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Abstract

We present a novel approach to solve the visual tracking problem in a particle filter
framework based on sparse visual representations. Current state-of-the-art trackers use
low-resolution image intensity features in target appearance modeling. Such features of-
ten fail to capture sufficient visual information about the target. Here, we demonstrate
the efficacy of visually richer representation schemes by employing multi-channel fea-
ture dictionaries as part of the appearance model. To further mitigate the tracking drift
problem, we propose a novel dynamic adaptive state transition model, taking into account
the dynamics of the past states. Finally, we demonstrate the computational tractability
of using richer appearance modeling schemes by adaptively pruning candidate particles
during each sampling step, and using a fast augmented Lagrangian technique to solve
the associated optimization problem. Extensive quantitative evaluations and robustness
tests on several challenging video sequences demonstrate that our approach substantially
outperforms the state of the art, and achieves stable results.

1 Introduction
Recent advances in the application of compressive sensing to traditional computer vision
problems such as face recognition [24, 26] inspired several visual tracking approaches based
on sparse representations. The core idea of these approaches is to build an appearance model
of the object using several pre-defined templates. The problem of tracking the object is then
cast as finding a sparse approximation in the subspace spanned by the templates. In [13],
Mei and Ling introduced the l1 tracker, demonstrating impressive tracking results. Given
an appearance model A = [t1 · · · tn] ∈ Rm×n of an object formed using a set of templates
ti ∈ Rm, i = 1, . . . ,n, they express a tracking result y ∈ Rm as y = Ax+ ε , where x ∈ Rn

is the sparse coefficient vector that is to be recovered, and ε ∈ Rm is used to account for
partial occlusions. The l1 tracking algorithm hypothesizes that x and ε are sparse for a good
tracking candidate, and recovers them by solving an l1 regularized least squares problem.
Subsequently, the candidate with the least projection error in the template subspace is chosen
as a tracking target, and a Bayesian state inference model in a particle filter framework is used
to track the object over time.
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In spite of the impressive progress achieved by the l1 tracker and its recent variants,
several issues remain that often lead to tracking failures. In this paper, we introduce a novel
particle filter approach to mitigate such problems. The key contributions of our proposed
method are:

Dynamic model. Intuitively, it is easy to see that incorporating dynamic information
will make a tracking algorithm more robust to the drift problem. However, most related ap-
proaches [3, 11, 13, 20, 28, 29, 30] do not take this information into account, employing only
a fixed-variance Gaussian distribution to represent the state transition model. To mitigate this
problem, we propose to adaptively learn the variance from past states using a dynamic state
transition model. Specifically, we employ an autoregressive model in conjunction with block
Hankel matrices to continuously learn the dynamics from past data.

Appearance model. Most existing approaches use extremely low resolution image in-
tensity features (e.g. 12× 15 in [3, 13, 20], 32× 32 in [12, 28, 31]) as part of the appear-
ance model. Such features do not capture sufficient visual information required to reliably
track the object and avoid drift. To mitigate this problem, we propose a three-channel ap-
pearance dictionary comprised of image intensity information, normalized image gradient
magnitudes, and histograms of oriented gradients to construct an appearance model of the
object. We demonstrate that using rich visual representations as part of the appearance model
improves tracking accuracy and stability.

Adaptive candidate filtering for speed. Typically, tracking algorithms in a particle filter
framework use a fixed number of particles to approximate the posterior distribution (e.g., 600
in [13, 20], 400 in [11, 28, 30]). This number is often a trade-off between tracking accuracy
and computational complexity, and limits the use of rich visual representations as part of
the appearance model. In this work, we demonstrate that many particles are not necessary
to reliably track an object, given the initial location. Specifically, we propose to adapt the
number of particles required during the state estimation process using the Kullback-Leibler
(KL) distance measure [9]. In addition, we use a fast augmented Lagrangian technique to
solve the associated optimization problem, demonstrating superior tracking results at higher
speeds than related sparse representation based approaches.

We validate our method on several challenging publicly available video sequences and
demonstrate that our method achieves a significant 10% improvement in the area under the
curve of the success plot compared to the current state of the art.

