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Abstract

We present Context Forest (ConF) — a technique for predicting properties of the
objects in an image based on its global appearance. Compared to standard nearest-
neighbour techniques, ConF is more accurate, fast and memory efficient. We demon-
strate ConF by predicting three properties: aspects of appearance, location in the image,
and class membership. In extensive experiments we show that (i) ConF can automat-
ically select which components of a multi-component detector to run on a given test
image, obtaining a considerable speed-up for detectors trained from large sets (10× for
EE-SVMs [36] and 2× for DPM [21]); (ii) ConF can improve object detection perfor-
mance by removing false positive detections at unlikely locations (+2% mAP), and by
(iii) removing false positives produced by classes unlikely to be present in the image
(+5% mAP on a 200-class dataset [2]).

1 Introduction
Global image appearance carries information about properties of objects in the image. For
instance, a picture of a highway taken from a car is more likely to contain cars from the
back viewpoint than from the side (fig. 1) and a picture taken under water is more likely
to contain a fish than a car. This shows how the global image appearance of images can
help understanding what objects are present and what they look like. Moreover, another
property that can be inferred from global image appearance is the rough location of object
instances [45]. For instance, an urban scene with cars parked in front of a building, shows
cars in the bottom half of the image (fig. 2).

In this paper we exploit this observation for object class detection. We propose Con-
text Forest (ConF): a technique for learning the relation between the global appearance of
an image and the properties of the objects it contains. Given only the global appearance
of a test image, ConF retrieves a subset of training images that contain objects with sim-
ilar properties. ConF is based on the Random Forest [8, 10] framework, which provides
high computational efficiency and the ability to learn complex, non-linear relations between
global image appearance and objects properties. It is very flexible and only requires these
properties to be defined through a distance function between two object instances, e.g. their
appearance similarity or difference in location. We demonstrate ConF by learning to predict
three properties: aspects of appearance, location in the image, and class membership.
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Figure 1: Illustration of ConF selecting components for a test image (sec. 3.1). A test image It is
passed through ConF, reaching a leaf in each tree. For each training image we then count how many
trees have selected it, and we construct a retrieval set R that contains the k most frequently selected
images. Finally, we select which components to run on It based on what components appear in R.

Multi-component detectors [4, 14, 15, 17, 21, 26, 36, 60] model an object class as a
mixture of components, each trained to recognize a different aspect of appearance. For
example, different viewpoints (e.g. front and back view of a car [21, 25]) or articulation states
(e.g. a person sitting vs standing [52]). When trained on a large set, such a detector has many
components [14, 60], which all need to be evaluated on a test image, making it slow. Instead,
we use ConF to select a subset of model components which is most relevant to a particular
test image. We then run only those components, obtaining a speed-up (2x for DPM [21]
and 10x for EE-SVM [36], sec. 4.3). Hence, ConF makes large multi-component detectors
practical. This is particularly useful for EE-SVMs, as they have as many components as
there are training instances. Interestingly, in some cases we even gain a small improvement
in accuracy, by not running some components that would produce false positive detections.

Moreover, we train a second ConF to predict at which positions and scales objects are
likely to appear in a given test image, analogue to [33, 45, 55]. By incorporating this in-
formation in the detector score at test time, we reduce the false positive rate by removing
detections at unlikely locations. Experiments show an mAP improvement of 2% (sec. 4.4).

Finally, we train a third ConF to predict what object classes are present in an image, as
in [1, 27, 51]. We use it at test time by only running detectors of classes predicted to be in the
test image. In experiments on a 200-class dataset [2], this enables to run just 10 detectors per
image on average, while also improving mAP by 5%, as it removes false positives produced
by detectors of classes unlikely to be present in the image (sec. 4.5).

All these experiments demonstrate that ConF is a general technique that can predict var-
ious kinds of object properties. We carry out an extensive comparison to standard nearest-
neighbour techniques for such context-based predictions [33, 42, 45, 53, 55]. It shows that
ConF predicts object properties from global image appearance more accurately, while being
much faster and memory efficient (sec. from 4.2 to sec. 4.6).

