (MN-
N), for example, the Long Short-term Memory
(LSTM) architecture, simulates the human brain
and stores the objects in the weights of neural
connections. Besides, by the large-scale paral-
lel computing, MNN can repair the incomplete
and tainted data (the extracted 2D gait feature
is dirty). It is the first time that we utilize the
MNN to address the gait recognition issue. This
maybe empower a fresh orientation for solving
gait recognition problem. Fig.1 shows the over-
all framework of the method.

t=1

t=2

t=3

t=N-1

t=N

... Joint

Extraction

Model

...

 gait sequence

X(1)...  X(N)

28 X N

...

Memory 

Neuron 

Network

  softmax         input 

...

...

...

Feature Extraction Gait Recognition

...

Figure 1: The Memory-based gait recognition
framework. Obviously, the process is divided in-
to two stages: feature extraction and gait recog-
nition. N denotes the length of a gait sequence.

We compare our method against others on
the CASIA A and CASIA B gait datasets. Tab.1,
Tab.2 show some experimental results. Getting
enlightenment from [1], the longer sequences do
not improve the algorithm performance in some
cases. Therefore, we reduce the length of se-
quences to about 45 in average. In Tab.2, Exp1,
Exp2 and Exp3 indicate different conditions, re-

spectively. The details can refer to our full paper.
Though the presented network configuration is
simple, the proposed method still obtains the rel-
atively satisfactory and comparable results.

Methods 0◦-
view

45◦-
view

90◦-
view

avg

Wang1 [4] 65.00 63.75 77.50 68.75
Wang2 [4] 65.00 66.25 85.00 72.08
Wang3 [4] 75.00 81.25 93.75 83.33
Orig-
results

82.50 83.75 92.50 86.25

Length-red 85.00 87.50 95.00 89.17
Table 1: The comparisons of some algorithms
on the CASIA A (0◦,45◦,90◦) dataset. Wang1,
Wang2 and Wang3 indicate that the differen-
t classifiers and similarity measures are used in
the same method.

Methods Exp1 Exp2 Exp3 Avg
Martin [3] 70.16 74.19 58.60 67.65
Orig-
results

83.06 85.48 80.11 82.88

Length-red 83.87 85.48 81.72 83.69
Table 2: Algorithms comparisons on the CASIA
B dataset on Exp1, Exp2 and Exp3.

[1] Armand Joulin and Tomas Mikolov. Inferring
algorithmic patterns with stack-augmented recur-
rent nets. In Advances in Neural Information Pro-
cessing Systems 28.

[2] Christof Koch and Joel L. Davis. Large-scale
Neuronal Theories of The Brain. MIT press, 1994.

[3] Raul Martin-Felez and Tao Xiang. Computer Vi-
sion – ECCV 2012: 12th European Conference on
Computer Vision, Florence, Italy, October 7-13,
2012, Proceedings, Part I, chapter Gait Recogni-
tion by Ranking. 2012.

[4] Liang Wang, Tieniu Tan, Huazhong Ning, and
Weiming Hu. Silhouette analysis-based gait
recognition for human identification. IEEE Trans-
actions on PAMI, 25(12):1505–1518, Dec 2003.
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Existing visual odometry methods are gener-
ally classified into two groups; feature-based
and direct methods. In the feature-based meth-
ods, the measurement errors are defined by the
re-projection errors of feature points, and the
ego-motion is estimated by minimizing the re-
projection errors that are assumed to usually
conform to the Laplace distribution [1]. How-
ever, since the local appearance of the feature
point consecutively varies with time, the loca-
tion of the tracked feature point tends to drift
from its initial location during tracking and this
results in error accumulation. In contrast, di-
rect methods minimize the measurement errors
measured by intensity differences between con-
secutive images. Since a large number of pixels
are utilized for motion estimation, these methods
are superior to feature-based methods in the er-
ror accumulation aspect. However, in return, the
direct methods have a difficulty in handling out-
liers and are vulnerable to illumination change.

These methods generally use a maximum
consensus set of inlier feature points on the
Laplace distribution assumption of measurement
errors. However, as shown in Fig. 1, the assump-
tion is often violated in the real-world scene be-
cause of lots of outliers and/or biases of mea-
surement errors. In this situation, although a
motion candidate may be accurately obtained
from a small number of point samples in the
RANSAC framework, its final estimate opti-
mized from the set of inliers can be rather er-
roneous. The work of Chum et al. [2] tried to
solve the similar problem using an iterative lo-
cal RANSAC scheme but it is still hard to hold
thoroughly uncontaminated inliers only.

In this paper, to solve the problem shown
in Fig. 1, we propose a method that estimates
ego-motion using only uncontaminated feature
points. Since it is difficult to distinguish the
uncontaminated features among lots of features,
we randomly sample a minimum number of fea-
tures (i.e., 3 points) and exploit them for the es-
timation. Thereby, the proposed method max-
imally excludes the errors caused by inaccurate
inliers. However, using fewer features in feature-

Figure 1: The distributions of re-projection er-
rors for estimated motion in selected frames of
the KITTI dataset. The distribution violates the
Laplace distribution assumption of the measure-
ment errors because of outliers from moving ob-
jects.

based methods can rather degrade the perfor-
mance because measurement errors caused in
feature matching and tracking can be propagated
to the ego-motion estimation directly. Therefore,
we propose a hybrid method of feature-based
and direct methods. It minimizes measurement
errors by the ego-motion estimation directly us-
ing image intensity values without any interme-
diate step to search measurements and is more
robust than conventional direct methods. Exper-
imental results show the proposed method pro-
duces better performance than the existing meth-
ods using all inliers.

[1] Hernan Badino, Akihiro Yamamoto, and Takeo
Kanade. Visual odometry by multi-frame feature
integration. In ICCV, 2013.

[2] Ondrej Chum, Jiri Matas, and Josef Kittler. Lo-
cally optimized ransac. In Pattern Recognition,
pages 236–243. Springer Berlin Heidelberg, 2003.
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This paper addresses two major challenges in 
semantic segmentation for real-world data. 
First, with ever-increasing semantic labels, we 
need a more pragmatic approach other than 
existing fully-supervised methods. Second, 
semantic segmentation for rarely-appeared 
objects are still challenging for existing 
methods.  

We assume that there exist one supervised 
model and one annotated real-world dataset. 
Our goal is to leverage the well-learned 
knowledge from the existing model and infer 
new labels via label transfer from the real-world 
dataset. We propose a “content-adaptive” and 
“label-aware” MRF framework to jointly 
exploiting both the supervised and transferrable 
knowledge. The proposed method needs no off-
line training and can easily adapt to real-world 
data.  

Assume that the existing supervised model 
is trained with the label set!!"# , and the real-
world dataset is annotated with the label set!!$, 

where!!"# % !$. Note that the supervised model 
is unaware of unknown labels!& ' !$"!"#. We 
formulate the MRF energy function as: 

(#)$ % *+,'-&#'* .#/$$ 0 1"##&(,$ 

).#/$2#&( /$ 0 13$45##&(,$*!!!!!!!!!!!!!!!!!!!!! 

)6+#,(7$'89#&#,$( &#7$$,                  (1) 

where 1"##&(,$  is the supervised potential 
derived by FCN [1]; 13$45##&(,$  is the label 
transfer potential obtained by the modified 

nonparametric method [2]; and 9#0(0$ is the 
pairwise potential term and :  is a smoothing 
constant. .#/$  is adaptive to different query 
image /  to dynamically combine the two 
potentials. 2#&( /$ is a label-aware parameter for 
balancing the priority of rare labels in the query. 

In Table 1, we compare our method with 
existing methods on SIFT Flow and LMSun 
dataset, and the results demonstrate the 
effectiveness of the proposed method. 

Table 1: Comparison with existing methods. 

Method Per-pixel (%) Per-class (%) 

SIFT Flow dataset +!$+ % ,, 

C. H. Ma et al. [2] 78.3 46.1 

M. George [3] 81.7 50.1 

Ours #;!"# < !$; % -$ 81.7 50.0 

J. Long et al. [1] 85.6 50.1 

Ours (!"# % !$) 85.2 52.0 

LMSun dataset +!$+ % .,. 

M. George [3] 61.2 16.0 

J. Yang et al. [4] 60.6 18.0 

Ours #;!"# < !$; % //$ 65.4 16.5 

[1] J. Long, E. Shelhamer and T. Darrell. Fully convolutional networks 

for semantic segmentation. In CVPR, 2015. 

[2] C. H. Ma, C. T. Hsu and B. Huet. Nonparametric scene parsing with 

deep convolutional features and dense alignment. In ICIP, 2015. 

[3] M. George. Image parsing with a wide range of classes and scene-

level context. In CVPR, 2015. 

[4] J. Yang, B. Price, S. Cohen and M. Yang. Context driven scene 

parsing with attention to rare classes. In CVPR, 2014. 
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Figure 1: Overview of our framework.

The goal of image super-resolution is to re-
cover missing high frequency details of an im-
age given single or multiple low-resolution im-
ages. It is a well-known ill-posed problem and
requires mature prior knowledges or enough ex-
amples to restore high-quality high-resolution
images. Recently, many methods [1, 2] for-
mulate image super-resolution as a regression
problem. Input image patches are classified into
pre-trained clusters, and cluster-dependent map-
ping functions are employed to super-resolve in-
put patches. The classification following the re-
gression training scheme has a potential prob-
lem that the regression step minimizes the error
within a cluster. While there might be outliers in
the classification process, the learned regression
function may not be the optimal for all patches.
The key towards high quality and efficient image
super-resolution turns to answering the follow-
ing questions:
(i) How to classify image patches such that
patches in the same cluster can be accurately
super-resolved using the same regressor?
(ii) How to learn the best regression function
such that the super-resolved HR patches have
highest numerical accuracy?

In this paper, we tackle the problem in a re-
verse manner. We put the regressor at the first
place. We propose to learn a set of regression
functions from training samples using the EM-

(a) Ground Truth (b) Bicubic

(c) A+ (d) Our ORF-PSNR
Figure 2: Butterfly image from Set14 dataset
with upscaling 3x.

algorithm. These regressors are learned to mini-
mize overall reconstruction distortion (e.g. peak
signal to noise ratio(PSNR) or structure simi-
larity(SSIM)) for all training data. After that,
we will obtain a set of patch-regressor pairs.
We then train a random forest from these patch-
regressor pairs to predict the best regressors for
input patches. We call it the Optimized Regres-
sor Forest for super-resolution. An overview of
the proposed framework is illustrated in Fig. 1.
Our experimental results show that the proposed
method is able to achieve comparable or better
results in numerical evaluation or visual compar-
ison(see in Fig. 2).

[1] J. Salvador and E. Pérez-Pellitero. Naive Bayes
Super-Resolution Forest. In IEEE International
Conference on Computer Vision, pages 325–333,
2015.

[2] Radu Timofte, Vincent De Smet, and Luc
Van Gool. A+: Adjusted anchored neighbor-
hood regression for fast super-resolution. In Asian
Conference on Computer Vision, pages 111–126.
2014.
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Methods for unconstrained face alignment must
satisfy two requirements: (a) they must not rely
on accurate initialization/face detection and (b)
they should perform equally well for the whole
spectrum of facial pose. To the best of our
knowledge, there are no methods meeting these
requirements to satisfactory extent, and in this
paper, we propose Convolutional Aggregation of
Local Evidence (CALE), a Convolutional Neu-
ral Network (CNN) architecture particularly de-
signed for addressing both of them.

In particular, CALE by-passes the require-
ment for accurate face detection by firstly using
a CNN detector to perform facial landmark
detection, providing at the same time confidence
scores for the location of each of the facial
landmarks (local evidence). Next, our system
aggregates the local evidence for each facial
landmark through joint CNN regression of
the confidence scores, in order to refine the
landmarks’ location. Besides playing the role
of a graphical model, CNN regression is a key
feature of our system, guiding the network
to rely on context for predicting the location
of occluded landmarks, typically encountered
in very large poses. The proposed architec-
ture (Fig. 1) is simple and can be trained
end-to-end with intermediate supervision. We
show that our system achieves large perfor-
mance improvement on AFLW-PIFA[1], which
is, to the best of our knowledge, by far the
most difficult test set for face alignment to date.

Image 2x conv pool 2x conv pool 3x conv pool 3x conv pool 3x conv pool 2x conv

+

Deconv

+

DeconvDeconv

conv

conv

Detectors heat 
maps

Conv3 
stacked with 
heat maps

conv
Regressed 

values
conv conv conv conv conv conv

Figure 1: Proposed architecture for Convolutional Aggregation of Local Evidence (CALE).

Our second contribution in this paper is an in-
vestigation of CALE’s alignment performance
beyond human faces and, in particular, on ani-
mal faces. As animal faces exhibit a much larger

degree of variability in shape and appearance
as well as in pose and expression, animal face
alignment is a much more difficult problem
which, to the best of our knowledge, has never
been systematically explored in the past by
the Computer Vision community. Although
drawing a direct comparison is not possible,
our results, show that CALE’s performance on
animal faces is not far from that on human faces.

When applied to AFLW-PIFA[1], our
method provides more than 50% absolute gain
in localization accuracy when compared to other
recently published methods [2, 3] for large pose
face alignment. Note that prior work reports on
visible points, only. To the best of our knowl-
edge we are the first to report results on non-
visible landmarks too. Remarkably, the perfor-
mance of CALE when evaluated on all points -
both visible and occluded surpasses the perfor-
mance of all existing methods when these are
evaluated on visible points only.

[1] Amin Jourabloo and Xiaoming Liu. Pose-
invariant 3d face alignment. In ICCV, 2015.

[2] Amin Jourabloo and Xiaoming Liu. Large-pose
face alignment via cnn-based dense 3d model fit-
ting. In CVPR, 2016.

[3] Shizhan Zhu, Cheng Li, Chen Change Loy, and
Xiaoou Tang. Unconstrained face alignment via
cascaded compositional learning. In CVPR, 2016.
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Deep residual networks were shown to be
able to scale up to thousands of layers and
still have improving performance. However,
each fraction of a percent of improved accu-
racy costs nearly doubling the number of layers,
and so training very deep residual networks has
a problem of diminishing feature reuse, which
makes these networks very slow to train. To
tackle these problems we conduct a detailed ex-
perimental study on the architecture of ResNet
blocks, based on which we propose a novel ar-
chitecture where we decrease depth and increase
width of residual networks. In addition, we pro-
pose a new way of utilizing dropout within deep
residual networks so as to properly regularize
them and prevent overfitting during training. We
call the resulting network structures wide resid-
ual networks (WRNs) and show that these are far
superior over their commonly used thin and very
deep counterparts. Our experiments show that:

• our widened architecture consistently im-
proves performance across residual networks
of different depth;

• increasing both depth and width helps until
the number of parameters becomes too high
and stronger regularization is needed;

• there doesn’t seem to be a regularization ef-
fect from very high depth in residual networks
as wide networks with the same number of pa-
rameters as thin ones can learn same or better
representations. Furthermore, wide networks
can successfully learn with a lot more param-
eters than thin ones, which would require dou-
bling the depth of thin networks, making them
infeasibly expensive to train.

Overall, we demonstrate that even a sim-
ple 16-layer-deep wide residual network out-
performs in accuracy and efficiency all previ-
ous deep residual networks, including thousand-
layer-deep networks, achieving new state-of-
the-art results on CIFAR-10, CIFAR-100 and
SVHN (table 1). Our code is available
at https://github.com/szagoruyko/
wide-residual-networks.

conv3x3

conv3x3

xl

xl+1

(a) basic

dropout

xl

xl+1

conv3x3

conv3x3

(b) wide-dropout

Figure 1: Basic and wide-dropout residual
blocks. Batch normalization and ReLU precede
each convolution

depth-k CIFAR-10 CIFAR-100
NIN 8.81 35.67
FitNet 8.39 35.04
Highway [4] 7.72 32.39

ResNet[1] 110 6.43 25.16
1202 7.93 27.82

stoc-depth[3] 110 5.23 24.58
1202 4.91 -

pre-ResNet[2]
110 6.37 -
164 5.46 24.33

1001 4.64 22.71

WRN (ours)
40-4 4.97 22.89
16-8 4.81 22.07

28-10 4.17 20.50
Table 1: Test error on CIFAR-10 and
CIFAR-100 with moderate data augmentation
(flip/translation). k is a widening factor. We
don’t use dropout for these results.

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Identity mappings in deep residual net-
works. CoRR, abs/1603.05027, 2016.

[3] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra,
and Kilian Q. Weinberger. Deep networks with
stochastic depth. CoRR, abs/1603.09382, 2016.