2 Related Work
Several improvements have been proposed to the original l1 tracker. Zhang et al. [28] ex-
ploited the low-rank nature of the appearance model A and also explicitly took background
information into account to mitigate the drift problem. Bao et al. [3] used a fast variant
of the proximal gradient optimization algorithm to achieve impressive improvements in the
tracking speed. There have also been efforts to incorporate subspace representations into the
appearance model. Wang et al. [20] used principal component analysis (PCA) basis vec-
tors as part of the appearance model and demonstrated the efficacy of using both subspace
learning and sparse representation in achieving robust tracking. Inspired by the success
of multi-task learning [5] in image annotation [16] and image classification [27] problems,
Zhang et al. [30] exploited the interdependencies of particles to learn joint particle represen-
tations in a multi-task framework, demonstrating significant computational gains over the l1
tracker. Zhong et al. [31] used sparse generative and discriminative models in a collabora-
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tive fashion to effectively deal with drastic appearance changes. More recently, Wang et al.
[21] demonstrated the efficacy of using online dictionary learning algorithms in updating the
target appearance model. A comprehensive discussion and experimental evaluation of these
and several other related tracking approaches can be found in [18, 25].

3 Approach overview

We formulate visual tracking as a sparse representation problem in a particle filtering frame-
work. Given the initial location of the target to be tracked, we warp the image into a 64×64
pixel template, thereby representing the position of the target in each frame using a four-
dimensional state vector st ∈ R4. By perturbing the initial location by a few pixels (typ-
ically, 1–3), we form m such templates. In our experiments, we set m = 10. We then
construct three appearance dictionaries using these templates: an intensity channel dictio-
nary A1 = [t1

1 · · · t1
m], a normalized gradient magnitude dictionary A2 = [t2

1 · · · t2
m], and a His-

togram of Oriented Gradients (HOG) [6] dictionary A3 = [t3
1 · · · t3

m], where each dictionary
A j ∈Rd j×m. Now, given a potential target particle y, we compute its intensity feature vector
y1, normalized gradient magnitude vector y2, and HOG vector y3. In each feature channel,
we hypothesize that a good target candidate can be represented as a sparse linear combi-
nation of the dictionary templates, and recover the sparse vector by solving the following
convex optimization problem:

(x j∗,ε j∗) = arg min
x j ,ε j

‖x j‖1 +‖ε j‖1 s.t. y j = A jx j + ε
j, j = 1,2,3 (1)

where ε j is used to account for error and partial occlusion, and x j is the sparse coefficient
vector we wish to recover.

Tracking in a particle filtering framework proceeds by generating several hypotheses, and
testing each for its likelihood. In our context, each hypothesis is a candidate particle, repre-
sented by its state vector. To generate potential candidate particles, most related approaches
employ a fixed-variance Gaussian distributed state transition model. Instead, we search for
potential candidate particles using an adaptive state transition model incorporating dynamic
information. Our key insight is that learning from the dynamics of past state vectors can lead
to improved and efficient search for new candidate particles, leading to both accuracy and
speed benefits. Formally, if st ∈ R4 is the current state vector, we estimate the elements of
the next state vector st+1 using the following transition model:

st+1(i) = st(i)+ r(i)σt+1(i) (2)

where st+1(i) is the ith element of st+1, r(i) ∼ N (0,1) is a normally distributed random
number, and σt+1(i) is the ith element of the variance vector σt+1 ∈ R4 that we estimate
on-the-fly using the dynamics of the past states.

Another key contribution of our approach is that we demonstrate the computational
tractability of using visually richer representation schemes as part of appearance model-
ing. We achieve this by adaptively pruning candidate particles using the Kullback-Leibler
(KL) distance measure for probability density functions, and solving Equation 1 using a fast
augmented Lagrangian technique.
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4 Algorithm description

4.1 Review of particle filtering

Particle filters are useful tools for tracking the state of a dynamic system modeled in a
Bayesian framework. Given past observation vectors y1:t−1, the probability of the state st
is predicted as p(st |y1:t−1) =

∫
p(st |st−1)p(st−1|y1:t−1)dst−1. Now, given the observation

vector yt at time t, the probability is updated using p(st |y1:t) =
p(yt |st )p(st |y1:t−1)

p(yt |yt−1)
. The particle

filter approximates p(st |y1:t) by a set of samples si
t , i = 1,2, . . . ,N. Each sample has an asso-

ciated weight wi
t which is computed as wi

t = wi
t−1

p(yt |si
t )p(si

t |si
t−1)

q(st |s1:t−1,y1:t )
, where q(st |s1:t−1,y1:t) is an

importance distribution from which the samples si
t are drawn.