2 Related work
Context. The use of context for object detection is a broad research area. Some works [9,
13, 21, 28, 42] model context as the interactions between multiple object class detectors
in the same image. In this paper, we model context as the relation between global image
appearance and properties of the objects within them, as in [27, 33, 39, 45, 51, 53, 55, 59].
These works have shown that global image descriptors give a valuable cue about which
classes might be present in an image and where they are located. Many object detectors [1,
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27, 39, 45, 51, 55] employed such global context to remove out-of-context false-positive
detections. A similar approach was also used for image parsing [33, 53, 59]. Most of these
works have a nearest neighbour core: they first retrieve a small subset of training images
which are most globally similar to a test image, and then transfer the relevant statistics of
the object properties in this retrieval set to the test image. In our work instead the retrieval
set is estimated by ConF, which is explicitly trained to return images containing objects with
similar properties to those in the test image. ConF has several advantages over nearest-
neighbour approaches: (i) it can learn highly complex non-linear dependencies between the
global descriptor and the object property. As a result, it estimates it more accurately; (ii)
in large training sets, nearest neighbour becomes very slow, as its complexity is linear in
their size. ConF is much faster and more memory efficient; (iii) ConF supports any objective
function, which might even be evaluated on a different data representation than the input
at test time. This is a crucial feature for our problem, as we want to predict properties of
objects, but based on global image features.

Multi-component detectors. These detectors [4, 14, 15, 17, 21, 26, 36, 60] model an
object class as mixture of components. They can be slow when trained from large train-
ing sets as they need many components to reach peak performance [14, 60]. While we
present experiments on DPM [21] and EE-SVM [36], ConF can in principle speed-up any
multi-component detector. The problem of speeding-up detection, especially when evaluat-
ing many HOG templates, has also been attacked by other works [11, 20, 46, 49]. However,
these are specialized to the HOG/DPM detectors, as they exploit its internal structure. More-
over, [11, 49] are multi-class methods and achieve a speed-up only when the number of
classes predicted at the same time is large. ConF, instead can speed-up even a single class
(sec. 4.3). Finally, we believe ConF can offer an additional, complementary way to speed-up,
and could potentially be combined with these works.

EE-SVM. The EE-SVM [36] is an extreme case of multi-component detector, where a
separate component is created for each training example. Because of this, EE-SVM benefit
the most from dynamically selecting components with ConF. EE-SVM is widely used for
applications beyond object detection [5, 6, 16, 18, 24, 30, 37, 47, 48, 50, 54, 57] because it
explicitly associates a training example to each object it detects in a test image. This enables
transferring meta-data such as segmentation masks [36, 54], 3D models [36], viewpoints [5],
GPS locations [24] and part-level regularization [6]. Furthermore, EE-SVM can also be used
for discovering objects parts [18, 48], scene classification [30, 48], object classification [16],
image parsing [54], image matching [47], automatic image annotation [57] and 3D object
detection [50]. All these applications can potentially be accelerated by ConF.

3 Estimating object properties from context
We exploit the observation that global image appearance contains information about prop-
erties of the objects inside it. We focus on three properties: aspect, location, and class. We
propose a new method (ConF) based on the Random Forest framework [8, 10], which learns
the relation between global image features and the properties of the object in that image.
Given only the global image appearance of a test image, ConF retrieves a subset of train-
ing images that contain objects with similar properties. The properties in this retrieval set
can then be used to modify the behaviour of the object detector, e.g. by running only some
components or by downgrading the score of false positive detections at unlikely locations.
In the following, we first describe ConF in its general form (sec. 3.1), and then specialize it
for each of the three properties we consider (sec. 3.2 to 3.4).
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Figure 2: Illustration of ConF predicting object locations (sec. 3.3).

3.1 Context Forest (ConF)
Given a training set T the goal of ConF is to map the global appearance φ(It) of a test image
It into a retrieval setR⊂ T . We want to construct a mapping, such that properties of objects
in images ofR are similar to the properties of objects in It (e.g. appearance, location, class).
ConF at training time learns an ensemble of decision trees (forest) that operates on global
image features φ(I). We construct each tree by recursively splitting the training set T at each
node. We want the leaves of the trees to contain images whose objects properties are compact
according to some measure c(Tl), where Tl are the training images in leaf l. Each internal
node n contains a binary split function f (φ(I),θn), where θn are its parameters. Let Tn
be the training images that reached node n, then f (φ(I),θn) will split Tn into two subsets
Tl and Tr. We use axis-aligned weak learners as f [10]. The split function f (φ(I),θn)
applies a threshold to one of the dimensions of the image feature vector φ(I). Following
the extremely randomized forest approach [38], for each node we randomly sample several
thousand possible splits θ and choose the one that maximizes the joint compactness:

θn = argmax
θ

c(Tl)+ c(Tr) (1)

s.t. ∀I ∈ Tl , f (φ(I),θ) = 0, ∀I ∈ Tr, f (φ(I),θ) = 1

where compactness is defined as

c(T ) = 1
N(T )2

1
σ2
√

2π
∑

wi∈T
∑

w j∈{T \wi}
e−

1
2

D(wi ,w j)
2

σ2 (2)

where N(T ) is the number of ground-truth object bounding-boxes in T and D(wi,w j) is a
distance measure between the properties of two object bounding-boxes wi and w j. Note how
the inner summation in (2) is an estimation of the density of the distribution induced by all
bounding-boxes in {T \wi}, evaluated at w j. This value is high if w j has other bounding-
boxes nearby. The estimate is done with a Gaussian Kernel Density estimator [41] (KDE).
We estimate the standard deviation σ from the entire training set once before training the
forest. This determines the scale of the problem, i.e. at which range two bounding-boxes
should be considered close. For each training bounding-box wi we compute its k-nearest
neighbours in the whole training set and compute the standard deviation over them. Finally,
we set σ as the median of these standard deviations over all bounding-boxes.

By employing different compactness measures c, we can use ConF to learn relations be-
tween different object properties and global image features. Later we show how to use it for
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selecting components relevant for a test image (sec. 3.2), for estimating likely object loca-
tions in it (sec. 3.3), and for predicting which object classes it is likely to contain (sec. 3.4).

ConF at test time operates in two phases (fig. 1, 2 and 3). First, test image It is passed
through the forest, reaching a leaf in each tree. Thereby, each tree selects the subset of
training images contained in that leaf. For each training image Ii, we count how many trees
have selected it, forming the score η(Ii, It). We now construct the retrieval set R to contain
the k most frequently selected training images. In our experiments k = 20.

Note how the split function f and the compactness measure c operate in structurally
different spaces. While f operates on the global image features φ(I), c is measuring the
similarity of properties of objects inside the images. In this way ConF learns the relation
between the two. Importantly, c is neither convex nor differentiable in φ(I) and we are only
able to learn this inter-space relation thanks to the unique advantages of Random Forests.

3.2 ConF for component selection
Here we assume that each component of an object detector has been previously trained from
a visually compact set of object instances, and that we know the component id ξ j of each
training instance j. In EE-SVMs each training instance leads to a different component. In
DPM the component id of a training instance can be inferred by the output of the training
procedure [22]. Based on this information, we train a ConF to select a small subset of
components to run on a given test image It .

Training. To train ConF for components selection we define the distance D(wi,w j) in (2)
as the L2 distance between the HOG descriptors of bounding-boxes wi and w j.

Test. We pass the test image It through ConF obtaining a retrieval setR. We then estimate
a posterior distribution p(ξ j|It) over components ξ j given It . As a training image I might
contain multiple instances from different components, each training image is ‘labelled’ by
a distribution over components p(ξ j|I). We estimate the component distribution for the test
image It as the average over the training images in the retrieval setR

p(ξ j|It) =
1
|R| ∑

I∈R
p(ξ j|I) (3)

Based on this distribution, we can now select which components to run on It . We rank com-
ponents by their probability and iteratively pick them until their combined probability mass
exceeds a threshold γ . This threshold controls a trade-off between running few components
and getting high detection performance. An interesting aspect of our formulation is that the
number of selected components changes depending on the test image. A test image with
a characteristic appearance matching training images with a systematic recurrence of a few
components will lead to a peaky p(ξ j|It). In this case it is safe to run only a few components
and we obtain a substantial speed-up. On the other hand, if the ConF is uncertain about the
contents of the test image, then the entropy of p(ξ j|It) will be high, and many components
will be selected. In the extreme case, for a very difficult test image, our procedure naturally
degenerates to the default case of running all components (assuming a high threshold γ).

3.3 ConF for object location
At test time, a typical detector scores windows in the test image It , based on their appearance
only. We propose here to augment the detector’s scores by adding knowledge about likely
positions and scales of the object class, derived purely from the global appearance of It .
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Figure 3: Illustration of ConF predicting class membership (sec. 3.4).