[4] Rupesh Kumar Srivastava, Klaus Greff, and Jür-
gen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015.
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Models of shape play a substantial role in
a number of computer vision tasks The Shape
Boltzmann Machine (SBM) [2] and its multil-
abel version MSBM [1] have been recently in-
troduced as deep generative models that capture
the variations of an object shape. While being
more flexible MSBM requires datasets with la-
beled parts of the objects for training (Fig. 1c).
In the paper we present an algorithm for training
MSBMs using binary masks of objects (Fig. 1b)
and the seeds which approximately correspond
to the locations of objects parts (Fig. 1d). The
latter can be obtained from part-based detectors
in an unsupervised manner. We derive a latent
variable model and an EM-like training proce-
dure for adjusting the weights of MSBM using
a deep learning framework. We show that the
model trained by our method outperforms SBM
in the tasks related to binary shapes and is very
close to the original MSBM in terms of quality
of multilabel shapes.
SBM and MSBM SBM is a Deep Boltzmann
Machine (DBM) with special constraints on its
parameters [2] that allow to avoid overfitting for
small datasets. It defines a joint distribution
p(b,h1,h2|θ), where b is a layer that corre-
sponds to the binary shape of an object (fig. 1b),
h1,h2 are two hidden layers and θ is a vector
of all the SBM parameters. MSBM is a general-
ization of SBM model to multilabel case and it
defines the similar distribution p(m,h1,h2|θ),
where m is a layer which corresponds to the
multilabel shape of an object (fig. 1c). MSBM
is more expressive since the variations of an ob-
ject’s parts are usually smaller than the variation
of the whole object.
Our model In our paper a step towards the un-
supervised training of a shape model is made.
We propose a way to train a multilabel model

(a) (b) (c) (d)
Figure 1: (a) – image of an object, (b) – binary
segmentation b, (c) – the multilabel segmenta-
tionm, (d) seeds s for the selected 4 parts: head,
front legs, rear legs and croup.

without using the full multilabel annotation (as
in [1]). Instead we use easier-to-obtain binary
masks and seeds s of the parts (fig. 1d). For each
part there is one seed pixel that approximatelly
corresponds to the center of this part.

We model the joint distribution
p(b,s,m,h1,h2|θ) of binary mask b,
seeds s, multilabel masks m and hidden
variables h1, h2 using the assumption that
binary segmentation b and seeds s are
conditionally independent given multilabel
segmentation, i.e, p(b,s,m,h1,h2|θ) =
p(b|m)p(s|m)p(m,h1,h2|θ). To train the
unknown parameters θ of the model we use
the variational EM algorithm, i.e. maximize
∑D

d=1 log p(bd ,sd |θ) w.r.t. θ.
Our experiments show that as the model of

binary shape the MSBM trained by our tech-
nique performs similar to the MSBM that is
trained using full annotation and significantly
outperforms the SBM and MSBM that is trained
using automatically obtained multilabel annota-
tion from a binary mask and seeds.

[1] S. M. Ali Eslami and Chris Williams. A genera-
tive model for parts-based object segmentation. In
NIPS. 2012.

[2] S. M. Ali Eslami, Nicolas Heess, Chris Williams,
and John Winn. The shape boltzmann machine: a
strong model of object shape. In IJCV, 2013.
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We propose a Simplified Generic Elastic Model
(S-GEM) which intends to construct a 3D face
from a given 2D face image by making use of a
set of general human traits viz., Gender, Ethnic-
ity and Age (GEA). We hypothesise that the vari-
ations inherent on the depth information for in-
dividuals are significantly mitigated by narrow-
ing down the target information via a selection
of specific GEA traits. In this paper, we propose
a 3D reconstruction method to retain the robust-
ness of the PCA-based models and in the mean-
time to provide control over the depth values of
2D facial feature points. We formulate the re-
construction of the 3D face model of a given 2D
face image as a posterior estimation of the PC
coefficients Φ given the observations of the 2D
facial feature points x f . The depth value Z of
the 2D feature points is expressed as the hidden
information. The posterior probability is repre-
sented as the marginal distribution of P(Φ|x f )
integrated over Z as shown below:

P(Φ|x f ,∆) ∝ ∑
Z f

P(∆|x f ,Z f ) ·P(x f ,Z f |Φ) ·P(Φ)

(1)
where x f represents the x and y coordinates of
the 2D input feature points, ∆ represents the cor-
responding GEA group and Z f represents the
hidden Z values of the 2D input feature points.
Also, x f and ∆ are the observed variables in this
representation. Based on the Bayesian theory,
P(∆|x f ,Z f ) can be written as,

P(∆|x f ,Z f ) =
P(x f ,Z f |∆)P(∆)

∑P(x f ,Z f |∆)P(∆)
(2)

P(x f ,Z f |∆) is defined using simplified mix-
ture model. The proposed S-GEM method was
compared with the PCA-TR method [1] and
a method of utilising the Z-coordinates of the
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Figure 1: Empirical test of the proposed method
(S-GEM), M-GEM and PCA-TR.

model mean-face feature points (we name it M-
GEM). M-GEM is chosen for comparisons as
it is based on the same principle of the popu-
lar GEM model[2], i.e., using the model mean
face depth value to represent any individual face
depth. The results in Figure 1 shows that the
proposed S-GEM method has produced the least
MSE out of the three methods in terms of the
full 3D face shapes. Figure 2 shows the outputs
of the newly reconstructed 3D face models using
proposed S-GEM.

Figure 2: Outputs of the newly reconstructed 3D
face models using proposed S-GEM.

[1] AY Maghari, Ibrahim Venkat, Iman Yi Liao, and
Bahari Belaton. PCA-Based Reconstruction of 3D
Face Shapes using Tikhonov Regularization. Interna-
tional Journal of Advances in Soft Computing and its
Applications , 5(2):1-15, 2013.
[10] Jingu Heo. 3D Generic Elastic Models for 2D
Pose Synthesis and Face Recognition, 2009.
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Introduction: In our work we deal with the
problem of category agnostic box proposal gen-
eration. Its definition is that for a given image
a small set of boxes must be generated that will
cover with high recall all the objects in the im-
age regardless of their category. Recently, this
problem has received an immense amount of at-
tention due to the fact that box proposal genera-
tors have became a core component in many vi-
sion tasks, ranging from object detection till vi-
sual question answering, leading in all of them
to state-of-the-art results.
Approach: The dominant paradigm in box pro-
posal generation is that of having a CNN model
that given a set of input boxes (uniformly dis-
tributed in the image), it predicts their object-
ness score and refines their coordinates such
that they better align with object’s borders (i.e.
bounding box prediction). In that context, our
work improves the previous state-of-the-art in
box proposal generation in two ways. (1) We im-
prove the object’s bounding box prediction step
by adapting the succesful LocNet [1] approach
for category-specific object localization to that
of category-agnostic localization (see Figure 1).
(2) We employ an active box proposal generation
strategy, which we call Attend Refine Repeat al-
gorithm (see algorithm on the right), that starts
from a set of seed boxes, which only depend on
the image size, and it then sequentially produces
newer boxes that will better cover the objects of
the image while avoiding the "objectless" image
areas (see Figure 2).
Results: We exhaustively evaluate our system
both on PASCAL and on the more challenging
COCO datasets and we demonstrate significant
improvement with respect to the state-of-the-art
on box proposal generation. Furthermore, we
provide strong evidence that our object location
refinement module is capable of generalizing to
unseen categories.
[1] Spyros Gidaris and Nikos Komodakis. Locnet: Improving

localization accuracy for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

Algorithm: Attend Refine Repeat
Input : Image I
Output: Bounding box proposals P
C← /0, B0 ← seed boxes
for t← 1 to T do

/* Attend & Refine procedure */

Ot ← ObjectnessScoring(Bt−1|I)
Bt ← ObjectLocationRefinement(Bt−1 |I)
C← C∪{Bt ,Ot}

end
P← NonMaxSuppression(C)

Figure 1: Object location refinement formulation.
We formulate the problem of box prediction to that of
dense classification. Specifically, given an input box
(red rectangle), our model defines a search region (de-
picted image crop) and assings a membership proba-
bility to each row and each column of that region (py
and px probability vectors) that represent the likeli-
hood of those elements (rows or columns) to be inside
the target bounding box (blue rectangle).

Figure 2: Image areas that are attened by our active
proposal generation algorithm as it progress from the
first (left column) to the last iteration (right column).

Method AR@10 AR@100 AR@1000

EdgeBoxes 0.074 0.178 0.338

Geodesic 0.040 0.180 0.359

Selective Search 0.052 0.163 0.357

MCG 0.101 0.246 0.398

DeepMask 0.153 0.326 0.482

Co-Obj 0.189 0.366 0.492

SharpMask 0.192 0.391 0.555

AttractioNet (Ours) 0.328 0.535 0.661

Table 1: Sampled average recall results on COCO
validation set.
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Convolutional Neural Networks (CNNs) were
recently shown to provide state-of-the-art results
for object category viewpoint estimation. How-
ever different ways of formulating this prob-
lem have been proposed and the competing ap-
proaches have been explored with very different
design choices. This paper presents a compar-
ison of these approaches in a unified setting as
well as a detailed analysis of the key factors that
impact performance. Followingly, we present a
new joint training method with the detection task
and demonstrate its benefit. We also highlight
the superiority of classification approaches over
regression approaches, quantify the benefits of
deeper architectures and extended training data,
and demonstrate that synthetic data is beneficial
even when using ImageNet training data. By
combining all these elements, we demonstrate
a consistent improvement of approximately 5%
mAVP over previous state-of-the-art results on
the Pascal3D+ dataset [4].

Contributions: In this paper, we study sev-
eral factors that affect performance for the task
of joint object detection and pose estimation
with CNNs and introduce a new approach for
the joint training. Using the best design options,
we rationally define an effective method to inte-
grate detection and viewpoint estimation, quan-
tify its benefits, as well as the boost given by
deeper networks and more training data, includ-

Table 1: Summary of results and comparison
with baselines using AVP24

Method aero bike boat bus car chair table mbike sofa train tv mAVP24
DPM-VOC+VP [1] 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6
Render For CNN [2] 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8

Viewpoints & Keypoints [3] 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1
Classif. approach & AlexNet 21.6 15.4 5.6 41.2 26.4 7.3 9.3 15.3 13.5 32.9 24.3 19.3

+ our joint training 24.4 16.2 4.7 49.2 25.1 7.7 10.3 17.7 14.8 36.6 25.6 21.1
+ VGG16 instead of AlexNet 26.3 29.0 8.2 56.4 36.3 13.9 14.9 27.7 20.2 41.5 26.2 27.3

+ ImageNet data 42.4 37.0 18.0 59.6 43.3 7.6 25.1 39.3 29.4 48.1 28.4 34.4
+ synthetic data 43.2 39.4 16.8 61.0 44.2 13.5 29.4 37.5 33.5 46.6 32.5 36.1

ing data from ImageNet and synthetic data. The
relative benefits of each of these elements as well
as a comparison with baseline is summarized in
table 1. We demonstrate that the combination of
all these elements leads to an important improve-
ment over state-of-the-art results on Pascal3D+,
going for example from 31.1% to 36.1% AVP
in the case of the most challenging 24 view-
points classification. While several of the ele-
ments that we employ have been used in previ-
ous work [2, 3], we know of no systematic study
of their respective and combined effect, resulting
in an absence of clear good practices for view-
point estimation and sub-optimal performances.

[1] B. Pepik, M. Stark, P. Gehler, and B. Schiele.
Teaching 3D geometry to deformable part models.
In International Conference on Computer Vision
and Pattern Recognition (CVPR).

[2] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Ren-
der for CNN: Viewpoint estimation in images us-
ing CNNs trained with rendered 3D model views.
In Proceedings of the IEEE International Confer-
ence on Computer Vision.

[3] S. Tulsiani and J. Malik. Viewpoints and key-
points. In International Conference on Computer
Vision and Pattern Recognition (CVPR).

[4] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond
Pascal: A benchmark for 3D object detection in
the wild. In IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), 2014.
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Object localization is a crucial step needed
for building automatic systems for visual scene
understanding. This task can be successfully
tackled using fully-supervised learning methods,
but these require annotations in a form of
bounding boxes or per-pixel segmentation masks
that are time-consuming and expensive to ac-
quire. Therefore, it is important to develop
weakly-supervised object localization learning
techniques, which require much cheaper forms
of annotation, e.g. image-level class labels.

Analyzing the current methods for weakly-
supervised object localization we arrive at the
conclusion that they tend to fail for object classes
that consistently co-occur with the same back-
ground elements (distractors), e.g. trains on
tracks. We overcome these failures by develo-
ping a new procedure that determines seman-
tic parts that constitute the object detection and
then discards distractor parts. The main steps of
our approach are (see Figure above) (i) represent
all predicted foreground regions of all images
by mid-level features learned by a deep neural
network, (ii) cluster these features using spectral
clustering (the number of clusters is determined
automatically), (iii) visualize the clusters and let
a human annotator select which ones actually

corresponds to the object class of interest. The
information about clusters and their annotation
can then be used to better localize objects: (iv)
for any (new) image, predict a foreground map
using only the image regions that match clusters
labeled as ’object’.

Note, that the proposed method requires vir-
tually negligible amount of additional supervi-
sion: an annotator has to answer a few binary
questions (typically 2 or 3) per semantic class.
Huge datasets, such as ILSVRC, can be anno-
tated by one annotator in just a few hours.

The proposed approach can be readily used
in combination with many existing localization
methods. In this work we combine it with
the current state-of-the art methods for weakly-
supervised bounding box prediction [2] and for
weakly-supervised semantic segmentation [1],
showing improved results on the challenging
ILSVRC 2014 and PASCAL VOC 2012 datasets.

[1] A. Kolesnikov and C. H. Lampert. Seed,
expand and constrain: Three principles
for weakly-supervised image segmentation.
ECCV, 2016.

[2] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva,
and A. Torralba. Learning deep features for
discriminative localization. In CVPR, 2016.
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We approach the problem of model-free visual
tracking of objects in videos. Model-free track-
ing has its state-of-the-art in a class of meth-
ods called tracking-by-detection, as shown in re-
cent benchmarks. Some top-performing meth-
ods use deep neural networks (i.e., convnets) to
solve the learning-based steps of the tracking al-
gorithm (e.g., bounding box prediction and eval-
uation). Despite improving accuracy, convnets
impose a high computational cost on trackers,
limiting their real-time applications. In this pa-
per, we propose to use deep features from a pre-
learned deep-convolutional network in a compu-
tationally efficient way. Here, we use the M-
Best diverse-sampling approach for sampling a
small yet diverse set of bounding boxes that are
likely to contain the object being tracked. These
bounding boxes are then used by our method
to perform detection using deep features. The
resulting tracker, which we call MBestStruck,
uses high-quality feature representation while
being computationally efficient. Our tracking
approach compares very well with the state-of-
the-art, as we demonstrate by experiments done
on popular benchmark datasets.

M-Best-Diverse Labeling. Let E : Y → R be
an energy function that we define as a negative
ObjStruck [2] discriminative function:

E(y) =−∑
i,ȳ

β ȳ
i 〈φ(xi, ȳ),φ(x,y)〉−

−λss(y)−λee(y), (1)

where λe,λs > 0 are objectness parameters, and
s(·),e(·) are the straddling and the edge-density
measures of objectness, respectively. Batra et al.
[1] uses a greedy sequential procedure for find-
ing M diverse labelings, y1, . . . ,yM, according to
the following criterion:

ym = argmin
y∈Y

[
E(y)−λ

m−1

∑
i=1

∆(y,yi)

]
, (2)

Figure 1: Left row: sampling using MBest pro-
cedure. Right row: sampling deterministically
using linearly spaced bounding boxes.

for i = 1, . . . ,M, where parameter λ > 0 controls
a trade-off between the diversity of the labelings
and their quality. The function ∆(·, ·) : Y×Y →
R is called a dissimilarity kernel.

We compared our method with the other
trackers on benchmarks OTB50, OTB100, and
VOT2015. Results show that our sampling strat-
egy compares favorably to the state-of-the-art
while using fewer bounding boxes for detection.

[1] Dhruv Batra, Payman Yadollahpour, Abner
Guzman-Rivera, and Gregory Shakhnarovich. Di-
verse M-best solutions in Markov random fields.
In ECCV, pages 1–16. Springer, 2012.

[2] Ivan Bogun and Eraldo Ribeiro. Object-aware
tracking. ICPR 2016 (to appear), 2016.
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In this paper, we develop an event-based Hough
transform and apply it to a new type of camera,
namely Dynamic Vision Sensor (DVS). DVSs
are a new generation of cameras that are sensi-
tive to logarithmic intensity change [4]. Once
the change is larger than a predefined threshold,
a positive or negative event will be generated de-
pending on the direction of the change.

The main idea of Hough transform is first
transforming every point from the conventional
Cartesian coordinates to the parameter space, in
which every point defines a specific shape, and
then finding local maximums in the parameter
space to obtain the shape parameters through a
voting procedure [3].

In this paper, we use LIF spiking neurons [1]
to build an SNN that represents the parameter
space of Hough transform for line detection. ev-
ery Spiking Neuron (SN) has some inputs and an
output. The input is a spike train that influences
the neuron’s Membrane Potential (MP) which is
always decaying by a fixed rate. Whenever the
MP exceeds the + or - threshold, a spike with
corresponding polarity is generated in the output
and MP is reset to zero subsequently.

