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Abstract

In this paper, we address the problem of one shot pose estimation of articulated ob-
jects from an RGB-D image. In particular, we consider object instances with the topol-
ogy of a kinematic chain, i.e. assemblies of rigid parts connected by prismatic or revolute
joints. This object type occurs often in daily live, for instance in the form of furniture or
electronic devices. Instead of treating each object part separately we are using the rela-
tionship between parts of the kinematic chain and propose a new minimal pose sampling
approach. This enables us to create a pose hypothesis for a kinematic chain consist-
ing of K parts by sampling K 3D-3D point correspondences. To asses the quality of
our method, we gathered a large dataset containing four objects and 7000+ annotated
RGB-D frames1. On this dataset we achieve considerably better results than a modified
state-of-the-art pose estimation system for rigid objects.

1 Introduction
Accurate pose estimation of object instances is a key aspect in many applications, including
augmented reality or robotics. For example, a task of a domestic robot could be to fetch an
item from an open drawer. The poses of both, the drawer and the item, have to be known by
the robot in order to fulfil the task. 6D pose estimation of rigid objects has been addressed
with great success in recent years. In large part, this has been due to the advent of consumer-
level RGB-D cameras, which provide rich, robust input data. However, the practical use
of state-of-the-art pose estimation approaches is limited by the assumption that objects are
rigid. In cluttered, domestic environments this assumption does often not hold. Examples are
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doors, many types of furniture, certain electronic devices and toys. A robot might encounter
these items in any state of articulation.

This work considers the task of one-shot pose estimation of articulated object instances
from an RGB-D image. In particular, we address objects with the topology of a kinematic
chain of any length, i.e. objects are composed of a chain of parts interconnected by joints. We
restrict joints to either revolute joints with 1 DOF (degrees of freedom) rotational movement
or prismatic joints with 1 DOF translational movement. This topology covers a wide range
of common objects (see our dataset for examples). However, our approach can easily be
expanded to any topology, and to joints with higher degrees of freedom.

To solve the problem in a straight forward manner one could decompose the object into
a set of rigid parts. Then, any state-of-the-art 6D pose estimation algorithm can be applied
to each part separately. However, the results might be physically implausible. Parts could
be detected in a configuration that is not supported by the connecting joint, or even far apart
in the image. It is clear that the articulation constraints provide valuable information for
any pose estimation approach. This becomes apparent in the case of self occlusion, which
often occurs for articulated objects. If a drawer is closed, then only its front panel is visible.
Nevertheless, the associated cupboard poses clear constraints on the 6D pose of the drawer.
Similarly, distinctive, salient parts can help to detect ambiguous, unobtrusive parts.

Two strains of research have been prevalent in recent years for the task of pose estimation
of rigid objects from RGB-D images. The first strain captures object appearance dependent
on viewing direction and scale by a set of templates. Hinterstoisser et al. have been partic-
ularly successful with LINEMOD [2]. To support articulation, templates can be extracted
for each articulation state. In this case, the number of templates multiplies by the number of
discrete articulation steps. The multiplying factor applies for each object joint making this
approach intractable with a few parts already.

The second strain of research is based on machine learning. Brachmann et al. [1] achieve
state-of-the-art results by learning local object appearance patch-wise. Then, during test
time, an arbitrary image patch can be classified as belonging to the object, and mapped to a
3D point on the object surface, called an object coordinate. Given enough correspondences
between coordinates in camera space and object coordinates the object pose can be calculated
via the Kabsch algorithm. A RANSAC schema makes the approach robust to classification
outliers. The approach was shown to be able to handle textured and texture-less objects in
dense clutter. This local approach to pose estimation seems promising since local appearance
is largely unaffected by object articulation. However, the Kabsch algorithm cannot account
for additional degrees of freedom, and is hence not applicable to articulated objects.

In this work, we combine the local prediction of object coordinates of Brachmann et
al. with a new RANSAC-based pose optimization schema. Thus, we are capable of esti-
mating the 6D pose of any kinematic chain object together with its articulation parameters.
We show how to create a full, articulated pose hypothesis for a chain with K parts from K
correspondences between camera space and object space (a minimum of 3 correspondences
is required). This gives us a very good initialization for a final refinement using a mixed
discriminative-generative scoring function.