Training. We train two ConFs to predict object positions and scales, respectively. To do
so, we employ a different measure of compactness, substituting the distance between two
bounding-boxes in (2) with DPOS (or DSCALE). We define DPOS(wi,w j) as the L2 distance
between wi and w j. We define DSCALE(wi,w j) =max( Hi

H j
,

H j
Hi
) ·max(Wi

W j
,

W j
Wi
) as the difference

in their scale (W and H refer to width and height).

Test. We first pass the test image It through ConF obtaining a retrieval set R, and then
compute the following score for each window w in the test image:

1
N(R) ∑

wi∈R

1
σ2
√

2π
e−

1
2

D(w,wi)
2

σ2 (4)

where N(R) is the number of object instances in R, and D is either DPOS or DSCALE . We
learn σ from the entire training set as in sec. 3.1. This score captures how likely a window is
to cover an object based on its position/scale. Finally, we linearly combine the position/scale
scores with the detector’s score of w. The usual non-maxima suppression stage follows.

3.4 ConF for class selection
In multi-class problems, a typical system would run detectors for all classes on all test im-
ages [43]. Instead, here we use ConF to predict what classes are present in each image, and
run only the corresponding detectors. This greatly reduces the number of detectors run, and
removes some false-positives.

Training. To train ConF to predict what classes are present in an image, we use the fol-
lowing distance between two bounding-boxes in the compactness function (2):

DCLASS(wi,w j) =

{
0 if wi and w j are objects of the same class
∞ otherwise (5)

This definition simplifies (2) considerably, as e−
1
2

D(wi ,w j)
2

σ2 can only be 0 or 1. Note how the
inner summation in (2) now simply counts the number of objects w j ∈ {T \wi} of the same
class as wi. We can rewrite (2) equivalently as:

c(T ) = 1
N(T )2

1
σ2
√

2π
∑
c∈C

N(T ,c) · (N(T ,c)−1) (6)

where N(T ,c) counts how many objects in T belong to class c. Note how (6) allows an
important speed up over (2), as it avoids computing the KDE. Evaluating (6) takes time
O(|T |), compared to O(|T |2) for (2).
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Test. We pass the test image It through ConF obtaining a retrieval set R. We then esti-
mate a posterior distribution p(c j|It) over object classes c j given It , analog to what done for
components of one class in sec. 3.2. Based on this distribution, we can now select which
detectors to run on It . In our experiments we run all detectors with p(c j|It)> 0.

4 Experiments and conclusions
We present a series of experiments on two datasets (sec. 4.1). In sec. 4.2 we first evaluate
how good the retrieval sets generated by ConF are. Then, we show how ConF for component
selection (sec. 4.3), object location (sec. 4.4) and class selection (sec. 4.5) can be used to
improve object detection. Finally, we show how ConF is more computation and memory
efficient then a nearest neighbour approach (sec. 4.6).

4.1 Datasets
We present experiments on two datasets: a 2-class dataset we call BigCH, and the 200-class
val subset of ILSVRC2014 [2]. The first one has few classes, but many training instances
per class (on average ∼ 21k). We use it to evaluate ConF for selecting model components
(sec. 4.3) and predicting object location (sec. 4.4). The second dataset has many classes, but
much fewer training instances per class (on average ∼ 530). We use it to evaluate ConF for
class selection (sec. 4.5).
BigCH is a 2-class dataset (Car and Horse). It combines 6 existing datasets: PASCAL
VOC 2012 [19], ImageNet [12], LabelMe [44], SUN 2012 [58], UIUC [3] and PASCAL-10x
[60]. We collected all images with bounding-box annotations and removed duplicate images
and incorrect bounding-boxes. In total, the dataset has 15766 images containing 28548 car
instances and 10107 images containing 13071 horse instances. Finally, we collected negative
images so that each source dataset contributes an equal number of positive and negative
images. We split the dataset into training (90%) and test (10%) sets. The training set contains
25774 cars and 9097 horses, and the test set contains 2774 cars and 1010 horses.
ILSVRC2014 [2] is a 200-class dataset annotated by bounding-boxes. Following [23], we
perform experiments on the val set and consider two disjoint subsets: val1 (10k images)
and val2 (10k images). We use val1 for training and test on val2.