The parameter space is built up by a two di-
mensional SNN with one dimension for angle
θ and the other for normal distance r. A local
lateral inhibition strategy is adopted in our SNN
which allows the SNN to suppress noise lines (or
redundant lines) from being detected.

In cases that there are more than one moving
line in the frame, we need a segmentation pro-
cedure to distinguish between them. Since ev-
ery line is moving smoothly in Cartesian space,
the corresponding spikes in parameter space are
"moving" smoothly as well and they produce
a cluster. We use an event-based clustering
method [2] to do the segmentation and tracking
of different lines.

(a) (b) (c)
Figure 1: (a) Image captured by a conven-
tional camera; (b) The proposed event-based al-
gorithm’s line detection results (yellow) super-
imposed onto DVS events (grey); (c) Conven-
tional frame-based hough transform’s results us-
ing MATLAB standard functions for line detec-
tion with the same number of the lines.

The efficacy of the proposed algorithm is
shown by extensive experiments on both arti-
ficially generated events and real DVS output.
SNN with local lateral inhibition is efficient in
detecting correct lines and tracking them as well
as suppressing incorrect ones as seen in figure 1.

[1] A N Burkitt. A review of the integrate-and-
fire neuron model: I. Homogeneous synap-
tic input. Biological cybernetics, 95(1):1–19,
jul 2006. ISSN 0340-1200. doi: 10.1007/
s00422-006-0068-6.

[2] T Delbruck and P Lichtsteiner. Fast sen-
sory motor control based on event-based hy-
brid neuromorphic-procedural system. Circuits
and Systems, 2007. ISCAS . . . , (80 cm):845–848,
2007.

[3] Richard O. Duda and Peter E. Hart. Use of the
Hough transformation to detect lines and curves
in pictures. Communications of the ACM, 15(1):
11–15, jan 1972. ISSN 00010782. doi: 10.1145/
361237.361242.

[4] Patrick Lichtsteiner, Christoph Posch, and Tobi
Delbruck. A 128 X 128 120 dB 15 us la-
tency asynchronous temporal contrast vision sen-
sor. IEEE Journal of Solid-State Circuits, 43
(2):566–576, feb 2008. ISSN 00189200. doi:
10.1109/JSSC.2007.914337.
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Facial landmark detection is an essential initial
step for a number of facial analysis research ar-
eas such as expression analysis, 3D face model-
ing, facial attribute analysis, and person recogni-
tion. It is a well researched problem that has seen
a surge of interest in the past couple of years.

However, most state-of-the-art methods still
struggle in the presence of extreme head pose,
especially in challenging in-the-wild images.
Furthermore, as most methods operate in a lo-
cal manner [1, 2], they rely on good and consis-
tent initialization, which is often very difficult to
achieve. While some images attempt to combat
this by evaluating a number of proposals and ini-
tializations, this comes at a computational cost.

In our work, we present a new model –
Holistically Constrained Local Model (HCLM),
which unifies local and holistic facial landmark
detection by integrating head pose estimation,
sparse-holistic landmark detection and dense-
local landmark detection. Our method’s main
advantage is the ability to handle very large pose
variations, including profile faces. Furthermore,
our model integrates local and holistic facial
landmark detectors in a joint framework, with
a holistic approach narrowing down the search
space for the local one.

For a given set of k facial landmark positions
x= {x1,x2, ...,xk}, our HCLM model defines the
likelihood of the facial landmark positions con-
ditioned on a set of sparse landmark positions
Xs = {xs, s ∈ S} (|S| � k) and image I as fol-
lows:

p(x|I,Xs,I) ∝ p(x)
k

∏
i=1

p(xi|Xs,I). (1)

In Equation 1, p(x) is prior distribution over

Figure 1: Cumulative error curves on 300-W
dataset. Measured as the mean Euclidean dis-
tance from ground truth normalized by the inter-
ocular distance. Note that we use 68 points for
this comparison.

set of landmarks x following a 3D point distri-
bution model (PDM) with orthographic camera
projection.

Some of the results comparing our HCLM
model to state-of-the-art baselines can be seen in
Figure 1. Our model demonstrates competitive
or better performance to most of the baselines.
Furthermore, HCLM demonstrates superior per-
formance in especially difficult images, such as
profile ones. This is due to the both better ini-
tializations and combination of holistic and local
approaches of our model.

[1] Xuehan Xiong and Fernando Torre. Supervised
descent method and its applications to face align-
ment. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
532–539, 2013.

[2] Jie Zhang, Shiguang Shan, Meina Kan, and
Xilin Chen. Coarse-to-fine auto-encoder networks
(cfan) for real-time face alignment. In Computer
Vision–ECCV 2014, pages 1–16. Springer, 2014.

W
ednesday

13:40-14:40

#155



156
W

ed
ne

sd
ay

13
:4

0-
14

:4
0

Bag of Surrogate Parts: one inherent feature of deep CNNs
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In this paper, we first develop a new feature
from the last pooling layer (i.e. pool5) of VGG,
called Bag of Surrogate Parts (BoSP), and its
spatial variant, Spatial BoSP (S-BoSP). Next,
we propose a scale pooling scheme for better
handling the objects that may appear in different
shape, positions and scales. Furthermore, we
raise a global constrained augmentation method
to make more comprehensive predictions. The
details of our contributions are described below:

Bag of Surrogate Parts (BoSP)
We take the feature maps as surrogate

parts, and for each spatial unit on the feature
maps, we calculate its assignment strengths for
the surrogate parts by observing the activation
values. The one-by-one processing of these
spatial units can be viewed as densely sampling
and assigning regions of the input image.
Finally, we sum the assignment strengths for the
surrogate parts and form a vector accordingly,
i.e. BoSP, whose length is the same with the
number of the feature maps.

On top of BoSP, we further propose its
spatial variant, called S-BoSP, by dividing
the image equally into multiple sub-regions
(9 regions in 3 rows and 3 columns), and
concentrating the BoSP inside each sub-region.

Scale Pooling
The BoSP/S-BoSP described above only

concern the spatial units at the finest level, and
handle them in a disjoint way, which means
to sample and assign regions in input images
with fixed size and position. To handle the
objects with different scales and deformations,
we propose a scale pooling scheme.

Specifically, for BoSP, we divide the acti-
vations from the pool5 layer of VGG into 7
scales. Under different scales, we derive coarse
spatial units of different numbers and different
sizes, in which the coarse spatial units in scale
1 correspond to the fine spatial units on the
feature map. For scale i (i ∈ [1,7]), we can
derive (8 − i)2 coarse spatial units, each coarse
unit contains i2 fine spatial units. Next, we max
pool these coarse spatial units and calculate their

assignment strengths for the surrogate parts.
Finally, we sum the assignment strengths of
the coarse spatial units under different scales
together to form the refined assignment strengths
for the image. For S-BoSP, we utilize the scale
pooling schemes inside each sub-region, and
then concentrate the features together.

Global Constrained Augmentation
Given an input image, we first resize it to

224 × 224, and extract the global feature. This
feature focuses more on the entire image, and
we can achieve the global prediction based on
it, denoted as Preglobal . Next, we resize the
image to make the smallest side equal S while
keeping its ratio, and crop regions of 224 × 224
with stride of 32 pixels. Thereby, we formulate
several sub-images from the input image, each
sub-image may only contain part of the original
object. The image feature is the average of the
sub-image features, and this feature concerns
more about parts of the image, and based on it,
we make the part prediction, denoted as Prepart .
The final prediction is the product of the global
prediction and part prediction.

Experiment
There are some valuable findings through

our experiment:
1) In terms of efficiency and accuracy, it is

more beneficial to derive the BoSP feature from
higher layer, i.e. pool5, than lower layers.

2) Scale pooling method could improve the
performance of BoSP/S-BoSP without enlarging
the feature dimension, and the improvement
can be very large. For example, scale pooling
increases the BoSP features of Caltech101 and
Oxford102 by more than 3%.

3) Regardless of the differences of the
global-based prediction and part-based predic-
tion, it is always beneficial to incorporate them
by utilizing the global constrained augmentation
scheme.

4) Our approach improves the state-of-
the-art of Caltech101, Oxford102, SUN397
considerably, and achieves comparable result
with previous best performance on Indoor67
dataset, while comes in lower dimension.
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Colorectal cancer is the third most common 
form of cancer worldwide [1]. In general, there 
are two challenges in automatic detection of 
colorectal cancer in histopathological images. 
One is the enormous volume of data which the 
algorithms have to cope with. The second is that 
in histopathology slides, cancerous tissue can 
look similar to noncancerous tissue. 

In this paper, we propose an efficient and 
novel coarse to fine framework to address the 
problem of colorectal tumour segmentation for 
the purpose of tumour detection, as shown in 
Fig 1. In this way, we propose the use of colour 
modelling and morphological operations to 
extract the initial Region of interest (ROI). In 
order to reduce the noisy margin, we use 
Euclidean distance based histograms as a 
criterion. Further, to perform tumour 
segmentation at the best resolution, we deploy a 
Convergence Index (CI) approach to detect 
nuclei by fitting circles. At the tumour 
classification stage, when the resolution is at a 
high level, we use a rotation invariant feature 
and random projection based l2-norm sparse 
representation technique for more accurate 
segmentation. The main contributions of our 
work include: 1) a multi-scale strategy for 
tumour segmentation, which simulates the 
decision making of a pathologist from the 
coarse-to-fine processing, and 2) a novel 
Rotation Invariant Raw Statistics (RIRS) feature 
and random projection based l2-norm sparse 
representation method.  These make the tumour 
classification process more effective than other 
published methods. 

The RIRS-pixel feature can be calculated by:
0,0 1,1 1,2 1,3 1,4 8,1 8,2 8,3 8,4[ , ( , , , ),..., ( , , , )]pixel Tx x x x x x x x x x=   (1) 

where ,i jx is a pixel with different scales and 
orientations. i is scale and j is orientation. 

The new texton learning model is formed by: 
2 2 2

, 2 2 21
(|| || || || || || )  .  1n T

D i j ji
min x DK K s t d dα λ η α δ

=
− + + − =∑     (2) 

where 1 2[ , ,..., ], m
j kD d d d d R= ∈  is the texton 

learning model. 1 2[ , ,..., ]lK α α α=  are coding 
coefficients.δ  is the mean of all which may 
vary by 50% more or less than the mean value. 

1
1 n

ii
nδ α

=
= ∑  when distortion does not appear. 

When distortion appears, 1
1 ( )( n

ii
n uδ α

=
= − ∑

1
)u

ff
α

=
−∑ , where u is the distortion.  

 
Figure 1: Overview of the proposed 
segmentation algorithm.  

 A total of 20 H&E stained colorectal cancer 
slides were supplied by a medical imaging 
company and used as the basis for training and 
testing. We compare our method against 
recently published texture classification 
methods (ELBP, MR8, TEISF, Patch, and SRP). 
The results favor the proposed approach in 
terms of classification accuracy. 
[1] J. Ferlay, et al., Cancer incidence and 
mortality worldwide. International Agency for 
Research on Cancer, 2010.  
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Learning Additive Kernel For Feature Transformation and Its Application to
CNN Features
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Science and Technology
Tsukuba, Japan

Feature transformation, such as L2-
Hellinger [1] and an explicit map of χ2

kernel [2], favorably improves classification
performance for BoW and Fisher kernel fea-
tures. In this paper, we propose a method to
learn the feature transformation function of
high generality and discriminative power in a
bottom-up manner based on actual (annotated)
data. The learned function corresponds to
an explicit map of an additive kernel and the
bottom-up learning approach endows the kernel
function with discriminative power, adapting it
even to the features of unknown characteristics;
this is the case of CNN features which are of
our main interest in this paper.

Given a pair of feature vectors, xxx and yyy ∈
RD, an additive kernel is defined by

k̄(xxx,yyy) = ∑D
i=1 k(xi,yi)≈ ∑D

i=1 φφφ(xi)
>φφφ(yi),

where xi and yi are the i-th elements of xxx and
yyy, respectively, and φφφ is the explicit map func-
tion of the kernel k. While the explicit map φφφ
can be determined according to the predefined
kernel k [2], we learn the function from data in
a bottom-up manner, resorting to the approxi-
mated representation of φφφ by basis functions like
the Fourier fashion:

φφφ(x) =WWW>[f1(x), · · · ,fM(x)]> =WWW>f(x),

where WWW ∈ RM×K is the coefficient matrix for
the basis functions, and we define the basis func-
tions {fm}M

m=1 for CNN features as f2m−1(x) =
xcos(2πηmx), f2m(x) = xsin(2πηmx) with the
frequency parameters ηm. Thereby, our objec-
tive is to learn the coefficients WWW from data.

The feature vector xxx is transformed into
WWW>F(xxx) , WWW>[f(x1), · · · , f(xD)] and thus the
linear classifier is written by tr{WWW>F(xxx)AAA}+b
with a classifier weight AAA and a bias b. We ap-
ply an efficient approach to learn WWW , providing
a good trade-off between the generality and dis-
criminativity, in two steps. First, we optimize
the joint weight VVVD =WWWAAAD on various datasets,
and then we extract WWW via SVD, which is shared
across the various optimizers {VVVDc}Cc=1.
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Figure 1: Performance results for CNN features.

The proposed method is applied to trans-
form the pre-trained CNN features using the
models of Alex, VGG and C3D on various
datasets. We first assessed the generality by
measuring how the learned (kernel) function
fluctuates according to the training datasets, and
found that the learned kernels exhibit quite high
similarity, being almost identical, even though
they are trained on different datasets of enough
size. Thus, we can say that the proposed method
produces the generic additive kernel (or feature
transformation).

Next, the proposed method is compared with
the other feature transformation methods, ex-
plicit map of χ2 kernel [2] and Hellinger (square
root) transformation [1], both of which are suc-
cessfully applied to the hand-crafted features,
such as BoW and Fisher kernel features. The
performance results of Alex feature are shown
in Fig. 1. In contrast to the case of hand-crafted
features, the χ2 and Hellinger transformations
do not work well; particularly, the Hellinger
transformation [1] degrades performance in all
cases. On the other hand, the learned trans-
formation favorably boosts the performance,
outperforming the other methods. Through
the bottom-up learning approach, the proposed
method adapts the transformation function, i.e.,
the additive kernel, to the CNN features whose
characteristics are not fully revealed.

[1] R. Arandjelović and A. Zisserman. Three things
everyone should know to improve object retrieval.
In CVPR, pages 2911–2918, 2012.

[2] A. Vedaldi and A. Zisserman. Efficient additive
kernels via explicit feature maps. In CVPR, 2010.
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s1×
✚

s2×
✚ ● ● ● ✚

sN×

Input Image Landmarks
Localisation

Model Fitting Estimated
3D Shape

Figure 1: The framework for 3D shape estima-
tion. Top: A series of prior 3D shape basis [2].
Bottom: The shape estimation procedure for a
given input image.

Estimation of the 3D shape of a object from
monocular image is an under-determined prob-
lem, which becomes harder when the observa-
tions are severely contaminated. In this paper,
we propose a robust model to estimate 3D shape
X from 2D landmarks x ∈ R2×p with unknown
camera pose M. The 3D shape of the object is
assumed as a linear combination of predefined
shape basis {Xi}N

i=1 ∈ R3×p weighted by s =

[s1, . . . ,sN ]
T ∈ RN . To estimate s and M, we fit

the model by minimizing the error between the
observations x and the projected model points
MX (as shown in Figure 1).

Model. To address the outliers in the ob-
served 2D points, which result from the complex
background and illumination conditions, we pro-
pose a robust 3D shape estimation model. We
explicitly model the outliers with an additional
sparse error term E ∈ R2×p. Thus, the robust
model is then formulated as

min
s,M

1
2
‖x− t−MX−E‖2

F +λ‖s‖1 +η‖E‖1︸ ︷︷ ︸
non-smooth

(1)
s.t.

non-convex︷ ︸︸ ︷
MMT = I2 ,X =

N

∑
i=1

siXi +µ

where t = [tx, ty]T · 11×p is the translation, and
λ ,η are the regularization parameters, and µ is
the mean shape. The objective function in (1)
is non-convex and non-smooth constrained on

Stiefel manifold, where the coupling of the un-
known shape representation coefficients s and
camera pose M makes it more difficult to be
solved.

Method. We propose an efficient numer-
ical algorithm based on Alternative Direction
Method of Multipliers (ADMM) [1] to solve this
problem. With an auxiliary variable V ∈ R2×3

introduced, the augmented Lagrangian is,

LM,V,s,E,t,Λ = 1
2 ‖x− t−MX−E‖2

F +λ‖s‖1
+η‖E‖1+< Λ,M−V >+ τ

2 ‖M−V‖2
F

s.t. M=V,VVT = I2,X = ∑N
i=1 siXi +µ

where Λ is the multiplier and τ is penalty param-
eter. We update each block with all the others
fixed. Based on some analysis on non-convex
optimization of ADMM [3], we set the orthog-
onality constraints into the smooth sub-problem
(V -minimization),

min
V
{‖V − (Mk +Λk/τk)‖2

F : VVT = I2}.