Here, we assume q(st |s1:t−1,y1:t) = p(si
t |si

t−1), and hence the previous equation becomes
wi

t = wi
t−1 p(yt |si

t). In other words, the weights become proportional to the likelihood of the
observation vector yt given the state vector st . We compute this observation likelihood using
the following expression: p(yt |st) = exp(−∑

3
j=1 α j‖A jx j−y j

t ‖2
2), where α j is a positive

constant, and A1,A2,A3 are the three appearance dictionaries discussed next.

4.2 Modeling target appearance

As noted in the previous section, most of the related tracking algorithms use simple image
intensity information of extremely low resolution patches to form the appearance model.
In our approach, we use visually richer representations by computing several channels of
quantized gradient orientations, normalized image gradients, and intensity features. Our
motivation for this approach stems from two observations. First, intuitively, a richer ap-
pearance representation can capture more visual data from the target, thereby potentially
mitigating the drift problem. A second, more compelling, reason is related to a recent result
from information theory. In [23], Wright and Ma showed that if the columns of an appear-
ance dictionary D are highly correlated, any sparse signal s can be recovered by solving the
following l1-minimization problem:

min‖s‖1 +‖e‖1 s.t. y = Ds+ e (3)

Additionally, they also show that as the dimension of the dictionary D increases, the per-
centage of errors that the problem represented by Equation 3 can correct approaches 100%.
Their basic assumption that the columns of D should be correlated is valid in our problem.
As noted previously, we form the appearance dictionaries by perturbing the initial location by
a few pixels, thereby leading to highly overlapped templates and correlated feature channels.

First, for each 64× 64 template image, we take the intensity vectors t1
i and aggregate

them into the intensity feature dictionary A1 = [t1
1 · · · t1

m]. Next, we take the image gradient
information into account by computing the normalized gradient magnitudes t2

i for each tem-
plate pixel. These values are then vectorized and aggregated to form the normalized gradient
magnitude dictionary A2 = [t2

1 · · · t2
m]. If g(p,q) represents the gradient magnitude at pixel

(p,q), the normalized gradient magnitude is computed as g̃(p,q) = g(p,q)
(s(p,q)+ f ) , where s is a

smoothed version of the gradient magnitude g, and f is a small positive constant. Specifi-
cally, s is computed by convolving g with a k×k triangular filter. In our experiments, we set
k = 5. These normalized gradient magnitudes t2

i are then used to compute several channels
(6, in our experiments) of gradient histograms. These values are then vectorized and aggre-
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gated to form the HOG dictionary A3 = [t3
1 · · · t3

m]. Therefore, we model the appearance of
the target to be tracked using the three-channel dictionaries A1, A2, and A3.

4.3 Dynamic adaptive state transition model
As noted earlier, most of the related tracking approaches [3, 11, 13, 20, 28, 29, 30] use
a simple Gaussian distributed state transition model. Specifically, if st is the current state
vector, the elements of the next state vector st+1 are estimated as

st+1(i) = st(i)+ r(i)σ0(i) (4)

where r(i)∼N (0,1) is a normally distributed random number and σ0(i) is the ith element of
σ0 ∈R4, a fixed variance vector set manually. However, such a fixed-variance state transition
model can cause significant drift errors in the approximation of the particle filter, resulting
in severe tracking failures. In our work, we propose a simple modification to Equation 4 as
follows:

st+1(i) = st(i)+ r(i)σt+1(i) (5)

where σt+1 ∈ R4 is a dynamic adaptive variance vector computed as

σt+1 = max(min(σ0
√

et ,σmax),σmin) (6)

