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Abstract

In this paper, we aim to explore the role of prior knowledge for pedestrian detection.
The main idea is to integrate human body priors into the design of features. To this end,
we propose the symmetric features and cross-channel features so as to capture the specific
information of human body. Experimental results demonstrate that our detector achieves
state-of-the-art performance. What’s more, the evaluation results on "scale" subsets of
Caltech-USA show that our detector performs best at medium scale and therefore has
great potential to be integrated into real-world applications.

1 Introduction
Pedestrian detection is a classical and hot issue in object detection. Well established bench-
mark data sets [5, 8, 14] make it a playground to explore good ideas for object detection. Al-
though many approaches have been proposed in this area, it remains a challenging problem
due to the variances in lighting conditions, scene structures, clothes, view angles, postures,
scales, occlusions, etc.

As summarized in the recent survey [3], using better features plays an important role in
improving detection quality. Similar analysis can be found in [9] that carefully combining
multiple features can significantly boost detection performance. Selecting better features
from huge feature pools [7, 10, 20, 24, 30] is a recent trend. In addition, prior knowledge
has shown good success in designing haar-like features for pedestrian detection [30]. In that
work, they exploit a shape prior of human body to generate feature templates so as to capture
local differences around human body silhouette. On the other hand, performance of the
same feature pool can present huge differences when using different channel combinations.
Fortunately, some researchers [7, 10, 30] have demonstrated that a 10-channel combination
of HOG+LUV always performs well.

Inspired by [30], our work aims to integrate more prior knowledge into the design of fea-
tures to enhance performance of pedestrian detection. By observing the pedestrian samples,
we have discovered several important priors that are always ignored by previous methods,
e.g., the symmetry of human body and the differences among different channels. Intuitively,
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(a) (b)

Figure 1: (a) Symmetric features. For clarity, we just show three channels (L channel, gra-
dient magnitude, and one gradient orientation) here. Rectangles with the same color in the
same channel represent one symmetric feature. (b) Cross-channel features. Rectangles with
the same color in different channels represent one cross-channel feature.

these priors should be helpful. We therefore utilize these priors to design two kinds of
features: 1) symmetric features which capture the difference between two local symmet-
ric regions, and 2) cross-channel features which capture the difference between two different
channels of the same region. Figure 1 gives some visual examples of these two features.
To the best of our knowledge, we are the first to use symmetric and cross-channel priors
in designing features for pedestrian detection. Experiments show that our detector achieves
state-of-the-art performance, which demonstrates that the prior information helps a lot in
designing features.

The remainder of this paper is organized as follows. We summarize our main contribu-
tions in next subsection, followed by a review of related works in Sec. 2. In Sec. 3 we in-
troduce our symmetric and cross-channel features and the rules for generating feature pool.
Analysis of selecting features is presented in Sec. 4. Subsequently, we report our extensive
experiments in Sec. 5 and conclude this paper in Sec. 6.

1.1 Contributions
Our main contribution is to integrate prior knowledge into the design of features for pedes-
trian detection. We explore two human body priors and experimentally evaluate their effec-
tiveness for pedestrian detection.

Symmetric prior: Human is approximately bilaterally symmetrical about the middle
line of the body. Intuitively, symmetric prior will be a helpful cue for pedestrian detec-
tion. We therefore design a kind of symmetric features to capture the symmetric information
contained by two local symmetric regions.

Cross-channel prior: As previous works mainly focus on information contained by the
same channel, they ignore the cross-channel characteristics presented in different channels.
Some valuable information can be obtained by comparing the cross-channel characteristics.
Accordingly, we design a kind of cross-channel features to capture these information.

2 Related Works
Recent survey [3] reviews 40+ methods and divides them into three families: DPM variants
[12, 13, 22, 25], deep networks [15, 18, 21, 29], and decision forests [7, 10, 24, 30]. All the
three families reach top performance in pedestrian detection. The most relevant method with
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ours is InformedHaar [30], which is based on decision forest. Therefore, in this section,
we focus on methods of decision forest family and pay much attention on channels, feature
types, and extra information that have been used in these methods.