The closed-form solution is given by V k+1 =
UI2×3W T , where U and W satisfy [U,S,W ] =

SVD
[
Mk +Λk/τk]. The other sub-problems

can be easily solved. Both the optimization of M
and t admit closed-form solutions. The updating
of s is a Lasso-problem, and the sparse error pat-
tern E can be efficiently solved by element-wise
soft-thresholding. The convergences of ADMM
with more than two blocks cannot be always
guaranteed [1], and may be influenced by the up-
date ordering. We set a fixed update ordering
that can always lead convergence in our experi-
ments.

[1] S. Boyd and etc. Distributed optimization and
statistical learning via the alternating direction
method of multipliers. Foundations and Trends R©
in Machine Learning, 3(1):1–122, 2011.

[2] Y. Lin and etc. Jointly optimizing 3d model fitting
and fine-grained classification. In ECCV, pages
466–480. Springer, 2014.

[3] Y. Zhang. Recent advances in alternating direction
methods: Practice and theory. In IPAM workshop,
2010.
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Graph based dimensionality reduction tech-
niques have been successfully applied to clus-
tering and classification tasks. The fundamen-
tal basis of these algorithms is the constructed
graph which dominates their performance. Usu-
ally, the graph is defined by the input affinity ma-
trix. However, the affinity matrix is sub-optimal
for dimension reduction as there is much noise
in the data. To address this issue, we propose the
projective unsupervised flexible embedding with
optimal graph (PUFE-OG) model. We build an
optimal graph by adjusting the affinity matrix.
To tackle the out-of-sample problem, we employ
a linear regression term to learn a projection ma-
trix. The optimal graph and projection matrix
are jointly learned by integrating the manifold
regularizer and regression residual into a unified
model. An efficient algorithm is derived to solve
the challenging model. The experimental results
on several public benchmark datasets demon-
strate that the presented PUFE-OG outperforms
other state-of-the-art methods.

When the labels are available, the most pop-
ular dimensionality reduction algorithm is lin-
ear discriminant analysis (LDA). It has excel-
lent performance as LDA utilizes discriminant
information to learn the subspace. In addition,
simultaneously performing clustering and sub-
space learning can yield even better clustering
result. [3] proposed an effective discriminating
K-Means (DisKmeans) algorithm by integrating
LDA and K-Means. However, labeled data are
often very costly to obtain.

When the labels are unavailable, unsuper-
vised dimensionality reduction methods become
the only choice. For example, PCA is widely

used because of its simplicity and efficiency.
The unsupervised graph based dimensionality
reduction methods usually outperform PCA.
This is because these methods take advantage
of manifold information. Many graph based di-
mensionality reduction methods have been ex-
plored, such as locally linear embedding (LLE),
Laplacian eigenmap (LE), and ISOMAP. How-
ever, these methods suffer from out-of-sample
problem. They can not map the new data points
that are not included in the training set. To tackle
this problem, many works [1] integrated the
manifold regularizer with the ridge regression
loss into the subspace learning framework. Sim-
ilar to other manifold learning algorithms, their
performance is also controlled by the graph con-
structed by the fixed affinity matrix, which might
lead to a sub-optimal result [2]. To address this
issue, we propose a projective unsupervised flex-
ible embedding with optimal graph (PUFE-OG)
framework. Instead of utilizing the fixed affin-
ity matrix to preserve the manifold structure, we
construct an optimal graph by adapting the affin-
ity matrix for subspace learning.

[1] Feiping Nie, Dong Xu, Ivor Wai-Hung Tsang, and
Changshui Zhang. Flexible manifold embedding:
A framework for semi-supervised and unsuper-
vised dimension reduction. TIP, 2010.

[2] Feiping Nie, Xiaoqian Wang, and Heng Huang.
Clustering and projected clustering with adaptive
neighbors. In SIGKDD. ACM, 2014.

[3] Jieping Ye, Zheng Zhao, and Mingrui Wu. Dis-
criminative k-means for clustering. In NIPS, 2008.
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Problem Definition. We propose a method that
aims at automatically editing an image by alter-
ing its attributes. More specifically, given an im-
age of a certain class (e.g. a human face), the
method should generate a new image as similar
as possible to the given one, but with an altered
visual attribute (e.g. the same face with a new
pose or a different illumination).
Contributions. The main contributions of this
paper are: i) the definition of a new problem,
where the goal is to generate images as simi-
lar as possible to a source image yet with one
attribute changed; ii) a solution that follows an
encoder-decoder pipeline, where the desired at-
tribute modification is first encoded then inte-
grated at feature map level; iii) the insight that
the result can be refined by adding another con-
volutional encoder-decoder model; and iv) good
qualitative and quantitative results on different
tasks on the MultiPIE dataset [1].
How. We propose a model following the
encoder-decoder architecture. It takes a face
image and the desired attribute as inputs. The
image is encoded into a feature map by means
of several convolutional layers. The desired at-
tribute is also encoded into a feature map, so that
the two flows of information can be deeply fused
in the feature map level. A new image is then
generated with a convolutional decoder module.
The output image of this network is already rea-
sonable, however it still has some missing de-
tails and artifacts. Thus, in order to refine the
previously generated image, we introduce a sec-
ond stage network. It takes as input the source
image and the image generated from the first
stage and generates a refined output image us-
ing again a convolutional encoder-decoder net-
work. In summary, the first stage is in charge of
rendering a global representation of the desired
object, while the second stage focuses on local
refinements to remove some artifacts.

Evaluation. We evaluate our method on three
different tasks on the MultiPIE dataset. The
main task is to rotate a face (Figure 1). We exten-
sively evaluate our method for this task, show-
ing both qualitative results and quantitative re-
sults which are measured in terms of per-pixel
mean squared error (MSE) between the gener-
ated image and the ground-truth image. Our
method shows better performance when com-
pared with [2]. The other two tasks are gener-
ating faces with different illumination and filling
in the missing part of a face image on synthetic
data generated from MultiPIE (Figure 2).

Figure 1: Qualitative results of our image generation
from test data of MultiPIE. From left to right are the
input image, the ground-truth target image, the output
of the first stage and the output of the second stage.

Figure 2: Qualitative results for the task of image
inpainting. From left to right are the input image, im-
ages generated with our method and the original im-
ages without the occluding pattern.

[1] Ralph Gross, Iain Matthews, Jeffrey F. Cohn,
Takeo Kanade, and Simon Baker. Multi-pie. Im-
age Vision Comput., 28(5):807–813, 2010.

[2] Junho Yim, Heechul Jung, ByungIn Yoo,
Changkyu Choi, Du-Sik Park, and Junmo Kim.
Rotating your face using multi-task deep neural
network. In CVPR, 2015.
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The main contribution of this work is a novel
pipeline for interactive dense labeling, which
provides a framework that can be applied in any
application that involves dense labeling and user
interaction. Our approach is focused on efficient
dense labeling estimation and is particularly well
suited for the use of continuous magnitudes.

We define the image dense labeling problem
as a linear system of equations, where the un-
knowns are the labels. We model the problem
as a graph of superpixels [1]. We consider two
equations types: Unary equations assign to the
unknown label a numerical value based on the
individual superpixel properties and on the user
input; Binary equations establish relations be-
tween labels of two connected superpixels. The
over-determined system obtained is solved with
a common least squares method to find an ap-
proximate solution minimizing the error.

Our experiments are focused on the part of
the pipeline that estimates the labeling (step 4),
since it is the only common part in all the ap-
proaches compared. We compare our algorithm
to: the state-of-the-art MRF-based dense label-
ing approaches [4], block coordinate descent
algorithm [2] and a Random Walk based ap-
proach [3]. Our experiments show that our ap-
proach is the fastest to obtain a solution com-
pared to related approaches while keeping com-
parable quality in the results.

Besides, we demonstrate how our pipeline
is suitable for interactive applications develop-
ing an interactive application for depth-of-field
simulated effects from a single image, which re-
quires a fast dense depth estimation. Users only
need to mark a few depth values in the image,
from which our application estimates a dense
depth map. Each pixel affected by a user stroke
generates a unary equation that is added to the
system (step 3). This, combined with the pre-

Input image Depth estimation

1. Superpixel segmentation

4. Solve linear system

Input: image

Output: dense labeling solution

5. User
interaction

0.  Initial 
information

System
Pre-computed

Interactive

2. Generate precomputed 
equations

(binary, ternary…)

3. Generate interactive 
equations
(unary)

Different depth-of-field simulations

Figure 1: Left: Steps of the Interactive depth-
of-field application. Right: Steps of our dense-
labeling pipeline.

computed binary equations (step 2), leads to a
system that is interactively solved and yields a
dense estimated depth map and the correspond-
ing effect: we generate the simulated image by
applying a variable Gaussian blur filter.

The proposed dense labeling technique has
great flexibility to model this problem and has
the advantage of providing an interactive solver.
Besides, since we target an interactive technique
the user can always refine and improve the in-
put iteratively. We believe that our approach will
inspire future research for interactive editing ap-
plications based on dense labeling.
[1] Radhakrishna Achanta, Appu Shaji, Kevin

Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Susstrunk. Slic superpixels compared to state-of-
the-art superpixel methods. IEEE Trans. Pattern
Anal. Mach. Intell., 34(11):2274–2282, 2012.

[2] Qifeng Chen and Vladlen Koltun. Fast mrf opti-
mization with application to depth reconstruction.
In CVPR, pages 3914–3921, 2014.

[3] Leo Grady. Random walks for image segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 28
(11):1768–1783, 2006.

[4] Richard Szeliski, Ramin Zabih, Daniel Scharstein,
Olga Veksler, Vladimir Kolmogorov, Aseem
Agarwala, Marshall Tappen, and Carsten Rother.
A comparative study of energy minimiza-
tion methods for markov random fields with
smoothness-based priors. IEEE Trans. Pattern
Anal. Mach. Intell., 30(6):1068–1080, 2008.
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This paper focuses on the problem of identity-
based face retrieval [2], a problem heavily de-
pending on the quality of the similarity func-
tion used to compare the images. Instead of us-
ing standard or handcrafted similarity functions,
one of the most popular ways to address this
problem is to learn adapted metrics, from sets
of similar and dissimilar example pairs. This is
generally equivalent to projecting the face signa-
tures into an adapted (possibly low-dimensional)
space in which the similarity can be measured
by the Euclidean distance. For large scale appli-
cations, the dimension of this subspace should
be as small as possible to limit the storage re-
quirements, and the projections should be fast to
compute. Since the Euclidean distance fulfill the
second requirement, producing face representa-
tions adapted to the Euclidean metric is interest-
ing. However, such representations usually have
very large sizes. Several methods have been pro-
posed to learn projections that are capable of re-
ducing the size of the signatures while preserv-
ing their performance. Most of these approaches
are based on metric leaning algorithms [1] used
to learn Mahalanobis-like distances:

DW(xi,x j) = (xi−x j)
>W(xi−x j), (1)

with W a positive semi-definite matrix. To guar-
antee this property and to reduce the size of the
signatures, these methods use the factorization
W = LL> with L ∈MD×d as projection ma-
trix: yi = L>xi. It is important to control the
rank of W so that the dimension of the reduced
signature is as small as possible.

In this paper, we focus on a particular met-
ric learning algorithm so-called MLBoost [3], a
supervised method based on boosting. MLBoost
learns the metric incrementally by aggregating
several weak metrics:

DW(xi,x j) = ∑
t

α(t) Dz(t)
(
xi,x j

)
(2)

Sign. Final n= n= n= n= n=
Dim. 1 10 20 50 100

LBP
D = 9860

FULL 31.9 53.7 60.5 68.8 74.7
16 18.7 43.5 52.7 64.3 74.0
32 31.4 57.0 63.1 72.1 77.3

128 36.4 54.8 62.9 71.6 77.5
512 38.5 58.6 63.6 74.0 79.2

VGG-Face
D = 4096

FULL 89.6 96.9 97.4 98.1 98.3
16 82.0 94.1 96.7 97.6 98.6
32 89.4 96.2 97.4 98.1 98.6

128 90.8 95.7 97.2 98.1 98.8
512 92.4 96.7 97.6 98.3 98.6

Table 1: Performance of MLBoost with low-cost
weak metrics (τ = 5%) and rank constraints (R ∈
{16,32,128,512}) for face retrieval on the LFW
Dataset [2] ( “FULL” rows correspond to the perfor-
mance of the non-reduced original signatures).

with α(t) the weights of the weak metrics and
z(t) the projector vectors of these weak metrics.
Here, we propose two improvements over ML-
Boost [3]: (i) A new method for computing
weak metrics at a lower computational cost;
(ii) An explicit way to control the rank of the
produced metric during the learning phase, al-
lowing to fix the size of the low-dimensional
space in which the images are represented.

Our experiments demonstrated a more than
10× speedup in addition to a significant im-
provement in the performance of the signatures
even when their dimensions are strongly reduced
(Table 1).

[1] A. Bellet, A. Habrard, and M. Sebban. Metric
Learning. Morgan & Claypool Publishers, 2015.

[2] B. Bhattarai, G. Sharma, F. Jurie, and P. Pérez.
Some faces are more equal than others: Hierarchi-
cal organization for accurate and efficient large-
scale identity-based face retrieval. In ECCV Work-
shops, pages 1–13, 2014.

[3] R. Negrel, A. Lechervy, and F. Jurie. Boosted
metric learning for efficient identity-based face re-
trieval. In BMVC, volume 13, pages 1007–1036,
2015.
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Recent work on model compression of deep neu-
ral networks have shown that some smaller mod-
els can perform just as well as large ones. In this
work, we introduce the problem of architecture-
learning, i.e; learning the architecture of a neu-
ral network along with weights. We start with a
large neural network, and then learn which neu-
rons to prune. We also propose a smooth reg-
ularizer which encourages the total number of
neurons after elimination to be small. The re-
sulting objective is differentiable and simple to
optimize.

Architecture-Learning We wish to minimize
the following objective.

θ̂ ,Φ̂ = argmin
θ ,Φ

`(ŷ(θ ,Φ),y)+λ‖Φ‖ (1)

Here, θ denotes the weights of the neural net-
work, Φ the architecture, and ` denotes the loss
function. The λ parameter trades-off between a
good fit and a low complexity model. Here, ‖Φ‖
denotes the model complexity, which is simply
the total number of neurons in our case.

Selecting width The strategy we follow to
solve the Architecture Learning problem is out-
lined in Figure 1. To prune neurons in a layer,
we multiply auxiliary gate variables to each neu-
ron. These are either ’0’ or ’1’. As a result, neu-
rons with corresponding gate variables with ’0’
values can be pruned away. If we learn these
gates along with weights, we effectively learn
the width of neural network layers.

Selecting depth To reduce the depth of the
network, we attempt to replace non-linearities
with linear functions wherever possible. As a re-
sult, whenever linearities are present, two layers
can be merged, as shown in Figure 1.

Tri-State ReLU The two disparate observa-
tions mentioned above are combined into a

Figure 1: Our strategy for selecting width
and depth. Left: Grey blobs denote neurons,
coloured blobs denote the proposed auxiliary
gate parameters. Right: Purple bars denote
weight-matrices.

single non-linearity called the Tri-State ReLU
(TSReLU), which is defined as follows.

tsReLU(x) =

{
wx, x≥ 0
wdx, otherwise

(2)

The various modes of behaviour of this function
for different sets of values of w and d is given
in Table 1. As indicated, the proposed function
can behave either can ReLU, a zero function or
an identity function.

w d Behaviour
1 0 ReLU
1 trainable Parameteric-ReLU [1]
0 any value Returns 0 always
1 1 Identity function

0 or 1 0 or 1 Tri-State ReLU

Table 1: Various modes of behviour for different
values of w,d.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance
on imagenet classification. arXiv preprint
arXiv:1502.01852, 2015.

#164



165

Enhancing pose estimation through efficient patch synthesis

Pierre Rolin
https://members.loria.fr/PRolin/

Université de Lorraine

Marie-Odile Berger
http://www.loria.fr/~berger/

INRIA

Frédéric Sur
https://members.loria.fr/FSur/

Université de Lorraine

Estimating the pose of a camera from a scene
model is a challenging problem when the cam-
era is in a position not covered by the views used
to build the model, because feature matching
is difficult. Several viewpoint simulation tech-
niques have been recently proposed in this con-
text. They generally come with a high computa-
tional cost, are limited to specific scenes such as
urban environments or object-centred scenes, or
need an initial pose guess. This paper presents
a viewpoint simulation method well suited to
most scenes and query views. Two major prob-
lems are addressed: the positioning of the vir-
tual viewpoints with respect to the scene, and the
synthesis of geometrically consistent patches.

Figure 1: Virtual viewpoints (in green) posi-
tioning relative to one of the segmented patches
(green points). The red viewpoints are the ones
used to construct the model.

