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Introduction: Recent advances in the application of compressive sens-
ing to traditional computer vision problems such as face recognition [5]
inspired several visual tracking approaches based on sparse representa-
tions. The core idea of these approaches is to build an appearance model
of the object using several pre-defined templates. The problem of track-
ing the object is then cast as finding a sparse approximation in the sub-
space spanned by the templates. In [3], Mei and Ling introduced the l1
tracker, demonstrating impressive tracking results. Given an appearance
model A = [t1 · · · tn] ∈ Rm×n of an object formed using a set of templates
ti ∈ Rm, i = 1, . . . ,n, they express a tracking result y ∈ Rm as y = Ax+ ε ,
where x ∈ Rn is the sparse coefficient vector that is to be recovered, and
ε ∈ Rm is used to account for partial occlusions. The l1 tracking algo-
rithm hypothesizes that x and ε are sparse for a good tracking candidate,
and recovers them by solving an l1 regularized least squares problem.
Subsequently, the candidate with the least projection error in the template
subspace is chosen as a tracking target, and a Bayesian state inference
model in a particle filter framework is used to track the object over time.

Contributions: In spite of the impressive progress achieved by the l1
tracker and its recent variants, several issues remain that often lead to
tracking failures. First, most related methods employ only a fixed-variance
Gaussian distribution to represent the state transition model. Such a fixed-
variance state transition model can cause significant drift errors in the ap-
proximation of the particle filter, resulting in severe tracking failures. In
our work, we propose to mitigate this problem by adaptively learning the
variance from past states using a dynamic state transition model. Specifi-
cally, we employ an autoregressive model in conjunction with block Han-
kel matrices to continuously learn the dynamics from past data. Second,
most existing approaches use extremely low resolution image intensity
features as part of the appearance model. Such features do not capture suf-
ficient visual information required to reliably track the object and avoid
drift. To mitigate this problem, we propose a three-channel appearance
dictionary comprised of image intensity information, normalized image
gradient magnitudes, and histograms of oriented gradients to construct
an appearance model of the object. Finally, tracking algorithms typically
employ a fixed number of particles to approximate the posterior distribu-
tion (e.g., 600 in [3], 400 in [6]). In this work, we demonstrate that many
particles are not necessary to reliably track an object, given the initial lo-
cation. Specifically, we propose to adapt the number of particles required
during the state estimation process using the Kullback-Leibler (KL) dis-
tance measure [2].

Approach overview: We formulate visual tracking as a sparse represen-
tation problem in a particle filtering framework. Given the initial location
of the target to be tracked, we warp the image into a 64× 64 pixel tem-
plate, thereby representing the position of the target in each frame using
a four-dimensional state vector st ∈ R4. By perturbing the initial location
by a few pixels (typically, 1–3), we form m such templates. In our experi-
ments, we set m= 10. We then construct three appearance dictionaries us-
ing these templates: an intensity channel dictionary A1 = [t1

1 · · · t1
m], a nor-

malized gradient magnitude dictionary A2 = [t2
1 · · · t2

m], and a Histogram
of Oriented Gradients (HOG) [1] dictionary A3 = [t3

1 · · · t
3
m], where each

dictionary A j ∈ Rd j×m. Now, given a potential target particle y, we com-
pute its intensity feature vector y1, normalized gradient magnitude vector
y2, and HOG vector y3. In each feature channel, we hypothesize that a
good target candidate can be represented as a sparse linear combination
of the dictionary templates, and recover the sparse vector by solving the
following convex optimization problem:

(x j∗,ε j∗) = arg min
x j ,ε j

‖x j‖1 +‖ε j‖1 s.t. y j = A jx j + ε
j, j = 1,2,3 (1)

where ε j is used to account for error and partial occlusion, and x j is the
sparse coefficient vector we wish to recover.

Tracking in a particle filtering framework proceeds by generating sev-
eral hypotheses, and testing each for its likelihood. In our context, each
hypothesis is a candidate particle, represented by its state vector. We
search for potential candidate particles using an adaptive state transition
model incorporating dynamic information. Our key insight is that learn-
ing from the dynamics of past state vectors can lead to improved and
efficient search for new candidate particles, leading to both accuracy and
speed benefits. Formally, if st ∈R4 is the current state vector, we estimate
the elements of the next state vector st+1 using the following transition
model:

st+1(i) = st(i)+ r(i)σt+1(i) (2)

where st+1(i) is the ith element of st+1, r(i)∼N (0,1) is a normally dis-
tributed random number, and σt+1(i) is the ith element of the variance
vector σt+1 ∈ R4 that we estimate on-the-fly using the dynamics of the
past states.

Results: We tested our algorithm on 25 publicly available video sequences1

that represent several challenging aspects in visual tracking: illumina-
tion variation, scale variation, occlusion, non-rigid object deformation,
motion blur, fast motion, in-plane rotation, out-of-plane rotation, out-of-
view, background clutter, and low resolution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

O
ve

rla
p 

pr
ec

is
io

n

Overlap threshold

Overall success plot

Ours [0.69]
ASLA [0.59]
ONDL [0.59]
SCM [0.59]
LSH [0.57]
IVT [0.46]
MIL [0.45]

MTT [0.42]
PCOM [0.41]

L1 [0.36]
LOT [0.31]
SPT [0.29]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

O
ve

rla
p 

pr
ec

is
io

n

Overlap threshold

Success plot for SRE

Ours [0.56]
ASLA [0.53]
SCM [0.51]

ONDL [0.50]
LSH [0.49]
MTT [0.45]
MIL [0.41]
IVT [0.40]

SPT [0.40]
LOT [0.37]

PCOM [0.35]
L1 [0.32]

(a) (b)
Figure 1: Success plots averaged over all the 25 test sequences. In both
plots, the area under the curve (AUC) is reported in the legend.

The overall success plot and the success plot for the spatial robustness
evaluation (SRE) test [4] are shown in Figure 1. We see that our approach
results in a significant 10% overall improvement and an improvement of
3% for the SRE test when compared to the state of the art.
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1Videos demonstrating our tracking performance can be found in the supplementary mate-
rial.