where σmax ∈ R4 and σmin ∈ R4 are upper and lower bounds on σt+1 we impose manually,
and max and min are element-wise operators. This adaptive variance model increases or
decreases the search area for new particle sampling depending on whether the prediction
error is large or small. To compute the scalar et , we take into account past dynamics to
model the temporal evolution of the state vector st . If s̃t corresponds to the particle with the
highest observation probability at time t, and ŝt is the estimated state vector at time t using
past state vectors, then we have e j

t = ‖y
j
s̃t
−y j

ŝt
‖2, where j ∈ {1,2,3} and y1

s , y2
s , and y3

s are
respectively the intensity, normalized gradient, and HOG feature vectors of the candidate
image corresponding to the state s. We then add up these feature channel errors to give the
combined prediction error et = e1

t + e2
t + e3

t at time t.
To estimate ŝt , we exploit the temporal evolution of the state vector st . Specifically, we

consider an nth order autoregressive model as follows:

ŝt = c1st−1 + c2st−2 + · · ·+ cnst−n (7)

To compute the coefficient vector c = [cn,cn−1, . . . ,c1], we form the block Hankel matrix
[1] associated with the state vector s:

Hs
p,q =


s1 s2 · · · sq
s2 s3 · · · sq+1
...

...
. . .

...
sp sp+1 · · · sq+p−1

 (8)

In our work, we set p = t − n− 1 and q = n. With the Hankel matrix defined as in
Equation 8 and the autoregressive model defined as in Equation 7, we make the following
straightforward observation:

Hs
t−n−1,n


cn

cn−1
...

c1

=


sn+1
sn+2

...
sn+(t−n−1)

 (9)
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The coefficient vector c can be recovered from Equation 9 using a simple least squares
error minimization technique. Specifically, the coefficient vector c can be written as c =

Hp
[
sn+1 sn+2 · · · sn+(t−n−1)

]>, where Hp is the psuedo-inverse of Hs
t−n−1,n, given by

Hp = (Hs
t−n−1,n>Hs

t−n−1,n)−1Hs
t−n−1,n>. A key advantage of our approach is that by con-

tinuously learning the variance σt+1 from past data, we can adapt to time-varying dynamics
more effectively when compared to the fixed variance model of Equation 4, thereby better
positioning our algorithm to deal with the tracking drift problem.

4.4 Adaptive candidate filtering

In our algorithm, the number of candidate particles to sample plays a crucial role. Choosing
a higher number of particles in a given search area helps to exhaustively search for potential
target particles, but has a downside in that the computational complexity also increases, mak-
ing the overall tracking algorithm impractical to use. On the other hand, randomly choosing
a lower number of particles at each sampling step is also not prudent, possibly leading to
severe tracking drift. Several related tracking approaches choose a fixed number (400-600)
[3, 11, 12, 14, 21, 29, 31] of particles as a compromise between computational complexity
and tracking accuracy. However, even this number is quite high, resulting in impractical
average tracking run-times.

Here, we incorporate the dynamic model described in the previous section into the adap-
tive particle filtering framework of Fox [9]. We divide the state space into discrete bins and
at each new frame, determine the number of particles required so that the KL-distance be-
tween the maximum likelihood estimate of the particle-based posterior and the true posterior
probability does not exceed a threshold error ν . Specifically, we choose the desired num-
ber of particles from a chi-square distribution as N = 1

2ν
χ2

k−1,1−δ
, where k is the number of

bins with support, ν is the desired approximation error, and (1− δ ) is the probability with
which the KL-distance approximation can guarantee an error less than ν . A proof of this
expression can be found in the supplementary material. In our experiments, we found that
performing spatial binning using only the translational parameters of the state vector resulted
in acceptable approximations. Therefore, to determine if a new particle st falls into a bin, we
determine the vector rb = [

st tx
σt tx

st ty
σt ty

], where st tx ,σt tx , and st ty ,σt ty represent the translational
parameters of st and σt respectively, and check if rb exists in the set of currently binned
particles.

4.5 Efficiently solving the optimization problem

Solving the optimization problem of Equation 1 efficiently is key to achieving fast track-
ing. In our work, we use a fast augmented Lagrangian technique to solve the problem of
Equation 1. Specifically, we eliminate the equality constraints by introducing a Lagrange
multiplier, and optimize the resulting cost function in an iterative fashion.