We propose a method to position the virtual
viewpoints with respect to a segmentation of the
scene in planar parts, the only assumption be-
ing that the scene is piecewise planar, which
is not restrictive in most human-made environ-
ments. A set of virtual viewpoints is associ-
ated with each planar part. An adapted mea-
sure for viewpoint changes ensures that the ex-
isting viewpoints are completed with relatively
few virtual viewpoints. Figure 1 illustrates the
virtual viewpoints positioning relative to a seg-
mented patch.

Viewpoint simulation techniques based on a
scene model often generate images of the scene
using a dense model [2] or generate local patches
around every interest point [1]. The first ap-
proach fails in cases where some parts of the
scene are not correctly densified, and the lat-
ter is computationally demanding without any
pose guess. We propose an intermediate ap-
proach consisting in synthesizing semi-local pla-
nar patches of the scene and enriching the scene
model with descriptors from these synthesized
patches, using a visibility constraint.

Figure 2: In this scene the pose cannot be accu-
rately estimated with a standard RANSAC-PnP
approach (left). Patch synthesis improves the
registration of the query view to the scene, as
proved by the superposed scene edges (right).

The experiments show that a model enriched
with the proposed synthesis method leads to
more accurate poses, and even gives accurate
poses when pose estimation simply fails without
synthesis. In addition the time needed for pose
computation is reduced, since the RANSAC step
needs less iterations. Figure 2 shows an example
where patch synthesis gives a dramatic improve-
ment of pose estimation.

[1] P. Rolin, M.-O. Berger, and F. Sur. Viewpoint sim-
ulation for camera pose estimation from an un-
structured scene model. In Proc. International
Conference on Robotics and Automation (ICRA),
pages 6320–6327, 2015.

[2] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi,
and T. Pajdla. 24/7 place recognition by view syn-
thesis. pages 1808–1817, June 2015.
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Camera Motion

Head's motion

Back leg's motion Frontal leg's motion

Leg's motion

Bear's body motion

Figure 1: Hierarchical organization of visual mo-
tions in a natural scene.

The dynamic content of physical scenes is
largely compositional, that is, the movements of
the objects and of their parts are hierarchically
organized and relate through composition along
this hierarchy. This structure also prevails in the
apparent 2D motion that a video captures (see
Fig.1). Accessing this visual motion hierarchy
is important to get a better understanding of dy-
namic scenes and is useful for video manipula-
tion. In this paper, we aim at capturing the hierar-
chical video representation through learned, tree-
structured sparse coding of point trajectories.

Given an input video sequence of M + 1
frames and N input point trajectories extracted
from it (xn

0:M) ∈ R2×(M+1), n = 1 · · ·N, we de-
fine the data matrix X ∈ R2M×N as:

X =




∆x1
1 ∆x2

1 · · · ∆xN
1

∆x1
2 ∆x2

2 · · · ∆xN
2

. . · · · .
∆x1

M ∆x2
M · · · ∆xN

M


 , (1)

where ∆xn
m = xn

m − xn
m−1. In this matrix, each

column stems for the sequence of displacements
along one trajectory.

A powerful way to discover multiple struc-
tures in such data is through sparse coding with
a learned dictionary. However, this does not en-
force any structure among the atoms of the dic-
tionary and on the associated codes. We formu-

late the problem so that the dictionary and the
encoding are constrained in certain way by a tree
structure. We want the movement of a given
scene element to be represented only with dic-
tionary atoms stemming from a same branch of
the tree. For a given rooted tree T of K nodes
we learn a dictionary D = [d1:K ] ∈ R2M×K of K
trajectory atoms organized according to this tree
structure, together with the corresponding matrix
A = [α1:N ] ∈RK×N of sparse codes. To this end,
we consider the following constrained minimiza-
tion problem:

argmin
D,A

‖X−DA‖2
2, sb.t. αn ∈A(T), ∀n and

‖dk‖2 = 1, ∀k, (2)

where A(T) ⊂ RK is the set of tree-structured
codes defined as:

A(T) = {α ∈ RK : supp(α) = anc(k(α))}, (3)

where anc(k) denotes the ancestor set of node k
in T (the nodes, including itself, that form the
unique path from k to root node 1), supp(α) is
the support of α , that is the index set of its non-
zero entries, and k(α) = max(supp(α)) stands
for the last atom in the code.

We show in the paper how to use our algo-
rithm for hierarchical and flat clustering of trajec-
tories taken from video sequences. We also an-
alyze hierarchical motion patterns that are com-
mon in human activities like walking and jump-
ing. We show that our algorithm is capable, up
to some level, to separate nested and independent
motions.
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This paper proposes an automated method
to detect, group and rectify arbitrarily-arranged
coplanar repeats via energy minimization. We
propose a global energy model for grouping
coplanar repeats that combines features that en-
courage (i) the geometric consistency of re-
peated coplanar elements, (ii) the appearance
similarity of planar repeated elements, (iii) the
spatial and color coherence of scene planes,
(iv) the spatial and color coherence of the back-
ground, (v) and the parsimony of detected copla-
nar repeat groups and scene planes.

Figure 1: Selected detected coplanar repeats.

A block-coordinate descent framework is
proposed for energy minimization that alter-
nately assigns keypoints to coplanar repeats by
labeling via a recent variant of α-expansion, and
regresses the continuous parameters that model
the geometries and appearances of coplanar re-
peat groups and their underlying scene planes.

We introduce a dataset of 113 images con-
taining coplanar repeated patterns with trans-
lated, rotated and reflected symmetries that re-
peat arbitrarily or periodically. The dataset will
be made publicly available1.

To evaluate the performance of the proposed
method, we compare against two state-of-the-
art geometric multi-model fitting methods: J-
Linkage and MultiRANSAC [3, 4]. The accu-

1http://ptak.felk.cvut.cz/personal/prittjam/bmvc16/coplanar_repeats.tar.gz

racy of rectifications constructed from vanishing
lines computed from estimated coplanar repeat
groups are used to compare the methods.

The cumulative distribution of distortions on
the dataset (truncated at 10 pixels) is shown in
Fig. 2. At 1 pixel of distortion, the proposed
method solves 163% more scene planes than
the next best; at 2 pixels, 94% more; and at
5 pixels, which can be considered a threshold
for meaningful rectification, 51% more scene
planes. The proposed energy minimization for-
mulation demonstrates a distinct increase in the
quality of rectifications estimated from detected
coplanar repeat groups on the evaluated dataset
with respect to two state-of-the-art geometric
multi-model fitting methods. The advantage can
be attributed to the global scene context that is
incorporated into the energy functional of the
proposed method.
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Figure 2: CDF of rectification distortions (∆rms).

[1] O. Chum and J. Matas. Planar affine rectification
from change of scale. In ACCV, 2010.

[2] J. Pritts, O. Chum, and J. Matas. Detection, rec-
tification and segmentation of coplanar repeated
patterns. In CVPR, 2014.

[3] R. Toldo and A. Fusiello. Robust multiple struc-
tures estimation with j-linkage. In ECCV, 2008.

[4] M. Zuliani, C. Kenney, and Manjunath B. The
multiransac algorithm and its application to detect
planar homographies. In ICIP, 2005.
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Action recognition belongs to the most challenging
tasks in computer vision. An action is usually defined
by multiple elements, called "cues", e.g. person, ob-
ject and scene. Accordingly, common actions can be
divided into four types as shown in Figure 1.

(a) Body Motion Only (b) Human Object Interaction

(c) Body Motion in Context (d) Human Object Interaction in
Context

Figure 1: Action types with different composition of semantic
cues, e.g. human body (red box), interacting objects (green
box), and global context (blue box)

Despite the high overall classification accuracy
[4], the conventional two-stream CNN approach [2]
performs poorly on human-centric categories (shad-
owed plot in Figure 3). This discovery indicates
overfitting from uninformative variances possibly from
"scene". Hence we propose a semantically aware
CNN-based framework for action recognition in video,
which uses the locational information of various se-
mantic cues as an explicit attention guidance during
training and testing.

1 Approach
First of all, we propose a generic and efficient

method to extract action relevant persons and objects
from video sequences using the output of an object
detector, e.g. Faster R-CNN [1]. This method re-
covers detection errors and removes irrelevant “by-
standers" devoid of ground truth. The obtained bound-
ing boxes are incorporated into the conventional two-
stream CNNs network via a RoiPooling layer as shown
in Figure 2. Each semantic cue constructs an individ-
ual channel, which is combined by a fusion layer to
produce the final prediction.

2 Experiment and Result
We conduct a series of experiments on UCF101

dataset [3] and determine the best performing model,
namely SR-CNNs with sum-fused person and scene

Figure 2: Architecture of two-stream SR-CNNs

channels, denoted as S+P. Our empirical study demon-
strates that (1) our approach outperforms the original
two-stream CNNs in terms of global accuracy (Table
1) (2) the robustness against ambiguous variances in
scene (Figure 3) is improved (3) semantic channels ex-
hibit complementary properties and improves spatial
and temporal streams differently.
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Figure 3: Performance comparison on UCF101 split1 in dif-
ferent action types defined in Figure 1. (left: spatial stream;
right: temporal stream)

Models Spatial Temporal Two Stream
S 77.93 86.79 91.15

S+P 78.32 88.29 92.60
Table 1: Comparison to conventional two-stream CNNs on
UCF101 averaged over 3 splits
[1] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster

R-CNN: Towards real-time object detection with region proposal
networks. In NIPS, pages 91–99, 2015.

[2] Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS, pages 568–576,
2014.

[3] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from videos in
the wild. arXiv preprint arXiv:1212.0402, 2012.

[4] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xi-
aoou Tang, and Luc Van Gool. Temporal segment networks: To-
wards good practices for deep action recognition. In ECCV, 2016.
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In recent years, human pose estimation has
greatly benefited from deep learning and huge
gains in performance have been achieved on
popular benchmarks [1, 3, 4]. The trend to max-
imise the accuracy on benchmarks, however, re-
sulted in computationally expensive deep net-
work architectures that require expensive hard-
ware and pre-training on large datasets. In this
work, we propose an efficient deep network ar-
chitecture that can be efficiently trained on mid-
range GPUs without the need of any pre-training
and that is on par with much more complex mod-
els on the benchmarks [1, 3, 4].

Our proposed Fully Convolutional
GoogLeNet (FCGN) network (see Figure 1) is
based on the network architecture from [2]. We
take the first 17 layers of [2] and add a decon-
volution layer to make it fully convolutional. In
addition, we introduce a skip layer and combine
two FCGNs with shared weights to obtain a
multi-resolution network. Belief maps for each
joint are then obtained by a deconvolution layer
with large kernel size in combination with a
sigmoid function for normalisation and spatial
drop out for regularisation.

We compare the performance of the pro-
posed architecture against convolutional pose
machines [5] on the well-known FLIC, LSP, and
MPII benchmarks [1, 3, 4]. Our proposed net-
work outperforms most previous approaches and
achieves competitive performance to the more
complex model of [5], while requiring only 3GB
of memory and far less training time.

[1] M. Andriluka, L. Pishchulin, P. Gehler, and
B. Schiele. 2D Human Pose Estimation: New
BenchMark. In CVPR, 2014.

[2] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing in-
ternal covariate shift. 2015.

[3] S. Johnson and M. Everingham. Clustered Pose

Figure 1: (a) Proposed fully convolutional
GoogLeNet (FCGN) (b) The proposed multi-
resolution network combines two FCGNs.

Figure 2: Our Qualitative results on FLIC [4],
LSP [3] and MPII [1].

and Nonlinear Appearance Models for Human
Pose Estimation. In BMVC, 2010.

[4] B. Sapp and B. Taskar. MODEC : Multimodel De-
composable Models for Human Pose Estimation.
In CVPR, 2013.

[5] S. Wei, V. Ramakrishna, T. Kanade, and
Y. Sheikh. Convolutional Pose Machines. In
CVPR, 2016.
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In this paper we propose a data augmentation
methodology for training machine/deep learning
gait recognition algorithms. While previously
published methods generated synthetic data to
augment training and/or testing sets [1] or to
learn features invariant to certain conditions [2],
they have incorporated a very limited number of
covariate factors. To our knowledge, this is the
first attempt to provide the ability to simultane-
ously generate synthetic data with so many con-
trollable conditions for gait recognition.

The combination of real motion cap-
ture, data preparation, avatar construction and
scripted rendering allows synthetic frames to be
generated, with almost arbitrary degrees of vari-
ation. Figure 1 shows a small sample of the con-
trollable confounding factors that can be gener-
ated with the proposed methodology.

Figure 1: A small sample of the controllable
confounding factors. It is readily apparent how
the extracted gait features are directly affected.

Using the Gait Energy Image (GEI) [3] as
gait features, extracted directly from the syn-
thetically generated frames, we performed ex-
periments to assess the level to which identity
is preserved within the synthetic data sets. Re-
sults from our experiments – presented in Figure
2 – suggest that information about the identity of
subjects is retained within the synthetically gen-
erated data. The experiments using GEIs as fea-
tures within our dataset showed that augment-

ing a limited amount of real data with the syn-
thetically generated data can yield identification
of subjects with an accuracy of more than 95%.
The results of this study suggest that synthetic
data can be used to augment the training of gait
recognition algorithms provided that the feature
set (e.g. principal components) is expanded to
include both real and synthetic examples of data.
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Figure 2: Results from our experiments, with
different training and testing sets, showing accu-
racy achieved with GEI features being projected
onto different number of principal components.

The proposed methodology offers the pos-
sibility to generate sequences with multiple con-
founding factors, allowing exploratory work into
training machine/deep learning algorithms for
fully-invariant gait recognition, with a far greater
amount of synthetic training and test data that
would otherwise be impossible. The dataset and
simulation files will be made publicly available.

[1] J. Shotton et al. Real-time human pose recognition
in parts from single depth images. Computer Vi-
sion and Pattern Recognition, pages 1297–1304,
2011.

[2] J. Zhang et al. Arbitrary view action recogni-
tion via transfer dictionary learning on synthetic
training data. IEEE International Conference on
Robotics and Automation, page 1678–1684, 2016.

[3] J. Han, B. Bhanu. Statistical feature fusion for
gait-based human recognition. Proceedings of the
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2:0–5, 2004.
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Figure 1: Our proposed image representation
with Mean Box Pooling.

Question answering about real-world images is a
relatively new research direction that requires a
chain of machine visual perception, natural lan-
guage understanding, and deductive capabilities
to successfully come up with an answer on a
question about the visual content. In our ex-
periments we consider the multi-choice Visual
Madlibs dataset [1] as the ambiguities in the out-
put space are rather minimal for this task.

In our paper, we present two novel archi-
tectures for this task. First, we argue for a
rich image representation in the form of pooled
CNN representations of highly overlapping ob-
ject proposals, which we call Mean Box Pool-
ing. Such a representation allows for a more fine
grained, multi-scale and multi-part object anal-
ysis compared to global CNN representations.
The overview is shown in Figure 1. Second, mo-
tivated by the popularity of deep architectures
for visual question answering, which combine a
global CNN image representation with an LSTM
question representation, as well as the leading
performance of nCCA on the multi-choice Vi-
sual Madlibs task, we propose a novel exten-
sion of the CNN+LSTM architecture, which we
call Embedded CNN+LSTM, which chooses a
prompt completion out of four candidates by
comparing them directly in the embedding space
at test time. This contrasts with the prior work

Ashkan Mokarian | Deep Learning for Filling Blanks in Image Captions 18
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Figure 2: Embedded CNN+LSTM directly opti-
mizes loss of answers in the embedding space.

of [1] that uses a post-hoc comparison between
the discrete output of the CNN+LSTM method
and all four candidates. Our method integrates
more tightly with the multi-choice filling the
blanks task, and significantly outperforms the
prior CNN+LSTM methods [1]. This architec-
ture is depicted in Figure 2.

We evaluate our methods on the multi-
ple choice task of the aforementioned Visual
Madlibs dataset. Interestingly, a large num-
ber of highly overlapping proposals significantly
improves performance and even outperforms
MSCOCO ground truth bounding boxes. nCCA
with the proposed image representation outper-
forms the prior work [1] by 5.9 and 1.4 percent
points in average on Easy and Hard tasks respec-
tively. Although nCCA tops the leaderboard on
the Visual Madlibs task, the largest body of work
on the question answering about images com-
bines a CNN with an LSTM. We hypothesize
that the comparison for the multiple choice task
should be directly done in the output embedding
space. Our results, improving over [1] by 7 and
7.6 percent points in average on Easy and Hard
tasks respectively, confirm our hypothesis.