4.2 Quality of retrieval sets
We quantify how similar object bounding-boxes from a test image It are to those in the
retrieval setR returned by the method using the average density ofR evaluated at the object
properties in It 1

Zσ2
√

2π
∑

wi∈It
∑

w j∈R(It )
e−

1
2

D(wi ,w j)
2

σ2 (7)

where Z is the number of pairs of bounding-boxes in It and R. The distance D and standard
deviation σ vary depending on the property, as defined in sec. 3.2-3.4. We extract different
features as global image descriptors φ(I), depending on the property. For the appearance
and location properties, we extract SURF [7], LAB and SIFT [34] features on a dense grid
at multiple scales. For each feature type and object class we train a codebook of 1000 visual
words and construct a 2-level spatial pyramid [32]. Additionally, we also extract a GIST
[40] descriptor for the image. Overall, we train ConF on a 16000 dimensional feature space.
For the class membership property, we extract state-of-the-art convolutional neural network
(CNN) descriptors of 4096 dimensions [29]. These are the output of a CNN pre-trained
specifically for image classification [31] and so they are very suited to the task.
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Figure 4: Results of applying ConF for the automatic component selection. The points on the plot
correspond to different choices for the threshold γ (sec. 3.2). The horizontal axis is the average amount
of components used. The vertical axis is the AP of the detector using components selected by ConF.

Obj property
All train NN ConF

data 1 10 1 10
Appearance 0.02 0.07 0.03 0.09 0.07
Position 0.36 0.90 0.70 1.20 1.00
Scale 0.04 0.07 0.06 0.09 0.08
Class 0.05 0.36 0.30 0.39 0.32

Table 1: Evaluation of the quality of retrieval sets
for predicting object properties. Each entry rep-
resents the average density of the retrieval set R
evaluated at the objects properties in the test im-
ages. We consider two sizes for R: 1 and 10.

Table 1 show results averaged over the
test set, higher values are better. For ap-
pearance and location, we also average re-
sults over the two classes (car and horse).
As a baseline, we return the whole train-
ing set as the retrieval set. This leads to
a generic prior on image properties, inde-
pendent of the test image. Moreover, we
compare to the traditional way of build-
ing retrieval sets by k-nearest neighbours
(kNN) [33, 42, 45, 53, 55], defined on the same features as ConF. Both kNN and ConF
greatly outperform the baseline, proving they return meaningful retrieval sets. This con-
firms the observation that the global image appearance conveys information about the objects
properties inside the images. Moreover, ConF returns better retrieval sets than kNN across
all object properties and retrieval set sizes evaluated. In the next sections we show how more
accurate retrieval sets result in better detection performance and greater speed ups.

4.3 ConF for automatic component selection
We now use ConF to select object detector components relevant for a given test image on the
BigCH dataset. We present experiments on two detectors: DPM [21] and EE-SVM [36].

DPM trains a mixture of components, each on a subset of the data with compact HOG
appearance [14, 21]. We use the publicly available implementation [22] and train 16 compo-
nents for the class ‘car’ and 10 components for ‘horse’ (these number of components lead to
best performance on the large BigCH dataset).

The EE-SVM model is composed of a separate linear SVM for every training instance
(exemplar), trained using the exemplar as the only positive against all negatives in the train-
ing set (here on HOG features). We refer to a single exemplar SVM (E-SVM) as a component
of the EE-SVM model, by analogy with DPM components. We use the publicly available
implementation [35].

Fig. 4 shows the evolution of AP while increasing the percentage of components used
(higher is better). We compare to building retrieval sets by kNN, and to a baseline which ran-
domly selects components without looking at the test image. ConF outperforms the baseline
and kNN for both object classes, for both detectors, and over the whole range of the plots.
By employing ConF, we closely match the performance of the full DPM model by running
roughly half of the components. We match the performance of a full EE-SVM when running
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Figure 5: Detection obtained before (top row) and after (bottom row) applying ConF for component
selection. Green bounding-boxes highlight correct detections, while red ones show false positives.

less than 10% of the components. Even in the extreme case of running just one EE-SVM
component, the AP is about 90% of that of the full model. Interestingly, for EE-SVM on the
horse class, ConF improves AP by 3% over the full ensemble using all components, when
running 10× fewer components. There is also a minor improvement in AP for EE-SVM on
the car class. This comes from dropping some components that lead to false positives.

These experiments demonstrate the ability of ConF to select relevant components given
just global image appearance. This makes EE-SVMs practical even when trained from large
sets with tens of thousands of exemplars. This is crucial for applications that exploits the
useful ability of EE-SVM to associate training exemplars to objects detected in test images.
Fig. 5 shows some example results.