To summarize our main contributions:
(a) We present a new approach for pose estimation of articulated objects from a single
RGB-D image. We support any articulated object with a kinematic chain topology and 1
DOF joints. The approach is able to locate the object without prior segmentation and can
handle both textured as well as texture-less objects. To the best of our knowledge there is
no competing technique for object instances. We considerably outperform an extension of a
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state-of-the-art object pose estimation approach.
(b) We propose a new RANSAC based optimization schema, where K correspondences gen-
erate a pose hypothesis for a K-part chain. A minimum of 3 correspondences is always
necessary.
(c) We contribute a new dataset consisting of over 7000 frames annotated with articulated
poses of different objects, such as cupboards or a laptop. The objects show different grades
of articulation ranging from 1 joint to 3 joints. The dataset is also suitable for tracking
approaches (although we do not consider tracking in this work).

2 Related Work

In the following, we review four related research areas:
Instance Pose Estimation: Some state-of-the-art instance pose estimation approaches have
already been discussed in detail above. The LINEMOD [2] template-based approach has
been further improved in the work of Rios-Cabrera and Tuytelaars [10] but the poor scal-
ability in case of articulated objects remains. The approach of Brachmann et al. [1] has
been combined with a particle filter by Krull et al. [4] to achieve a robust tracking system.
Although our work fits well in this tracking framework, we consider pose estimation from
single images only, in this work. Recently, 6D pose estimation of instances has been exe-
cuted with a Hough forest framework by Tejani et al. [15]. However, in the case of articulated
objects the accumulator space becomes increasingly high dimensional. It is unclear whether
the Hough voting schema generates robust maxima under these circumstances, or not.
Articulated Instances: Approaches based on articulated iterative closest point [8] can es-
timate articulated poses given a good initialization, e.g. using tracking. Pauwels et al. pre-
sented a tracking framework which incorporates a detector to re-initialize parts in case of
tracking failure [7]. However, complete re-initialization, e.g. one shot estimation was not
shown. Furthermore, the approach relies on key point detectors and will thus fail for texture-
less objects. Some work in the robotics community has considered the automatic generation
of articulated models given an image sequence of an unknown item, e.g. [3, 13]. These
approaches rely on active manipulation of the unknown item and observing its behavior,
whereas our work considers one-shot pose estimation of an item already known.
Articulated Classes: In recent years, two specific articulated classes have gained consid-
erable attention in the literature: human pose estimation [12, 14] and hand pose estimation
[9, 11]. Some of these approaches are based on a discriminative pose initialization, followed
by a generative model fit. Most similar to our work is the approach of Taylor et al. [14] in
which a discriminative prediction of 3D-3D correspondences is combined with a non-linear
generative energy minimization. However, the object segmentation is assumed to be given.
All class-based approaches are specifically designed for the class at hand, e.g. using a fixed
skeleton with class-dependent variability (e.g. joint lengths) and infusing pose priors. We
consider specific instances with any kinematic chain topology. Pose priors are not necessary.
Inverse Kinematics: In robotics, the problem of inverse kinematics also considers the deter-
mination of articulation parameters of a kinematic chain (usually a robotic arm). However,
the problem statement is completely different. Inverse kinematics aims at solving a largely
underconstrained system for joint parameters given only the end effector position. In con-
trast, we estimate the pose of a kinematic chain, given observations of all parts.
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3 Method
We will first give a formal introduction of the pose estimation task for rigid bodies and kine-
matic chains (Sec. 3.1). Then we will continue to describe our method for pose estimation,
step by step. Our work is inspired by Brachmann et al. [1]. While our general framework is
similar, we introduce several novelties in order to deal with articulated objects. The frame-
work consists of the following steps. We use a random forest to jointly make pixel wise
predictions: object probabilities and object coordinates. We will discuss this in Sec. 3.2.
We utilize the forest predictions to sample pose hypotheses from 3D-3D correspondences.
Here we employ the constraints introduced by the joints of articulated objects to generate
pose hypotheses efficiently. We require only K 3D-3D point correspondences for objects
consisting of K parts (a minimum of 3 correspondences is required) (Sec. 3.3). Finally, we
use our hypotheses as starting points in an energy optimization procedure (Sec. 3.4).

3.1 The Articulated Pose Estimation Task
Before addressing articulated pose estimation, we will briefly reiterate the simpler task of 6D
rigid body pose estimation. The objective is to find the rigid body transformation represented
by H which maps a point y ∈ Y ⊆R3 from object coordinate space to a point x ∈ X ⊆R3 in
camera coordinate space. Transformation H is a homogeneous 4 × 4 matrix consisting of a
rotation around the origin of the object coordinate system and a subsequent translation. In the
remainder of this work we assume for notational convenience that the use of homogeneous
or inhomogeneous coordinates follows from context.