[1] Licheng Yu, Eunbyung Park, Alexander C. Berg,
and Tamara L. Berg. Visual madlibs: Fill in the
blank image generation and question answering.
In ICCV, 2015.
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Face recognition is one of the most socially
accepted forms of biometric recognition. The
recent availability of very accurate and efficient
face recognition algorithms leaves the vulnera-
bility to presentation attacks as the major chal-
lenge to face recognition solutions. Previous
works have shown high preforming presenta-
tion attack detection PAD solutions under con-
trolled evaluation scenarios. This work tried to
analyze the practical use of PAD by investigat-
ing the more realistic scenario of cross-database
evaluation and presenting a state-of-the-art per-
formance comparison. The work also investi-
gated the relation between the video duration
and the PAD performance. This is done along
with presenting an optical flow based approach
that proves to outperform state-of-the-art solu-
tions in most experiment settings

The presented solution is tested on multi-
ple databases: the REPLAY-ATTACK, the MSU-
MFSD and the CASIA-FASD. Each of these data-
sets includes subsets for training and testing to
evaluate the algorithm performance.

Figure 1: Optical flows from a face video.

The Presented PAD solution was based on
optical flow in a similar manner to the His-
togram of Oriented Optical Flow feature extrac-
tor (Fig.1) along with an AdaBoost classifier.
Feature and score-level fusion approaches were
utilized to enhance the performance.

A table of performance comparison between
the proposed solution and state-of-the-art works
were presented in the paper. This comparison
included cross-database performance evaluation
measures.
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Figure 3: The performance (represented by the
EER) development at different video lengths
(time).

The performance degradation is clear when
performing cross-database evaluation (Fig.2).
However, the cross-database performance im-
proves when considering whole videos with
score-level fusion. The development of the PAD
performance over the duration of the video is
studied and shown in Fig.3.

To conclude, this work addressed the is-
sue of realistic face PAD performance through
evaluating it over a number of databases. This
was presented along with a state-of-the-art per-
formance comparison and a proposed solution
based on optical flows.
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We present a novel quaternion-based formula-
tion of Particle Swarm Optimization (PSO) for
pose estimation which, differently from other
approaches, does not rely on 2D or 3D features
or machine learning. The quaternion formula-
tion avoids the gimbal lock problem and, unlike
other rotation formalisms, doesn’t require con-
versions to and from rotation matrix form at each
step. The objective function is based on raw
2D depth information only, under the assump-
tion that the object region is segmented from the
background. This makes the algorithm suitable
for pose estimation of objects with large variety
in appearance, from lack of texture to strong tex-
tures, for the task of robotic grasping. We find
candidate object regions using a graph-based im-
age segmentation approach, but the PSO is ag-
nostic to the segmentation algorithm used. The
algorithm is implemented on GPU, and the na-
ture of the objective function allows high paral-
lelization.

The orientation of the i-th particle is updated
using the discrete form of the quaternion kine-
matics. Each particle renders its pose hypothesis
against the depth map of the cluster. The fitness
value of the j-th particle is thus computed as:

Φ j =
α

NR j

NR j

∑
i=1

(
zKi − zRi j

)2
+β

µ j +κ j

2
(1)

where: NR j is the number of pixels of the depth
map rendered by the j-th particle, zRi j is the
depth value of the pixel i rendered by the j-th
particle, while zKi is the corresponding depth
value of the cluster at pixel i. α and β are
two constant parameters used to weight the two
terms of the fitness function. µ j gives the per-
centage of cluster pixels that are not covered by
the rendering of the object 3D model of the par-
ticle j. κ j is the complement of µ j i.e., it gives
the percentage of rendered pixels of the particle
j that are not covered by valid depth values in
the cluster depth map.

The segmentation phase provides a rough
approximation of the 3D centroid of a cluster.

Figure 1: Examples of the approach on different
datasets. First row: RGB images; second row:
segmented objects; third row: detected objects
superimposed.

The segmentation step cannot generate an esti-
mate of the object orientation, so the object at-
titude is initialized on the surface of the north-
ern hemisphere of S3. The rendering of each
particle is done directly in GPU. Our rendering
pipeline is based on the optimized version of
the edge function.There are two levels of par-
allelism: each particle renders its object model
independently and the rendering of the triangles
for each model is also parallelized.

We tested our approach on two public
datasets for 3D pose estimation [1] and [2]. The
software has been developed using the CUDA
library in C++ under Linux and runs on GPU.
In our experiments we used 1024 particles and
global topology for the PSO and run 10 PSO it-
erations for each segmented cluster and the total
time is 85ms for each cluster. Results are compa-
rable to [1] and [2], without requiring a training
phase. Results are shown in Figure 1.

[1] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic,
K. Konolige, N. Navab, and V. Lepetit. Multi-
modal templates for real-time detection of texture-
less objects in heavily cluttered scenes. 2011.

[2] Alykhan Tejani, Danhang Tang, Rigas Kousk-
ouridas, and Tae-Kyun Kim. Latent-class hough
forests for 3d object detection and pose estima-
tion. In Computer Vision–ECCV 2014, pages 462–
477. Springer, 2014.
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In this paper we present a method for the appli-
cation of Convolutional Neural Network (CNN)
operators for use in domains which exhibit ir-
regular spatial geometry by use of the spectral
domain of a graph Laplacian, Figure 1. This al-
lows learning of localized features in irregular
domains by defining neighborhood relationships
as edge weights between vertices in graph G. By
formulating the domain as a fixed graph repre-
sentation and projecting the observed data onto
G as a graph signal f we are able to utilize the
convolution theorem via a graph Fourier trans-
form, matrix multiplication with the column-
wise eigenvector matrix U , and elementwise
multiplication with spectral filters k to learn fea-
ture maps (1).

y =U
I

∑
i=1

UT fs,i� ki,o (1)

We introduce novel gradient calculations for the
convolution operator backpropagation step in re-
gards to both f (2) and k (3). These new calcula-
tions are shown to provide higher accuracy and
stability compared to calculations presented by
[2] and [1].
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Figure 1: Graph based Convolutional Neural
Network components.

The gradient calculation in regards to signal
fs,i is given by (2), a spectral convolution of out-
put loss ∇ys,o with current weights of the spec-
tral filters ki,o.

∇ fs,i =U
O

∑
o=1

UT ∇ys,o� ki,o (2)

Gradients for the spectral filters are provided by
(3), which are shown to improve over those of
[2] in Figure 2.

∇ki,o =
N

∑
s=1

UT ∇ys,o�UT fs,i. (3)

We also present the use of Algebraic Multigrid
as a method of graph coarsening, an analogy to
the pooling operator of conventional CNNs, ag-
glomerating nodes from the previous layer into
a singular node in the subsequent layer. As with
standard CNNs this provides both a reduction
in graph complexity and generalization of learnt
features.
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Figure 2: Gradient calculation errors for interpo-
lation of various numbers of tracked weights.

Although this method is adaptable to numer-
ous domains, we evaluate performance on a reg-
ular 2D pixel grid and an irregular grid with sub-
sampled spatial geometry with the MNIST digit
classification problem projected onto the graph.
By utilizing (2) and (3) we obtain accuracy rates
of 94.23% and 94.96% for the regular and irreg-
ular spatial domains respectively.

[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam,
and Yann LeCun. Spectral networks and lo-
cally connected networks on graphs. CoRR,
abs/1312.6203, 2013.

[2] Mikael Henaff, Joan Bruna, and Yann LeCun.
Deep convolutional networks on graph-structured
data. CoRR, abs/1506.05163, 2015.
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Figure 1: We study the transferability of ob-
ject parts and ask a question: What is the mini-
mal amount of supervision so that part detectors
trained on source classes perform well on unseen
target classes? To provide an answer, we experi-
ment with a novel Animal Parts dataset.

Recent progress in image understanding,
while dramatic, has been primarily fueled by the
availability of increasingly large quantities of la-
beled data. However, it is unclear whether man-
ual supervision will be able to keep up with the
demands of increasingly sophisticated and data-
hungry algorithms. This raises the obvious ques-
tion: When is supervision enough?

In this paper we examine this question from
the viewpoint of learning shareable semantic
parts, focusing on two research problems.
(i) We conduct the first careful investigation of
part transferability across a large set of visually
dissimilar classes. To this end, the problem is
viewed from the Domain Adaptation (DA) per-
spective where domains correspond to animals.
(ii) We investigate how many annotations are re-
quired to train a part detector. We consider an
Active Learning scenario, studying which im-
ages should be chosen and how many are needed
to saturate performance of the part detector.

ImageNet Animal Parts dataset. A thorough
evaluation of the transferability of parts requires
a suitable dataset with a large number of classes.
Because existing datasets are insufficient for our
task, we annotated “foot” and “eye” part key-
points in 14711 existing ImageNet images from
100 animal classes. Example annotations can be
seen in Figure 1.
Proposed methods. Our part detectors rely on
convolutional neural networks. We adapt the
widely used uncertainty sampling principle to
our scenario. We further propose an efficient en-
semble of detectors which is optimized for gen-
eralization to new classes and can be used to
guide active learning.

Main results
Part transferability. We challenge the common
assumption that parts are visually “shareable”
across different classes and therefore it suffices
to learn them from a limited number of classes
to understand them equally well in all cases.
Given an unseen target class, by comparing per-
formances of detectors trained on its semanti-
cally nearest/farthest classes we have verified the
relevance of semantic distance for cross-domain
transfer. Furthermore, we have shown that learn-
ing parts from a sufficiently diverse set of classes
allows satisfactory transfer to novel classes.
Have I seen enough? We also ask how many
source images need to be annotated in the source
domains such that the performance of a part de-
tector saturates as quickly as possible. Results
indicate that our proposed method outperforms
other baselines on foot detection while perform-
ing on par for eyes. Besides the relative merits
of compared methods, the performance reaches
98% of the accuracy of the fully annotated sce-
nario by providing only a few thousand anno-
tations, showing that excellent performance can
be achieved by annotating a small representative
subset of classes and images.
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We introduce Impatient Deep Neural Networks
(DNNs) for dealing with dynamic time budgets
during inference time. They allow for either in-
dividual budgets given before for each test ex-
ample or for anytime prediction, i.e. a possible
interruption at multiple stages during inference
while still providing output estimates. Figure 1
visualizes these advantages. Our approach can
therefore tackle the computational costs and en-
ergy demands of DNNs in an adaptive manner, a
property essential for real-time applications.

Our framework for learning dynamic bud-
get predictors is based on risk minimization. We
consider inference algorithms f providing pre-
dictions y ∈ Y for input examples xxx ∈ X at dif-
ferent times t ∈ R, i.e. we have f : X ×R → Y .
Learning the parameters θθθ of f is done by mini-
mizing the regularized risk

min
θθθ

∫∫∫

(t,y,xxx)

L( fθθθ (xxx, t),y) · p(xxx,y, t)dxxxdydt +R(θθθ)

where L is a suitable loss function, R(θθθ) a reg-
ularization term, and p(xxx,y, t) the joint distribu-
tion of an input-output pair (xxx,y) and the avail-
able time t.

This framework leads to a very flexible and
simple learning scheme for deep neural networks.
In particular, the resulting architecture of our net-
works contains “early prediction layers” directly
connected to loss layers. The parameters of all
of the layers are learned jointly by minimizing
a weighted combination of the loss layers where
the loss weights are directly computed using the
distribution of time budgets for the application.

Experiments and Evaluation We present ex-
perimental results for different architectures, e.g.
AlexNet and VGG19, on various object classi-
fication datasets to answer the most interesting
question: Does our joint training scheme provide
superior results compared to learning predictors
independently? We compare our approach with
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Figure 1: Convolutional neural network predic-
tion in dynamic budget scenarios: (left) predic-
tion can be interrupted at any time or (right) the
budget is given before each prediction.

Table 1: Comparison of an Impatient VGG19
with several baselines on MIT-67. Performance
is measured by expected accuracy in % based on
the particular budget distribution p(t).

Budget Scheme Orig FT Ours
uniformly distributed time budgets 46.7 48.1 53.9
large time budgets are likely 62.8 67.1 69.7
small time budgets are likely 25.6 25.7 35.1
normal distributed time budgets 47.5 47.9 55.4

different baselines that learn several SVM classi-
fiers based on extracted CNN activations at each
early prediction layer using an original CNN pre-
trained on ImageNet (ORIG) and a pre-trained
CNN fine-tuned on the current dataset (FT). Our
joint learning of early prediction layers shows
superior results for most time budget distribu-
tions (cf . Table 1) with up to 10% absolute im-
provement on MIT-67 compared to the baseline.
Summary In our paper, we present a novel ap-
proach for anytime prediction with deep neural
networks, which can be easily adapted to any
convolutional neural network architecture. Joint
training with weighted losses give superior re-
sults for different time budget distributions com-
pared to independently trained early predictors.
Furthermore, we show that early prediction lay-
ers allow for reducing computational costs in the
case of being already certain about intermediate
classification results.
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Formulation. We propose learning linear
classifiers wk = Dzk for classes k = 1, . . . ,K so
that zk ∈RA is sparse and learned from a training
set {xi}M

i=1 along with the dictionary D ∈ Rd×A

using an adaptation of the `2 Support Vector Ma-
chine (SVM) objective:

argmin
D,{zk}k ,b

K

∑
k=1

M

∑
i=1

max
(
0,1− y(x>i Dzk +b)

)
+

α
2
‖Dzk‖2

2 +β‖zk‖1. (1)

The resulting D can be fixed in a latter stage for
a never-before-seen class where only the clas-
sifier’s sparse z is learned. Regardless, the re-
sulting classifiers will exist in a union of sub-
spaces, with each subspace being the span of
a small subset of atoms from D. Hence we
refer to our proposed classifier as a Union-of-
Subspaces SVM (US-SVM). We further intro-
duce Non-Negative (NN), Elastic Net (EN), and
mixed NN+EN US-SVM variants.

Advantages. One first benefit of classifiers
of the form w = Dz is that only the sparse vector
z needs to be stored for each class, resulting in a
smaller storage footprint. Furthermore, for fixed
D, learning z results in lower computational cost
both at training and testing time. Another benefit
is that the atoms (columns) of the learned dic-
tionary will inherit semantic properties shared
by different classes and hence can often be in-
terpreted as semantic attributes (Fig. 1), thus
opening a possible path to weakly supervised at-
tribute discovery. In a similar manner, atoms
of the learned dictionary will often correspond
to modalities of the underlying feature distribu-
tion that can likewise have interesting seman-
tic interpretations. Forcing the classifier to be
sparse using a learned dictionary can also be in-
terpreted as a novel SVM regularization scheme.
Unlike other schemes that constrain the norm of
the classifier, our regularization requires that all
classifiers be represented in terms of a common

Figure 1: Examples of visual attributes captured by
three different learned atoms across multiple classes.
Top: water; middle: rectangular shape; bottom: round
shape. For each row, images with the same border
color belong to the same class.
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Figure 2: Classification performance versus sparsity
(average |zk|0) on a subset of ImageNet for US-SVMs
with and without Non-negativity (N) constraints and
Elastic net (E) penalization, and `1/`2-SVMs.

dictionary, in effect enabling the system to lever-
age the annotations for all classes when learning
any given class.

Experiments. In Fig. 2 we present example
results on ImageNet that illustrate how US-SVM
enjoys nearly constant performance for drasti-
cally low sparsity levels of < 5 (for feature vec-
tors xi ∈ R128), where the performance is close
to 20 mAP points better (a +20% difference)
than that of `1-SVM or `2-SVM.
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We propose a complete pipeline for aerial im-
age geolocalization based on roads and intersec-
tions. The main steps are road detection, fol-
lowed by intersection detection and intersection
matching with publicly available road vectors
from the OpenStreetMap project (OSM) 1. An
initial localization is proposed, further improved
by geometric alignment of roads.

The main goal of this project is to provide
drones a reliable localization system in the areas
we expect most autonomous deployments will
be made - that is, urban and suburban areas.

Figure 1: Framework overview

A key insight of our approach is the obser-
vation that intersections tend to have a unique
road pattern surrounding them and thus can play
a key role in localization, by reducing this dif-
ficult task to a sparse feature matching problem
followed by a local refined road map alignment.

For pixel-wise road detection we used a
dual-stream local-global CNN model proposed
in [3]. Alexnet was used for intersection detec-
tion based on the detected road pattern.

1https://www.openstreetmap.org/

For intersection matching, we introduce a
novel dataset consisting of images centered on
intersections from two cities (one for training
and the other one for testing), totalling 7204
600x600px images. A 4096-element descriptor
is generated for each intersection using the sur-
rounding detected roads and a neural network
trained for intersection detection, in a way that
is similar to [2]. We further fine-tune the net-
work in a Siamese-like fashion in order to im-
prove matching performance.

After an initial set of corresponding inter-
sections is returned, we pick the best one by
geometrical alignment of road maps for inter-
section candidates using shape context[1] and
RANSAC. Further road enhancements for OSM
are possible once the location has been deter-
mined.

We notice that most errors (around or above
90% of them) are below 2.5 meters, that is be-
low 3 pixels for the image resolution available
in our experiments. We believe that our results
demonstrate high level of localization accuracy
for our system, which could be very effective in
most cases when the GPS signal is lost, for both
day and nighttime.

[1] Serge Belongie, Jitendra Malik, and Jan Puzicha.
Shape context: A new descriptor for shape match-
ing and object recognition. In NIPS, volume 2,
page 3, 2000.

[2] Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and
Chu-Song Chen. Deep learning of binary hash
codes for fast image retrieval. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 27–35,
2015.