4.4 ConF for object locations
DPM - Car EE-SVM - Car

None NN ConF None NN ConF
69.1 0 +2.1 52.7 0 +2.3

DPM - Horse EE-SVM - Horse
None NN ConF None NN ConF
64.6 0 +0.7 40 0 +1.1

Table 2: Results of augmenting the detector
score with the location model derived by ConF
(sec. 3.3) and NN compared to not using loca-
tion model at all.

Here we demonstrate how ConF trained to es-
timate the location of objects from global im-
age features can improve detection performance
by downgrading the score of false positives at
unlikely locations. We experiment with DPM
and EE-SVM on BigCH, as in sec. 4.3. As
tab. 2 shows, ConF improves AP for both classes
and both detectors (+2% for cars and +1% for
horses). Instead, kNN does not bring any improvement. Fig. 6 shows example results.

4.5 ConF for class selection
Here we experiment on the ILSVRC2014 dataset, which has a large number of classes (200).
In this scenario, we can use ConF to to predict what classes are present in an image, and
then only run detectors for those classes (sec. 3.4). We use the EE-SVM detector, but this
time based on object proposals [56] and state-of-the-art R-CNN features [23]. These are
produced by CNN pre-trained for image classification [29, 31] and then fine-tuned for object
detection [23]. For training an E-SVM, we set C = 10−3 and we mine hard negatives from
2000 random training images (using more did not bring any improvement). Both fine-tuning
and E-SVM training are done on the val1 set. We measure test performance on val2, as
AP averaged over the 200 classes (mAP).

Without any context, EE-SVM achieves an mAP of 16.3%. Selecting classes based on
kNN retrieval sets improves performance by +3.3% (mAP 19.6%), while ConF delivers a
larger improvement of +4.8% (mAP 21.1%). The improvements are due to removing false
positives produced by detectors of classes unlikely to be present in the image. Interestingly,
ConF selects less than 10 classes per image on average, and therefore runs 20× fewer EE-
SVM detectors than the context-free baseline.
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Figure 6: Detection obtained before (top row) and after (bottom row) applying ConF as location
model. Green bounding-boxes highlight correct detections, while red ones show false positives.

4.6 Computational and memory efficiency
ConF does not only offer better performance than kNN, but is also more memory and com-
putationally efficient. kNN requires a number of distances computations linear in the number
of training images, whereas ConF requires only a logarithmic number of thresholding oper-
ations. In practice this makes a big difference in runtime, e.g. ConF for component selection
takes on average 0.5s per image vs 9.9s for kNN (on a 4-cores Intel Core i5 2.0GHz).

In terms of memory, kNN stores all feature vectors of all images in the training set. For
cars in BigCH, this amounts to 1.7 GB. For each internal node ConF stores a threshold, a
feature id and the ids of its children, amounting to 16 bytes. The leaves store the indices
of the training images they contain, for a total of exactly the number of training images ×2
bytes overall (per tree). For cars in BigCH, there are < 900 internal nodes on average per
tree. As we store 750 trees per class, the grand total is only 27 MB (60× less than kNN).

4.7 Conclusions
We presented Context Forest (ConF), a technique for predicting properties of objects in an
image based on its global appearance. We trained ConF to predict three properties: aspects
of appearance, location in the image, and class membership. We presented and extensive
comparison to standard nearest-neighbour techniques for such context-based predictions and
results showed that ConF predicts object properties from global image appearance more
accurately than kNN, while being more memory efficient and much faster.

We also used ConF to speed-up and improve object class detection (with DPM and EE-
SVM). We first showed how ConF can be employed to dynamically select a small subset
of model components which is most relevant for a test image. Running only the selected
components led to a speed-up (2× for DPM and 10× for EE-SVM). Interestingly, in some
cases we gained an improvement in accuracy as well, by not running the components that led
to false detections. Then, we trained a second ConF to predict at which positions and scales
objects are likely to appear in a given test image. By incorporating this location information
in the detector score, we reduced the false positive rate by removing detections in unlikely
locations and improved detection performance (AP +1-2%). Finally, we trained a third ConF
to predict what classes are present in each image, and run only the corresponding detectors.
This greatly reduced the number of detectors run (20×), and removed some false-positives,
achieving an improvement of +4.8%.
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