Channels: Dollár et al. first introduce channels in their paper [7] and build the foun-
dation of decision forest family for pedestrian detection with channels. They explore var-
ious kinds of channels and dig out a best combination: HOG+LUV. These channels are
regarded as the "core" channels from ChnFtrs [7] to the state-of-the-art detector LDCF
[20]. Recently, other than "core" channels, some extra channels or transformations on chan-
nels have been considered. Typical extra channels are LBP and covariance feature channels
used in SpatialPooling(+) [23, 24], word channels proposed in WordChannels
[4] which are based on high level visual words, and self-similarity channels adopted in
SketchTokens [17]. Other than using extra channels, LDCF expands the 10 "core" chan-
nels to 40 channels by convolving the "core" channels with four learned filters and achieves
state-of-the-art performance.

Feature types: The simplest feature type is to directly use pixel values in channels as
feature values (SketchTokens). To improve robustness, the aggregated channel feature
family (ACF [10], LDCF, and SpatialPooling(+), etc.) divides channels into small
blocks and sums pixels in each block as feature values. In addition, rectangle feature family
(ChnFtrs, SquaresChnFtrs [2], and InformedHaar) considers first-order or higher-
order rectangle features. More specifically, a first-order feature is defined as a sum of pixels
in a fixed rectangular region in a single channel and higher-order features are defined as
any feature that can be computed using multiple first-order features [7]. Rectangle features
can be computed efficiently via integral image. Beyond those, SketchTokens employs
self-similarity features which capture the portions of an image patch that contain similar
textures.

Extra information: It has been shown that leveraging some extra information at training
and testing time can improve detection quality [3]. Context information (ground plane con-
straint: MultiResC [22] and RandForest [19]; 2Ped: JointDeep [21] and MultiResC
+2Ped [22]) and optical flow (ACF+SDt [26] and SpatialPooling(+)) are most com-
monly used. By adding SquaresChnFtrs, LDCF, SDt, and 2Ped together, Katamari
[3] reaches superior performance on Caltech-USA test set. In addition, stereo images [16],
tracking [11], and lidar data [27] are also considered as extra information.

3 Feature Design

3.1 Symmetric Features

Pedestrians usually appear up-right in image, making pedestrian detection benefit from some
favorable constraints and become easier than general human detection. A pedestrian body
shape model can be obtained by computing an average edge map based on gradient magni-
tudes extracted from a large number of training samples [30]. The shape model seems like a
fairly standard silhouette of a person standing facing the front, with hands falling naturally
on body sides and feet keeping naturally together. In addition to shape information used by
[30], we can find more valuable information from the shape model, so as to improve the
performance of pedestrian detection. It is worth to mention that, such a fairly standing body
silhouette is symmetrical about the vertical middle line of the model, as the red dashed lines
shown in Figure 1(a). This symmetry should be a good prior for designing effective features.
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Based on this observation, we design a kind of symmetric features to capture the sym-
metric prior. For convenient implementation and efficient computation, we constrain our
feature templates to be rectangles. More specifically, we define the symmetric features to be
second-order rectangle features which are composed of two separate local symmetric rect-
angular regions. The two local symmetric regions share the same size and should be in the
same channel. Figure 1(a) gives some examples of these symmetric regions. The feature
values can be effectively computed as the difference between the responses of these two
symmetric regions by using integral image.

To enrich the symmetric information, we actually consider 3 more symmetry axes with
0◦, 45◦and 135◦symmetry angles (see Figure 2(a), (b), and (d) respectively) in our imple-
mentation. With a specific symmetry axis, the symmetry angle is defined as the angle be-
tween the positive direction of x-axis and this symmetric axis, such as the 45◦angle shown in
Figure 2(b). In addition, as the whole human body is not symmetrical about these three ad-
ditional axes, we actually divide the model region into 4 subregions and generate symmetric
rectangles in these subregions to capture the local symmetric information. Figure 3(c) gives
an illustration of the model region division.