[3] Alina Marcu and Marius Leordeanu. Dual local-
global contextual pathways for recognition in
aerial imagery. arXiv preprint arXiv:1605.05462,
2016.
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Finding correspondences between images
via local descriptors is one of the most exten-
sively studied problems in computer vision due
to the wide range of applications. Recently, end-
to-end learnt descriptors based on Convolutional
Neural Networks (CNNs) have significantly out-
performed state of the art features.

In this paper we investigate the use of
triplets in learning local feature descriptors with
CNNs and we propose a novel in-triplet hard
negative mining step to achieve a more effec-
tive training and better descriptors. Our method
reaches state of the art results without the com-
putational overhead typically associated with
mining of negatives and with lower complexity
of the network architecture. This is a significant
advantage over previous CNN descriptors since
it makes our proposal suitable for practical prob-
lems involving large datasets.

Learning with triplets involves training from
samples of the form {aaa, ppp,nnn}, where aaa is the an-
chor, ppp is a positive example, which is a different
sample of the same class as aaa, and nnn is a negative
example, belonging to a different class than aaa. In
our case, aaa and ppp are different viewpoints of the
same physical point, and nnn comes from a differ-
ent keypoint. The goal is to learn the embed-
ding f (xxx) s.t. δ+ = || f (aaa)− f (ppp)||2 is low (i.e.,
the network brings aaa and ppp close in the feature
space) and δ− = || f (aaa)− f (nnn)||2 is high (i.e.,
the network pushes the descriptors of aaa and nnn far
apart).

Anchor swap for in-triplet negative mining
Previous proposals based on triplet based learn-
ing use only two of the possible three dis-
tances within each triplet, ignoring the distance
δ ′− = || f (ppp)− f (nnn)||2. We take it into account
to define the in-triplet hard negative as δ∗ =
min(δ−,δ

′
−). If δ∗ = δ ′−, we swap {aaa, ppp}, and

thus ppp becomes the anchor, and aaa becomes the
positive sample. This ensures that the hardest
negative inside the triplet is used for backpropa-
gation.

We build our descriptor by training a shal-
low network architecture from 5M triplets sam-
pled on-the-fly using patches extracted around
interest points. We evaluate its performance in
patch pair classification, where we measure the
ability of the descriptor to discriminate posi-
tive patch pairs from negative ones, and in near-
est neighbour patch matching, where we mea-
sure the descriptor precision in matching feature
points between different views of a same scene.
Our networks outperform previously introduced
convolutional feature descriptors. Moreover,
they are 10 to 50 times faster than previous ap-
proaches. In fact, when running on GPU we
reach speeds of 10µs per patch, which is compa-
rable with the CPU speeds of fast binary descrip-
tors. Details of our proposal are described more
fully in the paper, along with extensive experi-
mental work. We provide all the learned models
and the training code for all descriptor variants at
https://github.com/vbalnt/tfeat.

[1] E. Simo-Serra, E. Trulls, L. Ferraz,
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Noguer. Discriminative learning of deep
convolutional feature point descriptors. In
ICCV, 2015.
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Object tracking is one of the most important
tasks in many applications of computer vision.
Many tracking methods use a fixed set of fea-
tures ignoring that appearance of a target object
may change drastically due to intrinsic and ex-
trinsic factors. The ability to dynamically iden-
tify discriminative features would help in han-
dling the appearance variability by improving
tracking performance. The contribution of this
work is threefold. Firstly, this paper presents
a collection of several modern feature selection
approaches selected among filter, embedded,
and wrapper methods (e.g., Inf-FS [2], mRMR,
SVM-RFE, among others). Secondly, we pro-
vide extensive tests, regarding the classification
task, on the PASCAL VOC-2007 dataset in-
tended to explore the strengths and weaknesses
of the selected methods with the goal to identify
the right candidates for online tracking. Taking
advantage from the results obtained from the of-
fline scenario, we decided to use the following
four candidate methods: MutInf, Fisher, Inf-FS,
and mRMR. In particular, we take care that exe-
cution times of these methods meet the require-
ments for a real-time application. Finally, we
show how the selected algorithms can be suc-
cessfully employed for ranking features used by
the Adaptive Color Tracking (ACT) system pro-
posed in [1], maintaining high frame rates. ACT
system is one of the most recent solutions for
tracking, it exploits color naming [3] (i.e., the ac-
tion of assigning linguistic color labels to image
pixels), to target objects and learn an adaptive
correlation filter by mapping multi-channel fea-
tures into a Gaussian kernel space. We evaluated
four variants of ACT on the OTB-50 [4] bench-
mark, throughout three different robustness eval-
uation metrics: one-pass evaluation (OPE), tem-
poral robustness evaluation (TRE), and spatial
robustness evaluation (SRE) reporting the aver-
age precision and success rate for quantitative
analysis. In Figure 1 only the top 10 (out of 34)
trackers are displayed for clarity. In particular,
the unsupervised method ACTinffs turns out to
be the best trade-off between accuracy (62.0%)
and speed (111.4 fps). The ACTinffs has the

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold
Pr

ec
is

io
n

Precision plots of OPE

ACTMI [0.621]

ACTFisher [0.620]
ACTinffs [0.620]

Struck [0.618]
SCM [0.615]
ACT−mRMR [0.597]
ACT [0.589]
TLD [0.554]
VTD [0.544]
VTS [0.540]

Figure 1: Precision plots over all 50 sequences
provided by the OTB-50 benchmark. The mean
precision scores for each tracker are reported in
the legend.

same order of magnitude of the baseline ACT
(196 fps) in terms of fps, while ACTMI operates
at 19 fps. This work demonstrates the impor-
tance of feature selection for real-time applica-
tions, resulted in what is clearly a very impres-
sive performance, our solutions improve up to
7% the baseline ACT while providing superior
results compared to 29 state-of-the-art tracking
methods.

[1] Martin Danelljan, Fahad Shahbaz Khan, Michael
Felsberg, and Joost van de Weijer. Adaptive color
attributes for real-time visual tracking. In IEEE
Conf. Computer Vision and Pattern Recognition
(CVPR), 2014.

[2] Giorgio Roffo, Simone Melzi, and Marco
Cristani. Infinite feature selection. In IEEE
Conf. International Conference on Computer Vi-
sion (ICCV), 2015.

[3] Joost van de Weijer, Cordelia Schmid, Jakob Ver-
beek, and Diane Larlus. Learning color names
for real-world applications. IEEE Transactions on
Image Processing, 2009.

[4] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. On-
line object tracking: A benchmark. In IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), 2013.
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Aggregation of Local Features (ALF) is a well-
studied approach for image as well as 3D model 
retrieval (3DMR). A carefully designed local 3D 
geometric feature is able to describe detailed 
local geometry of 3D model, often with 
invariance to geometric transformations 
including 3D rotation of local 3D regions. For 
efficient 3DMR, these local features are 
aggregated into a feature per 3D model by using 
Bag-of-Features, Fisher Vector coding, etc.  

Recent trend is to use end-to-end 3D Deep 
Convolutional Neural Network (3D-DCNN) 
(e.g., [1]) for 3DMR. 3D-DCNNs have often 
shown accuracies better than methods based on 
ALF. However, current 3D-DCNN based 
methods have weaknesses; they lack invariance 
against 3D rotation and/or they often miss 
geometrical details as they coarsely quantize 
shapes into voxels in applying 3D-DCNN.  

Our goal is to extract a 3D model feature that 
is invariant against 3D rotation and more 
accurate than the existing ALF and 3D-DCNN 
based approaches. To this end, we combine ALF 
with 3D-DCNN. 

We propose a novel deep neural network for 
3DMR called Deep Local feature Aggregation 
Network (DLAN) that performs extraction of 
rotation-invariant 3D local features and their 
aggregation by using a single deep architecture. 

A DLAN (Figure 1) first describes local 3D 
regions of a 3D model by using “mid-level” local 
features invariant to 3D rotation. The set of local 
features is aggregated into a rotation-invariant 
and compact feature vector per 3D model.  

Experimental evaluation using three 
benchmark datasets shows effectiveness of the 
DLAN. Here, we present results on the 
ModelNet40 dataset [1]. The proposed DLAN 
significantly outperforms the state-of-the-arts 
including 3D-DCNN based [1] and 2D-DCNN 
based [2][3] 3DMR algorithms.  

algorithms MAP [%] 
3D ShapeNets [1] 49.2 
MVCNN [2] 79.5 
GIFT [3] 81.9 
DLAN (proposed) 85.0 

Table 1: Comparison of retrieval accuracy. 

[1]  Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and 
J. Xiao. 3D ShapeNets: A Deep Representation for 
Volumetric Shape Modeling. Proc. CVPR 2015, 1912–
1920, 2015. 

[2] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. 
Multi-View Convolutional Neural Networks for 3D 
Shape Recognition. Proc. ICCV 2015, 945–953, 2015. 

[3]    S. Bai, X. Bai, Z. Zhou, Z. Zhang, and L. J. Latecki. GIFT: 
A Real-time and Scalable 3D Shape Search Engine, Proc. 
CVPR 2016, 5023–5032, 2016. 
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Figure 1: DLAN architecture for extracting a rotation-invariant and salient feature per 3D model. 
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Differently from computer vision systems which
require explicit supervision, humans can learn
facial expressions by simply observing other hu-
mans in their environment. In this paper, we
consider the problem of developing similar ca-
pabilities in machine vision. As a starting point,
we look at the problem of relating facial expres-
sions to objectively measurable events occurring
in videos and make four contributions towards
this goal. Firstly we construct and make avail-
able FaceValue, a dataset of facial expressions
labelled with events to facilitate the study of this
problem. Second, we evaluate existing emo-
tion recognition CNN architectures on standard
benchmarks and demonstrate the value of pre-
training on face related tasks to compensate for
a scarcity of labelled training data for emotion
recognition. Third, we provide human baselines
for the difficulty of emotion recognition in gen-
eral, and specifically the difficulty of predicting
events from expressions on our new dataset. Fi-
nally, we extend the standard emotion recogni-
tion architectures to predict events in videos and
learn nameable expressions from them.

FaceValue Dataset

The FaceValue dataset comprises 192,030
faces collected from 102 episodes of the TV
gameshow “Deal or No Deal” which provides
a diverse source of facial expressions and game
events. We associate event labels with face
tracks, where an event label consists of a sum
of money that has been removed from the con-
testant’s potential prizes (see Figure 1 for exam-
ples), together with its position in the sequence
of events that have taken place in the game.

Emotion Recognition Models and Human
Baselines

We train and evaluate a number of CNN ar-
chitectures on the FER and SFEW 2.0 emo-
tion recognition benchmarks and show that pre-
training for the task of face verification produces

Figure 1: FaceValue dataset. Top row: detection
of an event in the game, and the corresponding
reaction of the contestant’s face. Bottom: four
example tracks, the top two for “good” events
and the bottom two for “bad” events (see paper
for details)

a substantial jump in performance (+6% aver-
age relative improvement on FER vs Imagenet
pre-training), and single model test accuracies of
72.89% (FER) and 59.41% (SFEW 2.0).

Learning Expressions

We adapt the CNN architectures for emotion
recognition to our primary task of learning ex-
pressions from events in the FaceValue dataset.
Despite its challenging nature, we show that
CNNs can perform well at the task of predicting
event labels directly from expressions. Similarly
to the FER and SFEW 2.0 benchmarks, the best
model marginally outperforms the accuracy of a
committee of human annotators.

Conclusions

Experimental results show that learning
facial expressions from contextual events
rather than directly labelled data is chal-
lenging, but feasible. The dataset and
emotion recognition models are available
at http://www.robots.ox.ac.uk/~vgg/
data/facevalue.
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In this paper, we propose a face recognition 
system based on deep learning, which can be 
used to verify and identify a subject from the 
colour and depth face images captured with a 
consumer-level RGB-D camera. To recognize 
faces with colour and depth information, our 
system contains 3 parts: depth image recovery, 
deep learning for feature extraction, and joint 
classification.

In the depth image recovery and enhancement 
stage, a pipeline is applied to improve quality of
depth face images from a consumer-level depth 
camera. First, re-meshing and coarse-to-fine 
depth fusion are used to alleviate the random 
depth loss and noise of a depth map and project 
the facial surface point clouds into 3-D space.
Second, a template facial landmark set is 
computed and frontalized, so that we can align 
the other faces (point clouds) onto the template 
using landmark-based transformation for 
frontalization and compute their head poses
(vertical and horizontal rotation). Third, by re-
projecting the fused and frontalized 3-D point 
cloud onto a canvas which is 2 times of the 
original resolution, we can obtain a super-
resolved depth image by resampling. If there are
still any holes on the depth image. we can fill 
the holes by Poisson Blending [1], with super-
resolution depth image as background, pre-
computed mean depth face image as foreground, 
and detected hole pixel map as mask. Last, to 
get high quality 3-D face mesh model, we just 
mesh and project the super-resolved depth map 
into 3-D space again. To synthesize depth maps 
from different view angles for a single 3-D face 
model, we rotate the model horizontally and 
then vertically before rendering.

To learn discriminative feature transformation 
by deep network, we first train our network on 
CASIA-WebFace [2] dataset for colour (RGB 
and greyscale) face images. The model for 
greyscale images is further fine-tuned on the 
merged depth dataset for transfer learning. 

Database similarity standard deviation is proved 

to be highly correlated to reliability of similarity, 

and can be viewed as an estimation of image 

quality. A support vector classifier [3] with 

probability output and pairwise information as 

input is used to estimate the confidence score 

that a pair of images are come from the same 

subject. The SVM is trained with the following 

feature: group-wise colour/depth similarity, 

Average database colour/depth similarity 

standard deviation of 2 images, and estimated 

capture-time head pose difference. A binary 

label indicates whether the 2 images of each 
pair are from the same subject.

Our experiments show that higher accuracy can 
be achieved by using the proposed bi-model 
confidence estimation, especially under harsh 
illumination environment or large head pose 
variation.

[1] !"# !$%$&'# ("# )*+,+$-'# *+.# /"# 01*2$'# 3!45664+#

78*,$#9.5-5+,:#ACM Siggraph, 2003.

[2] ;"#<5'#="#>$5'#?"#>5*4#*+.#?"#="#>5'#3>$*%+5+,#

@*A$#B$C%$6$+-*-54+#D%48#?A%*-AE:#Computer 
Vision and Pattern Recognition, 2015.

[3] Boser, Bernhard E., Isabelle M. Guyon, and 

F1*.585%#G"#F*C+52"#3/#-%*5+5+,#*1,4%5-E8#D4%#
4C-58*1#8*%,5+#A1*665D5$%6":#!%4A$$.5+,6#4D#-E$#

fifth annual workshop on Computational 

learning theory. ACM, 1992.
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Motivation. Semantic segmentation is a cru-
cial computer vision task, solving which would
enable a thorough scene understanding of the
environment. The areas that already benefit
from the automatic semantic segmentation in-
clude biomedical imaging [2], autonomous driv-
ing [4]. Further enhancement of current models
will necessarily increase the number of possible
applications, as well as quality of performance.
The transfer learning of deep convolutional net-
works pre-trained for image classification on Im-
ageNet has proven to be successful in seman-
tic segmentation. In these models, last fully-
connected layers are replaced by convolutional
ones followed by a learnable deconvolution or
fixed interpolation to acquire the output of the
same spatial size as the input. Usually, the seg-
mented mask is coarse. Several ways to deal
with this have been proposed, including the
‘skip’-layer architecture [3] and post-processing
with probabilistic graphical models [1].
Algorithm. The combination of graphical mod-
els with deep networks requires carefully de-
signed differentiable operations to mimic ap-
proximate inference, while traditional upsam-
pling approaches tend to operate only locally. To
overcome these issues, we propose an alterna-
tive novel architecture aimed to perform an up-
sampling globally, as well as enforce the correct
label recognition. For the first task, we propose
the equivalent of deconvolution, which we call
‘global interpolation’. We denote the decoded
information of the RGB-image I : I ∈ R3×H×W ,
as x : x ∈ RC×h×w, where C represents the num-
ber of channels, h and w define the reduced
height H and width W , respectively. To acquire
y : y ∈RC×H×W , an upsampled signal, we apply
the following formula:

yc = KhxcKT
w,∀c ∈ C (1)

where the matrices Kh ∈RH×h and Kw ∈RW×w

are interpolating each feature map of x through
the corresponding spatial dimensions. Contrary

Figure 1: Global Deconvolutional Network.
Our adaptation of FCN-32s [3]. We upsample
the reduced signal with the help of global in-
terpolation and append the multi-label classifi-
cation loss to increase the recognition accuracy.
to a simple bilinear interpolation, which oper-
ates only on the closest four points, Eq. (1) al-
lows to include much more information on the
rectangular grid. Besides that, we append an ad-
ditional multi-label classification loss to correct
the wrong predictions of the network. The com-
plete architecture can be seen in Figure 1.
Results. We evaluate the proposed approach ex-
tending two publicly available models: FCN [3]
and DeepLab [1]. We show the superior per-
formance over them and achieve 74.02% mean
IoU on the test set of the PASCAL VOC bench-
mark, which is close to the state-of-the-art per-
formance without exploiting larger datasets.
[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Mur-

phy, and A. L. Yuille. Semantic image segmen-
tation with deep convolutional nets and fully con-
nected crfs. CoRR, abs/1412.7062, 2014.