In the following, we will describe the task of pose estimation for a kinematic chain. A
kinematic chain is an assembly of K rigid parts connected by articulated joints. We denote
each part with an index k∈ {1, . . . ,K}. We will only consider 1 DOF (prismatic and revolute)
joints. A drawer, that can be pulled out of a wardrobe is an example of a prismatic joint.
A swinging door is an example of a revolute joint. To estimate the pose of a kinematic
chain Ĥ = (H1, . . . ,HK) we need to find the 6D pose Hk for each part k. The problem
is however constrained by the joints within the kinematic chain. Therefore, we can find
the solution by estimating one of the transformations Hk together with all 1D articulations
θ1 . . . ,θK−1, where θk is the articulation parameter between part k and k+1. The articulation
parameter can be the magnitude of translation of a prismatic joint or the angle of rotation of
a revolute joint. We assume the type of each joint and its location within the chain to be
known. Additionally, we assume the range of possible articulation parameters for all joints
to be known. Given θk we can derive the rigid body transformation Ak(θk) between the
part k and k+ 1. The transformation Ak(θk) determines the pose of part k+ 1 as follows:
Hk+1 = HkAk(θk)

−1. We can use this to estimate the 6D poses of all parts and thus the entire
pose Ĥ of the chain from a single part pose together with the articulation parameters.

3.2 Object Coordinate Regression
As in the work of Brachmann et al. [1] we train a random forest to produce two kinds of
predictions for each pixel i. Given the input depth image, each tree in the forest predicts
object probabilities and object coordinates (both will be discussed later in detail) for each
separate object part of our training set.

To produce this output, a pixel is passed trough a series of feature tests which are arranged
in a binary tree structure. The outcome of each feature test determines whether the pixel is
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Input Depth Forest Output Articulation Estimation

Figure 1: Articulation estimation. Left: Input depth image, here shown for the cabinet.
The drawer is connected by a prismatic joint and the door is connected by a revolute joint
(white lines are for illustration purposes). Middle: Random forest output. Top to bottom:
Drawer, base, door, where the left column shows part probabilities and the right the object
coordinate predictions, respectively. Right: Articulation estimation between the parts of the
kinematic chain using 3D-3D correspondences between the drawer / base and door / base.
Note that the three correspondences (red, white, blue) are sufficient to estimate the full 8D
pose.

passed to the left or right child node. Eventually, the pixel will arrive at a leaf node where
the predictions are stored. The object probabilities stored at the leaf nodes can be seen as
a soft segmentation for each object part whereas object coordinate predictions represent the
pixel’s position in the local coordinate system of the part. Object probabilities from all trees
are combined for each pixel using Bayes rule as in [1]. The combined object probabilities
for part k and pixel i are denoted by pk(i).

To generate the object coordinate prediction to be stored at a leaf we apply mean-shift
to all samples of a part that arrived at that leaf and store all modes with a minimum size
relative to the largest mode. As a result we obtain multiple object coordinate predictions
yk(i) = (xk,yk,zk)

> for each tree, object part k and pixel i. The terms xk, yk, and zk shall
denote the coordinates in the local coordinate system of part k. We adhere exactly to the
training procedure of [1] but choose to restrict ourselves to depth difference features for
robustness.

3.3 Hypothesis Generation

We now discuss our new RANSAC hypotheses generation schema using the forest predic-
tions assuming that K = 3. We will consider kinematic chains with K = 2 or K > 3 at the
end of this section. An illustration of the process can be found in Fig. 1. We draw a sin-
gle pixel i1 from the inner part (k = 2) randomly using a weight proportional to the object
probabilities pk(i). We pick an object coordinate prediction yk(i1) from a randomly selected
tree t. Together with the camera coordinate x(i1) at the pixel this yields a 3D - 3D corre-
spondence (x(i1),yk(i1)). Two more correspondences (x(i2),yk+1(i2)) and (x(i3),yk−1(i3))
are sampled in a square window around i1 from the neighbouring kinematic chain parts k+1
and k−1. We can now use these correspondences to estimate the two articulation parameters
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θk−1 and θk between part k and its neighbours.
Estimating Articulation Parameters. We will now discuss how to estimate the articulation
parameter θk from the two correspondences (x(i1),yk(i1)) and (x(i2),yk+1(i2)). Estimation
of θk−1 can be done in a similar fashion. The articulation parameter θk has to fulfil