Formally, for each candidate particle, we have the intensity feature vector y1, the normal-
ized gradient magnitude feature vector y2, and the HOG feature vector y3. In each channel
y j, we solve the optimization problem of Equation 1. For this problem, the augmented La-
grangian can be written as

Lζ (x j,ε j,ρ) = ‖x j‖1 +‖ε j‖1 +
ζ

2
‖y j−A jx j− ε

j‖2
2 +ρ

>(y j−A jx j− ε
j) (10)
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In our experiments, we set ζ = 2m/‖y j‖1 [26]. Subsequently, x j and ε j can be recovered in
an iterative fashion using the following scheme:

ε
j

i+1 = arg min
ε j

Lζ (x
j
i ,ε

j,ρi) = shrink
(

y j−A jx j
i +

1
ζ

ρi),
1
ζ

)
(11)

x j
i+1 = arg min

x j
Lζ (x j,ε j

i+1,ρi) (12)

ρi+1 = ρi +ζ (y j−A jx j
i+1− ε

j
i+1) (13)

where (shrink(t,α))i = sgn(ti)max{|ti| −α,0}, i = 1,2, . . . ,n. As noted above, the update
step for ε

j
i+1 has an analytic solution, and we solve the update step for x j

i+1 using the Fast
Iterative Shrinkage Thresholding Algorithm (FISTA) [4]. A detailed derivation and analysis
of the entire process can be found in the supplementary material.

4.6 Robust dictionary update
As with any template based approach, it is essential that we update the appearance dictionary
as we progress through the video sequence, since the dictionary defined in the first frame will
not accurately represent the target appearance over time. In our work, we use an intuitive
approach to update the appearance dictionary. In each frame, we use the ε j∗ determined by
solving Equation 1 to compute an error/occlusion ratio l j by finding the ratio of the number
of non-zero entries in ε j∗ to its length. In each feature channel, we find the angle distance
θ j between the vectors representing the most likely candidate particle y j and the appearance
template t j

i with the highest coefficient vector x j
i . We then update the template t j

i with y j

only if θ j exceeds a threshold tθ j , and l j is below a threshold tl j .

5 Experiments and Results

5.1 Experimental setup
We implemented our tracking approach in MATLAB. All experiments are performed on an
Intel Core 2 Duo 2.66 GHz CPU with an installed RAM of 8 GB.

Datasets. We consider 25 publicly available video sequences1 that represent several
challenging aspects in visual tracking: illumination variation, scale variation, occlusion, non-
rigid object deformation, motion blur, fast motion, in-plane rotation, out-of-plane rotation,
out-of-view, background clutter, and low resolution.

Evaluation methodology: We quantitatively evaluate the results of our tracking ap-
proach using several evaluation metrics and robustness tests. First, we report the average
center location error (CLE), defined as the average Euclidean distance between the tracked
center location of the target (Bt ) and the ground truth (Bgt ), and the average success rate (SR),
defined as the average fraction of frames that have an overlap ratio or =

area(Bt∩Bgt )
area(Bt∪Bgt )

> 0.5 [8].
We then report the overall mean performance in terms of the area under the curve (AUC) of
the success plot, in which we plot the overlap precision, defined as the fraction of frames
that have overlap ratio above a threshold, versus overlap ratio for thresholds ranging from 0
to 1. We also perform the temporal robustness (TRE) and spatial robustness (SRE) tests [25]

1Videos demonstrating our tracking performance can be found in the supplementary material.
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to evaluate the sensitivity of our approach to scale and position initialization errors. In the
TRE tests, we divide each sequence temporally into 10 subsegments, and run our tracker for
each segment. In the SRE tests, by shifting and scaling the initial bounding box, we sample
12 different locations of the initial bounding box, and run our tracker in each case. We com-
pare the results of our approach for each of these evaluation metrics against several recently
proposed trackers: L1 [3], MTT [30], ONDL [21], SCM [31], LSH [10], ASLA [12], PCOM
[19], LOT [15], SPT [22], MIL [2], and IVT [17]. We chose these algorithms due to their
state-of-the-art performance and public availability of source codes for re-implementation.