[2] D. C. Ciresan, A. Giusti, L. M. Gambardella, and
J. Schmidhuber. Deep neural networks segment
neuronal membranes in electron microscopy im-
ages. In NIPS, 2012.

[3] J. Long, E. Shelhamer, and T. Darrell. Fully con-
volutional networks for semantic segmentation. In
CVPR, 2015.

[4] P. Sturgess, K. Alahari, L. Ladicky, and P. H. S.
Torr. Combining appearance and structure from
motion features for road scene understanding. In
BMVC, 2009.
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Most of the existing dictionary-based image de-
composition methods are patch-based and fea-
tures learned with these methods often con-
tain shifted versions of the same features [1].
To overcome this issue, we propose a novel
sparsity-based method for cartoon and texture
decomposition based on Convolutional Sparse
Coding (CSC). Our method first learns a set
of generic filters that can sparsely represent
cartoon and texture type images. Then us-
ing these learned filters, we propose a sparsity-
based optimization framework to decompose a
given image into cartoon and texture compo-
nents. By working directly on the whole im-
age, the proposed image decomposition algo-
rithm does not need to divide the image into
overlapping patches for leaning local dictionar-
ies.

Our goal is to separate the given input im-
age y into a cartoon part yc and a texture part
yt . Assume that we have already learned the
convolutional filters corresponding to yc and yt
by solving the CSC problem for the cartoon and
the texture components separately. That is, we
have learned {dc,k}Kc

k=1 and {dt,k}Kt
k=1 such that

yc = ∑Kc
k=1 dc,k ∗ xc,k and yt = ∑Kt

k=1 dt,k ∗ xt,k,
where xc,k and xt,k are the sparse coefficients
that approximate yc and yt when convolved with
the filters dc,k and dt,k, respectively. We propose
to estimate yc and yt via xc,k and xt,k by solving
the following CSC-based optimization problem

arg min
xc,k ,xt,k

1
2

∥∥∥∥∥y−
Kc

∑
k=1

dc,k ∗xc,k−
Kt

∑
k=1

dt,k ∗xt,k

∥∥∥∥∥

2

2

+λc

Kc

∑
k=1

∥∥xc,k
∥∥

1 +λt

Kt

∑
k=1

∥∥xt,k
∥∥

1

+βTV

(
Kc

∑
k=1

dc,k ∗xc,k

)
.

(1)

We present the results of our proposed CSCD
algorithm for image decomposition and compare
them with the MCA method [4], adaptive MCA

Original
Test

Image

CSCD
All

(39.03)

BNN
All

(33.15)

MCA
All

(32.81)

A-MCA
All

(29.70)

Original
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Cartoon
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BNN
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Original
Texture
Image
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Texture
(28.27)

BNN
Texture
(26.24)

MCA
Texture
(26.40)

A-MCA
Texture
(26.63)

Figure 1: Image decomposition results on the
Cat+Cage image.

(A-MCA) method [3], and a recent stat-of-the-
art Block Nuclear Norm (BNN) method [2]. In
these experiments, we use the Peak Signal to
Noise Ratio (PSNR) to measure the performance
of the routines tested (See Figure 1). Various
experiments show the significance of our CSC-
based image separation method over the other
methods.

[1] Michael Elad. Prologue. In Sparse and Redundant
Representations, pages 3–15. Springer, 2010.

[2] Shintaro Ono, Takamichi Miyata, and Isao Ya-
mada. Cartoon-texture image decomposition us-
ing blockwise low-rank texture characterization.
Image Processing, IEEE Transactions on, 23(3):
1128–1142, 2014.

[3] Gabriel Peyré, Jalal Fadili, and Jean-Luc Starck.
Learning the morphological diversity. SIAM Jour-
nal on Imaging Sciences, 3(3):646–669, 2010.

[4] Jean-Luc Starck, Michael Elad, and David L
Donoho. Image decomposition via the combina-
tion of sparse representations and a variational ap-
proach. Image Processing, IEEE Transactions on,
14(10):1570–1582, 2005.
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Many practical applications in image pro-
cessing and computer vision require one to an-
alyze and process high-dimensional data. It has
been observed that these high-dimensional data
can be represented by a low-dimensional sub-
space. As a result, the collection of data from
different classes can be viewed as samples from
a union of low-dimensional subspaces. In sub-
space clustering, given the data from a union of
subspaces, the objective is to find the number of
subspaces, their dimensions, and the segmenta-
tion of the data and a basis for each subspace. In
many applications, one has to deal with hetero-
geneous data. For example, clustering face im-
ages collected in the wild, one may have to clus-
ter images of the same individual collected us-
ing different cameras and possibly under differ-
ent resolution and lighting conditions. Cluster-
ing of heterogeneous data is difficult because it is
not meaningful to directly compare the heteroge-
nous samples with different distributions which
may span different feature spaces. In recent years,
various domain adaptation methods have been
developed to deal with the distributional changes
that occur after learning a classifier for super-
vised and semi-supervised learning [3]. How-
ever, to the best of our knowledge, these methods
have not been developed for clustering heteroge-
neous data that lie in a union of low-dimensional
subspaces.

In this paper, we present domain adaptive
versions of the sparse and low-rank subspace clus-
tering methods (i.e. SSC [1] and LRR [2]). Fig-
ure 1 gives an overview of the proposed method.
Given data from K different domains, we simul-
taneously learn the projections and find the sparse
or low-rank representation in the projected com-
mon subspace. Once the projection matrices and
the sparse or low-rank coefficient matrix is found,
it can be used for subspace clustering.

We evaluated the performance of our domain
adaptive subspace clustering methods on three
publicly available datasets - UMD-AA01 face
dataset, Amazon-DLSR-Webcam office data- sets,
and USPS-MNIST-Alphadigits handwritten dig-

Domain 1

Domain 2

Domain N

..
.

Common Subspaces

P1

SSC

LRR
or

Affinity Matrix

Spectral 
Clustering

{Segmented Sets 
of Data

Projection

P2
Projection

PN
Projection

Figure 1: An overview of the proposed domain
adaptive subspace clustering framework.

Method {1}→ {2} {2}→ {1}
LRR 52.04 53.26
CO-LRR 46.73 47.96
DA-LRR 36.76 35.51
ED-LRR 42.45 42.04
GM-LRR 47.76 47.14

Table 1: Average clustering errors on the UMD-
AA01 face dataset. Note that {1} and {2} cor-
respond to session 1 and session 2, respectively.
DA-LRR denotes our proposed method.

its datasets. Table 1 shows the results of our pro-
posed domain adaptive LRR (DA-LRR) method
on the UMD-AA01 face dataset. Our method
performs better than some recent stat-of-the-art
domain adaptive subspace clustering methods.

[1] Ehsan Elhamifar and René Vidal. Sparse
subspace clustering: Algorithm, theory, and
applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(11):
2765–2781, 2013.

[2] Guangcan Liu, Zhouchen Lin, Shuicheng
Yan, Ju Sun, Yong Yu, and Yi Ma. Robust
recovery of subspace structures by low-rank
representation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35
(1):171–184, 2013.

[3] Vishal M Patel, Raghuraman Gopalan, Ruo-
nan Li, and Rama Chellappa. Visual domain
adaptation: A survey of recent advances.
Signal Processing Magazine, IEEE, 32(3):
53–69, 2015.
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Image-Based localization (IBL) addresses the
problem of estimating the 6 DoF camera pose
in an environment, given a query image and
a representation of the scene. The tree-based
approach [2] is the standard solution for IBL.
When dealing with large-scale environments, the
need to reduce the search space of the tree-based
becomes the main focus. Sattler et al. [3] re-
duced the search space by clustering the 3D
points into bag-of-words. This approach is
well known to trade accuracy for speed due
to the quantization effect. Recently, Kendall
et.al [1] used deep convolutional neural net-
works to solve the problem. The accuracy of this
approach is enough for location recognition ap-
plications, but is not enough to compete with the
accuracy of the main IBL systems. In this paper
we propose the Gist-based Search Space Reduc-
tion (GSSR) system to reduce the search space
by finding candidates keyframes in the database,
then match against the 3D points that are only
seen from these candidates.
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Figure 1: GSSR system overview.

Figure 1 shows an overview of the proposed
system, where the GIST distance between the
query and all the keyframes is computed. If the
distance is below a certain threshold than the
keyframe is considered a candidate match. In or-
der to remove outlier keyframes, each candidate
keyframe is checked using Eq. 1:

Fk =
∑N

i=1 Pi(KFi,KFk)

N
, (1)

where N is the total number of candidate
keyframes and Pi is the number of 3D points in
common between the tested candidate KFk and
the keyframe KFi at i. If the ratio Fk is high
enough the candidate keyframe qualifies for lo-
calization. The 3D points of those candidates
will be matched to the SIFT features of the im-
age before removing the outliers via RANSAC.
Only images with enough inliers will qualify to
the pose estimation step.

Table 1: GSSR benchmarked against tree-
based [2], PoseNet [1] and ACG Localizer [3].

Tree$Based PoseNet ACG0Localizer GSSR Tree$Based PoseNet ACG0Localizer GSSR

Kings&College 1220 343 0.229m,&0.194deg 1.992m,&3.261deg 0.910m,&0.761deg 0.213m,&0.188deg 1.8 0.01 0.74 0.102

StMarys&Church 1487 530 0.180m,&0.424deg 2.645m,&5.102deg 0.662m,&0.634deg 0.175m,&0.309deg 4.852 0.01 0.51 0.105

Old&Hospital 895 182 0.341m,&0.272deg 2.441m,&2.923deg 1.044m,&0.846deg 0.299m,&0.228deg 1.179 0.01 0.33 0.065

Shop&Façade& 231 103 0.138m,0.220deg 1.490m,&4.299deg 0.548m,&0.575deg 0.140m,&0.217deg 0.302 0.01 0.39 0.044

Street 3015 2923 0.410m,&0.672deg& 3.910m,&3.75deg 0.972m,&1.004deg 0.364m,0.539deg 11.43 0.01 0.77 0.109

0.260m,'0.358deg' 2.496m,'3.867deg 0.872m,'0.772deg 0.238m,'0.296deg 3.91 0.01 0.548 0.085

Average0Time0(s)Median0Error
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Experimental results on major standard
datasets validates the advantages of GSSR. Ta-
ble 1 shows that GSSR scores the best localiza-
tion accuracy among all the approaches on the
Cambridge 5 Scenes dataset. Note that GSSR
has 10 times better accuracy than PoseNet and
significantly better than ACG Localizer which
is one of the best feature-based IBL systems.
GSSR was able to accurately localize a query
image in less than 0.1 sec which makes it the
fastest feature-based IBL system for large-scale
scenes.

[1] Alex Kendall, Matthew Grimes, and Roberto
Cipolla. Posenet: A convolutional network for
real-time 6-dof camera relocalization. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 2938–2946, 2015.

[2] Marius Muja and David G Lowe. Fast approxi-
mate nearest neighbors with automatic algorithm
configuration. VISAPP (1), 2:331–340, 2009.

[3] Torsten Sattler, Bastian Leibe, and Leif Kobbelt.
Improving image-based localization by active cor-
respondence search. In Computer Vision–ECCV
2012, pages 752–765. Springer, 2012.
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Localization is a key task for autonomous cars;
systems such as the Google driverless car rely
on precise and detailed maps for safe opera-
tion. Light detection and ranging (LIDAR) sen-
sors are capable of providing rich information—
including metric range and point appearance.
Robust methods can use this data for vehicle
localization by extracting the ground-plane for
alignment to a prior map, as in [2].

Vision sensors as part of the localization
pipeline can be a great enabler for autonomous
platforms. Contrary to LIDAR methods, identi-
fying the ground-plane from a camera image is a
more challenging task. In our previous work [3],
we considered localizing with a monocular cam-
era by aligning the image to a prior map. As we
demonstrated, this can be difficult as the ground-
plane can be obscured by obstacles within view
of the camera. In this work, we are interested in
partitioning an image stream into obstacles and
prior map, as shown in Fig. 1, so we can mask
out obstacles during registration.

Similar to previous work [1, 4], we use a
1D-Markov random field (MRF) to model a hor-
izontal image partition between obstacles and
ground-plane, as in Fig. 1. However, rather than
formulating our MRF potentials using image ap-
pearance alone (using learned [1] or hand-tuned
features [4]), we instead consider the tempo-
ral stream of images and inferred parallax. We
probabilistically evaluate optical flow against
expected optical flow derived from known scene
structure and camera egomotion, as in Fig. 2.

Our approach is evaluated on a challeng-
ing urban dataset with grayscale imagery, where
lighting is non-uniform. We demonstrate our
proposed algorithms by looking at errors with
respect to hand-labeled groundtruth and present
results showing improved image registration
when obstacle masks are used.
Acknowledgements: This work was supported by a
grant from Ford Motor Company via the Ford-UM Al-
liance under award N015392.

Figure 1: 1D-MRF to partition images into ground-
plane and obstacles; each variable node in our MRF
partitions an image column. Various unary potentials
can be applied to each node; our work emphasizes a
potential derived from optical flow.

Figure 2: (Left) Optical flow vectors and expected
flow vectors with uncertainties. (Middle) Optical flow
likelihood and resulting partition. (Right) Optical flow
potential implicitly considers segmenting image col-
umn into background (B), obstacle (O), and ground-
map (M).

[1] Dan Levi, Noa Garnett, and Ethan Fetaya. Stix-
elnet: A deep convolutional network for obstacle
detection and road segmentation. In Proc. British
Mach. Vis. Conf., pages 109.1–109.12, Swansea,
United Kingdom, September 2015.

[2] Jesse Levinson and Sebastian Thrun. Robust vehi-
cle localization in urban environments using prob-
abilistic maps. In Proc. IEEE Int. Conf. Robot.
and Automation, pages 4372–4378, Anchorage,
AK, May 2010.

[3] Ryan W. Wolcott and Ryan M. Eustice. Visual lo-
calization within LIDAR maps for automated ur-
ban driving. In Proc. IEEE/RSJ Int. Conf. Intell.
Robots and Syst., pages 176–183, Chicago, IL,
USA, September 2014.

[4] Jian Yao, Srikumar Ramalingam, Yuichi Taguchi,
Yohei Miki, and Raquel Urtasun. Estimating driv-
able collision-free space from monocular video.
In Proceedings of the IEEE Winter Conference on
Applications of Computer Vision, pages 420–427,
Waikoloa Beach, HI, USA, January 2015.
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Figure 1: Part-based representation.

Tracking Facial Points in unconstrained
videos is challenging due to the non-rigid de-
formation that changes over time. In this paper,
we propose to exploit incremental learning for
person-specific alignment in wild conditions.

Our approach takes advantage of part-based
representation, as illustrated in Figure 1 and cas-
cade regression for robust and efficient align-
ment on each frame. Unlike existing methods
that usually rely on models trained offline, we in-
crementally update the representation subspace
and the cascade of regressors in a unified frame-
work to achieve personalized modeling.

Blind model adaptation without correction
would inevitably result in model drifting. How
to effectively detect misalignment is still a chal-
lenging question that is seldom investigated. To
address this issue, we propose a deep neural net-
work for robust fitting evaluation to pick out
well-aligned faces from misalignment. The ar-
chitecture of the network is shown is Figure 2.
These well-aligned faces are then used to incre-
mentally update the representation subspace and
fitting strategy for person-specific modeling on
the fly. In summary, our work makes the follow-
ing contributions:

(1) We propose a novel approach for sequen-
tial face alignment. To the best of our knowl-

Figure 2: Deep fitting evaluation.

edge, this is the first time that person-specific
modeling is investigated to jointly learn the rep-
resentation subspace and the fitting parameters
in a unified framework.

(2) The proposed part-based representation
together with the cascade regression guarantees
robust alignment in unconstrained conditions.
More importantly, they are critical to efficiently
construct personalized models for real-time or
large-scale applications.

(3) We propose to leverage deep neural net-
works for efficient and robust fitting evaluation.
It significantly alleviates the drifting issue which
would severely deteriorate learned models and
inevitably lead to failure.

To validate our approach, we provide a de-
tailed experimental analysis of each component
of our approach, as well as performance com-
parisons with existing approaches. Four image
datasets (MultiPIE, LFPW, Helen, and AFLW),
four video datasets (FGNET, ASLV, 300-VW,
and YtbVW), and four state of the arts (RLMS,
DRMF, IFA, and ESR) are employed to con-
duct the experiments. The results demonstrate
that the proposed incremental learning can sig-
nificantly improve the fitting accuracy with an
affordable computational cost, especially in un-
constrained videos with extensive variations.
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