‖x(i1)−x(i2)‖2 = ‖yk(i1)−Ak(θk)yk+1(i2)‖2, (1)

meaning the squared Euclidean distance between the two points x(i1) and x(i2) in camera
space has to be equal to the squared Euclidean distance of the points in object coordinate
space of part k. Two solutions can be calculated in closed form. A derivation can be found
in the supplemental note. In case of a revolute joint with a rotation around the x-axes the
solutions are:

θ
1
k = asin

(
dx− (xk−xk+1)

2−y2
k −y2

k+1− z2
k− z2

k+1√
a2 +b2

)
− atan2(b,a) and

θ
2
k = π− asin

(
dx− (xk−xk+1)

2−y2
k −y2

k+1− z2
k− z2

k+1√
a2 +b2

)
− atan2(b,a). (2)

where dx = ‖x(i1)− x(i2)‖2 shall abbreviate the squared distance between the two points
in camera space. Furthermore a = 2(ykzk+1 − zkyk+1) and b = −2(ykyk+1 + zkzk+1). It
should be noted that, depending on the sampled point correspondences, θ 1

k and θ 2
k might not

exist in R and are thus no valid solutions. Otherwise, we check whether they lie within the
allowed range for the particular joint. If both solutions are valid we select one randomly.
If no solution is valid, the point correspondence must be incorrect and sampling has to be
repeated.

In case of a prismatic joint with a translation along the x-axis we can also solve Eq. (1)
in closed form:

θ
1
k =− p

2
+

√( p
2

)2
−q and θ

2
k =− p

2
−
√( p

2

)2
−q, (3)

where p = 2(xk+1− xk) and q = (xk− xk+1)
2 +(yk− yk+1)

2 +(zk− zk+1)
2− dx. Solutions

for prismatic joints with translations along other axes can be found analogously. We check
again whether θ 1

k and θ 2
k are valid solutions in the allowed range of parameters in R and

repeat sampling if necessary.
Pose Estimation. Once we estimated θk and θk+1 we derive Ak(θk) and Ak+1(θk+1) and
map the two sampled points yk+1(i2) and yk−1(i3) to the local coordinate system of part k.
We have now three correspondences between the camera system and the local coordinate
system of part k, allowing us to calculate the 6D pose Hk using the Kabsch algorithm. The
6D pose Hk together with the articulation parameters yields the pose Ĥ of the chain.

In case of a kinematic chain consisting of n > 3 parts, we start by randomly selecting
an inner part k. We recover the 6D pose using the two neighbouring parts as described
above. Then, we calculate the missing articulation parameters one by one by sampling one
correspondence for each part remaining. In case of a kinematic chain consisting of n = 2
parts, we draw a single sample from one part and two samples from the other part.

3.4 Energy Optimization
We rank our pose hypotheses with the same energy function as in [1]:

Ê(Ĥ) = λ
depthEdepth(Ĥ)+λ

coordEcoord(Ĥ)+λ
ob jEob j(Ĥ). (4)
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The kinematic chain is rendered under the pose Ĥ and the resulting synthetic images are
compared to the observed depth values (for Edepth) and the predicted object coordinates (for
Ecoord). Furthermore Eob j punishes pixels within the ideal segmentation mask if they are
unlikely to belong to the object. Weights λ depth, λ coord and λ ob j are associated with each
energy term. The best hypotheses are utilized as starting points for a local optimization
procedure. Instead of the refinement scheme proposed by [1] we used the Nelder-Mead
simplex algorithm [6] within a general purpose optimization where we refine the 6D pose Hk
of part k together with all 1D articulations θ1 . . . ,θk−1 of the kinematic chain. We consider
the pose with the lowest energy as our final estimate.

4 Experiments
To the best of our knowledge there is no RGB-D dataset which fits our setup, i.e. instances of
kinematic chains with 1 DOF joints. Therefore, we recorded and annotated our own dataset
and will make it publicly available.

4.1 Dataset
We created a dataset of four different kind of kinematic chains which differ in the number
and type of joints. The objects are a laptop with a hinged lid (one revolute joint), a cabinet
with a door and drawer (one revolute and one prismatic joint), a cupboard with one movable
drawer (one prismatic joint) and a toy train consisting of four parts (four revolute joints).
Test Data. We recorded two RGB-D sequences per kinematic chain with Kinect, resulting
in eight sequences with a total of 7047 frames. The articulation parameters are fixed within
one sequence but changes between sequences. The camera moved freely around the object,
with object parts sometimes being partly outside the image. In some sequences parts were
occluded.