With the definition above, symmetric rectangles should have the same size, locate in the
same channel, and be symmetrical about a specific symmetry axis. Therefore, to generate
symmetric rectangles, we first randomly generate one rectangle in the model region. Then,
we obtain the 4 vertexes of another rectangle by mapping the vertexes of the first rectangle
about the symmetry axis. For a better understanding, we show some simple examples in
Figure 2. It can be found that the two corresponding rectangles can capture the symmetric
information of the red circle.

(d) 135°(c) 90°(b) 45°(a) 0°

x

y
45°

Figure 2: Some simple examples of symmetric rectangles. The red dashed lines are symme-
try axes. The big blue, small black, and small green rectangles represent model region, first
rectangle and second rectangle respectively. The small circles with the same color indicate
the mapping of corresponding vertexes about the symmetry axis.

3.2 Cross-channel Features
In recent pedestrian detectors with multiple channels, e.g., HOG+LUV channels, different
channels contain different kinds of information. Previous methods mainly use features that
capture the information in a single channel, e.g., ChnFtrs only takes responses of rect-
angles in one channel at a time. Such features inevitably lose information cross different
channels. To deal with this problem, we propose a kind of cross-channel features to cap-
ture such valuable information by comparing the responses of the same rectangle in different
channels. Note that the cross-channel features are also second-order features as they also
contain two rectangular regions. Differently, the two rectangles share the same size and
position but locate in different channels. The difference of responses between these two
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rectangles is recorded as feature value. Note that the features of different channels should
be normalized to make them comparable. To generate the cross-channel rectangles, we first
randomly generate a rectangle in the model region, and then assign it with two different
channel indexes. Figure 1(b) gives some examples of the cross-channel features.

3.3 Generating Feature Pool
Due to the limitation of computational power and memory, a largely over-complete feature
pool is not suitable. Fortunately, a randomly generated small feature pool can achieve state-
of-the-art performance as well [2]. In our implementation, we randomly generate 25,000
features, which consists of the same amount of symmetric features, cross-channel features
and the traditional haar features.

The details for generating the proposed symmetric and cross-channel features are de-
scribed as follows. Firstly, we denote a rectangle as a 4 dimensional vector r = (x,y,w,h)
in which x, y are the coordinates of the top-left vertex and w, h are the width and height
respectively. Then, the valid rectangle set R is defined as the set of all possible rectangles
that are inside of the model region and larger than a predefined area threshold S. In an usual
image coordinate system, e.g. with the origin being the top-left vertex of the model region,
the positive x-axis pointing right and the positive y-axis pointing down, such a set can be
represented as:

R= {ri : xi ≤W −wi,yi ≤ H−hi,wi ≤W,hi ≤ H,wi×hi ≥ S,xi,yi,wi,hi ∈ N} (1)

where W and H are the width and height of the model region respectively. With the valid
rectangle set, we can further generate a pool of rectangular templates. For symmetric fea-
tures, we select two symmetric rectangles ri and rj from R and randomly generate their
channel index. For cross-channel features, we select one rectangle ri ∈ R and randomly
generate two different channel indexes.

4 Selecting Features
Training details: AdaBoost is usually employed to select features from a large feature pool.
In this work, we apply a fast version of AdaBoost [1] for learning. Our final strong classifier
is composed of 4096 depth-5 decision trees. We apply a multi-round training strategy to build
our strong classifier. Specifically, all ground truth regions and their reflections are extracted
as positive samples, and are kept the same in all rounds. In the first round, negative samples
are randomly extracted from background area of training images, while in the following
rounds, we apply the classifier trained in the last round to all training images and add the
false positives as negative samples to retrain a new classifier. The training procedure is
stopped after 4 rounds or when the loss function reaches a pre-defined error.