5.2 Quantitative results
In this section, we discuss the quantitative results of our tracking approach. Table 1 shows
the CLE and success rate averaged over all the 25 test sequences2. Our approach provides
very promising results on these metrics, resulting in a mean CLE reduction of 65% and a
mean success rate increase of 18% over ONDL [21], the next best performing approach in
our experiments. The overall mean success plot is shown in Figure 1 (a). As can be noted
from the figure, our approach achieves a significant improvement of 10% for the AUC of
the success plot compared to each of SCM [31], ASLA [12] and ONDL [21], the next best
performing approaches.

Table 1: Average center location error (in pixels) and success rate (in percentage) for all 25
test sequences. Red - Best, Blue - Second best. We also show a speed (in fps) comparison
with other sparse representation based approaches. “∗ ” indicates the algorithm is not based
on sparse visual representation.

Criterion Ours L1 MTT ONDL SCM ASLA PCOM∗ LSH∗ LOT∗ SPT∗ MIL∗ IVT∗

Success rate 93.87 48.07 59.85 75.77 72.11 72.81 55.31 67.53 45.96 42.35 44.51 56.83
CLE 7.03 68.66 46.65 20.07 26.55 22.82 51.95 22.19 53.78 60.61 36.44 50.72

Speed 2.5 8.2 0.4 0.5 0.05 0.7 6.5 7 0.2 0.1 8.5 6.5
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Figure 1: Success plots averaged over all the 25 test sequences. In all three plots, the area
under the curve (AUC) is reported in the legend. In each of the three tests, our approach
outperforms the state of the art.

The success plots for both TRE and SRE tests are also shown in Figure 1 (b)-(c). As
can be noted from the plots, our approach outperforms the state of the art for both of the

2Per-sequence results can be found in the supplementary material.
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robustness tests, resulting in mean AUC improvements of 7% and 3% for TRE and SRE,
respectively, over the next best performing approach.

Speed. We also compare the average tracking run-time of our approach with the other
competing approaches. As can be seen from Table 1, the average run-time of our approach is
favorable when compared to other related approaches based on sparse representation, while
giving much better tracking accuracy. This can be attributed to the fact that we adaptively
prune the number of candidate particles at each frame, and solve the problem of Equation 1
using a fast Lagrangian method.

Validating key contributions. Finally, we provide experimental evidence to corrobo-
rate each of the two primary contributions of this paper: the use of multi-channel feature
dictionaries, and the use of a dynamic state transition model. To validate the efficacy of
multi-channel feature dictionaries, we tested all seven possible combinations of the three
feature types, intensity (I), normalized gradient (G), and HOG (H). To validate the efficacy
of our transition model, we compared it with the fixed-variance transition model with vari-
ance σ0. Each of these two experiments were performed on all 25 test sequences, and the
success plots obtained for each case are shown in Figure 2 (a)-(b). As can be noted from the
figure, our algorithmic decisions indeed resulted in significant improvements, with AUC im-
provements of 10% and 7% in the feature combinations experiment and the transition model
experiment respectively. We also provide evidence to corroborate the efficacy of adaptive
candidate filtering. In Figure 2 (c), we can see how the number of particles needed for parti-
cle filter approximation drops as we proceed through a video sequence. Finally, we note that
in our experiments, on an average for all the sequences, we end up requiring less than 25% of
initial number of particles (which is set to 400) for approximating the posterior probability
density.
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Figure 2: (a)-(b) Success plots for the feature combinations experiment and the transition
model experiment. (c) A plot of the number of particles needed for three example sequences
is also shown.

6 Conclusions and Future Work
We proposed and validated the efficacy of incorporating particle dynamical information and
rich visual representations about the target in achieving accurate and stable object tracking.
Extensive experiments on challenging video sequences demonstrated the superiority of our
method to the current state of the art. While we achieve accurate tracking at reasonable frame
rates, there is much work to be done to achieve fast real-time tracking. To this end, exploiting
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the high degree of coherence of the appearance dictionaries in designing fast sparse recovery
algorithms could be an exciting direction of study in the future. Additionally, incorporating
target color information [7] into our appearance modeling framework could lead to further
improvements in tracking accuracy.
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