Depth maps produced by Kinect contain missing measurements, especially at depth
edges and for certain materials. This is a problem in case of the laptop, because there are no
measurements for the display which is a large portion of the lid. To circumvent this, we use
an off-the-shelf hole filling algorithm by Liu et al. [5] to pre-process all test images.

We modelled all four kinematic chains with a 3D modelling tool and divided each object
into individual parts according to the articulation. Ground truth annotation for the parts was
produced manually, including articulation, for all test sequences. We manually registered
the models of the kinematic chains onto the first frame of each sequence. Based on this
initial pose an ICP algorithm was used to annotate the consecutive frames, always keeping
the configuration of joints fixed. We manually re-initialized if ICP failed.
Training Data. Similar to the setup in [2], we render our 3D models to create training
sets with a good coverage of all possible viewing angles. Hinterstoisser et al. [2] used a
regular icosahedron-based sampling of the upper view hemisphere. Different levels of in-
plane rotation were added to each view. Since our training images always contain all parts
of the kinematic chain, more degrees of freedom have to be taken into account, and each
view has to be rendered with multiple states of articulation. Therefore, we follow a different
approach in sampling azimuth, elevation, in-plane rotation and articulation to create images.
Since naive uniform sampling could result in an unbalanced coverage of views we chose to
deploy stratified sampling. For all kinematic chains we subdivide azimuth in 14, elevation
in 7 and the in-plane rotation in 6 subgroups. The articulation subgroups where chosen as
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follows: Laptop: 4, Cabinet: 3 (door), 2 (drawer), Cupboard: 4, Toy train: 2 for each joint.
For example this results in 14×7×6×4 = 2352 training images for the laptop.

Figure 2: Our dataset. These images show results on our dataset. The estimated poses
are depicted as the blue bounding volume, the ground truth is shown as the green bounding
volume of the object parts. The last row contains cases of failure where the bounding boxes
of the estimated poses are shown in red.

4.2 Setup
In this section, we describe our experimental setup. We introduce our baseline and state
training and test parameters.
Baseline. We compare to the 6D pose estimation pipeline of Brachmann et al. [1]. We treat
each object part as an independent rigid object and estimate its 6D pose. This drops any
articulation or even connection constrains.
Training Parameters. We use the same parameters as Brachmann et al. [1] for the random
forest. However, we disabled RGB features because we expect our rendered training set to
be not realistic in this regard. On the other hand, to counteract a loss in expressiveness and
to account for varying object part sizes, we changed one maximum offset of depth difference
features to 100 pixel meters while keeping the other at 20 pixel meters. For robustness, we
apply Gaussian noise with small standard deviation to feature responses. In tree leafs we
store all modes with a minimum size of 50% with respect to largest mode in that leaf. Mode
size means the number of samples that converged to that mode during mean-shift. We train
one random forest for all four kinematic chains jointly (11 individual object parts). As neg-
ative class we use the background dataset published by Brachmann et al. [1]. As mentioned
above, training images contain all parts of the associated kinematic chain. Additionally,
we render a supporting plane beneath the kinematic chain. Features may access depth ap-
pearance of the other parts and the plane. Therefore, the forest is able to learn contextual
information. If a feature accesses a pixel which belongs neither to plane nor to a kinematic
chain part, random noise is returned. We use the same random forest for our method and the
baseline.
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Test Parameters. For the baseline we use the fast settings for energy minimization as
proposed by [1]: They sample 42 hypotheses and refine the 3 best with a maximum of
20 iterations. We do this for each part of a kinematic chain separately. In contrast, our
method does not treat parts separately, but hypotheses are drawn for each kinematic chain
in its entirety. Therefore, in our method, we multiply the number of hypotheses with the
number of object parts (e.g. 2×42 = 84 for the laptop). Similarly, we multiply the number
of best hypotheses refined with the number of parts (e.g. 2×3 = 6 for the laptop). We stop
refinement after 150 iterations.
Metric. The poses of all parts of the kinematic chain have to be estimated accurately in
order to be accepted as a correct pose. We deploy the following pose tolerance [1, 2, 4]
on each of the individual object parts k : 1

|Mk| ∑x∈Mk
||Hkx− H̃kx|| < τ,k ∈ K, where x is

a vertex from the set of all vertices of the object model2 Mk, H̃k denotes the estimated 6D
transformation and Hk denotes the ground truth transformation. Threshold τ is set to 10%
of the object part diameter. We also show numbers for the performance of individual object
parts. The results are shown in Table 4.2 and discussed below.

Object Sequence Brachmann et al. [1] Ours

Laptop
1 all 8.9% 64.8%

parts 29.8% 25.1% 65.5% 66.9%

2 all 1% 65.7%
parts 1.1% 63.9% 66.3% 66.6%

Cabinet
3 all 0.5% 95.8%

parts 86% 46.7% 2.6% 98.2% 97.2% 96.1%

4 all 49.8% 98.3%
parts 76.8% 85% 74% 98.3% 98.7% 98.7%

Cupboard
5 all 90% 95.8%

parts 91.5% 94.3% 95.9% 95.8%

6 all 71.1% 99.2%
parts 76.1% 81.4% 99.9% 99.2%

Toy train
7 all 7.8% 98.1%

parts 90.1% 17.8% 81.1% 52.5% 99.2% 99.9% 99.9% 99.1%

8 all 5.7% 94.3%
parts 74.8% 20.3% 78.2% 51.2% 100% 100% 97% 94.3%

Table 1: Comparison of Brachmann et al. [1] and our approach on the four kinematic chains.
Accuracy is given for the kinematic chain (all) as well as for the individual parts (parts).

4.3 Results
The baseline can detect individual parts fairly well in case occlusion caused by other parts of
the kinematic chain is low to moderate. An example is the performance for both cupboard
sequences (Sequences 5 & 6) as well as the individual performance of the first (locomotive)
and the third part of the toy train (Sequences 7 & 8). However, the method is not able
to handle strong self occlusion. This can be seen in the poor performance of the last part
of the toy train (Sequences 7 & 8) and in the complete failure to estimate the pose of the

2The vertices of our models are virtually uniform distributed.
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cabinet drawer when it is only slightly pulled out (Sequence 3), see Fig. 2 (first row, second
column). Providing contextual information between object parts during forest training seems
not to be sufficient to resolve self occlusion. Flat objects do not stand out of the supporting
plane, which results in noisy forest output. This may explain the rather poor performance
of the second part of the toy train which is almost completely visible within the entire test
sequences (Sequences 7 & 8).

Our method shows superior results (89% averaged over all sequences and objects) in
comparison to the baseline (29%). Employing articulation constraints within the kinematic
chain results in better performance on the individual parts as well as for the kinematic chains
in its entirety, see Table 4.2. Our approach of pose sampling for kinematic chains does not
only need less correspondences, it is also robust when dealing with heavy self occlusion.
Even in cases where one part is occluded more than 75%, e.g. the laptop keyboard in Se-
quence 2, we are still able to correctly estimate the pose of the occluded part, see Fig. 2
(second row, first column). Our approach enables parts with a high quality forest prediction
to boost neighbouring parts with a noisy forest prediction (e.g. the second part of the toy
train in Sequences 7 & 8).

We compare our approach to the method of [1] in regard of the error of the articulation
parameter. Fig. 3 shows results for the cabinet in sequence 4. Poses estimated with our
method result in a low error for both the prismatic (translational) as well as the revolute
(rotational) joint. As a result the distribution for our approach is peaked closely around the
true articulation parameter. This is not the case for the approach of [1]. The peak for the
rotational error lies at 3◦ and the peak for the translation lies at +5mm.

Figure 3: Histogram of rotational and translational error of our approach compared to [1] for
the cabinet (sequence 4)

5 Conclusion
We presented a method for pose estimation of kinematic chain instances from RGB-D im-
ages. We employed the constraints introduced by the joints of the kinematic chain to gen-
erate pose hypotheses using K 3D-3D correspondences for kinematic chains consisting of
K parts. Our approach shows superior results when compared to an extension of state-of-
the-art object pose estimation on our new dataset. This dataset is publicly available under
http://cvlab-dresden.de/research/scene-understanding/pose-estimation/#BMVC15. The pro-
posed method is not restricted to a chain topology. Therefore, in future work, we will address
the extension to arbitrary topologies and joints with higher degrees of freedom.
Acknowledgements. We thank Daniel Schemala, Stephan Ihrke, Andreas Peetz and Ben-
jamin Riedel for their help preparing datasets and their contributions to our implementation.
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