Visualization of selected features: We give a visualization of the selected top features
in this section. First, we plot the heat maps of the top 100 selected features for Caltech-
USA and INRIA data sets in Figure 3(a). As shown in this figure, the most discriminative
features are concentrated on lower body region and upper body region for Caltech-USA and
INRIA data sets, respectively. This may due to the different characteristics of these two data
sets. Pedestrians in Caltech-USA data set are relatively small and lack of details in upper
body region, especially head-shoulder region, while they are more clearer in lower body
region. Instead, pedestrians in INRIA data set seem to be much bigger and contain more

Citation
Citation
{Benenson, Mathias, Tuytelaars, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2013

Citation
Citation
{Appel, Fuchs, Doll{á}r, and Perona} 2013



6 YI YANG et al.: EXPLORING PRIOR KNOWLEDGE FOR PEDESTRIAN DETECTION
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Figure 3: (a) Heat maps of the top 100 selected features for Caltech-USA (first row) and
INRIA (second row) data sets. Each row from left to right: all, symmetric and cross-channel
features in the top 100 selected features. (b) Top 10 selected symmetric (first row) and cross-
channel (second row) features for Caltech-USA data set. (c) Illustration of the 4 subregions
of a model region. This figure is better viewed in color mode.

details, especially in the face region. Next, we show the top 10 selected symmetric and cross-
channel features for Caltech-USA data set in Figure 3(b). For symmetric features, we use
two different colors to distinguish the two symmetric rectangles (may have overlap). Note
that we generate symmetric rectangles in subregions (Sec. 3.1) and therefore the symmetry
axes should exist in each subregion, e.g., the red dashed lines in Figure 3(b). For cross-
channel features, we only show one rectangle as the two rectangles share the same location
and size.

The selected most discriminative features are then used for pedestrian detection in still
images. We consider multiple scales and slide a window over the whole image of each scale.
In our implementation, we set the spatial step to be 4 and the number of scales in each
octave to be 8. As there are many repeated detections, we then simply use a non-maximal
suppression (NMS) algorithm [7] to suppress nearby repeated detections.

5 Experiments
Our implementation is based on Dollár’s open source toolbox [6]. We conduct our experi-
ments on two public benchmark data sets: the INRIA [5] and Caltech-USA [8] pedestrian
data sets. For Caltech-USA data set, we conduct a dense sampling of the training data (every
4 frames) following the configuration of LDCF. As a result, we obatin a training set with
32,077 images.

5.1 Parameter Analysis
In this section, we explore the influence of different parameter settings on Caltech-USA
validation set (some both on Caltech-USA validation set and INRIA test set). We set up the
validation set the same as [9], which splits the six training videos into two parts: the first five
for training and the last one for testing.

Feature effectiveness: To evaluate the effectiveness of the proposed features, we gen-
erate 4 feature pools, each of which contains 30,000 (10,000 for INRIA) symmetric (sym),
cross-channel (cross), haar, and sym+cross+haar features respectively. For sym+cross+haar
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feature pool, we keep the same amount of the three features. The results are shown in Fig-
ure 4(a). Not surprisingly, symmetric features and cross-channel features perform a little
worse than haar features as they are not designed to be individually used as a general feature,
e.g., 10,000 for each one. These two features aim to capture some specific characteristics of
pedestrian and supply complementary information for other features. As can be observed,
by combining these two features with haar feature, the performance could be improved.

Number of features: Intuitively, more features will lead to better performance as they
contain more information. Nevertheless, due the limit of computing power and memories,
we can not exhaustively generate all possible features in the feature pool. Fortunately, a
randomly generated small feature pool can achieve state-of-the-art performance as well. We
therefore restrict the maximal number of candidate features to be 30,000 and evaluate per-
formances of different sizes of feature pool. As shown in Figure 4(b), the best performance
is achieved with 30,000 features, while performance with 25,000 features is competitive as
well.

Channels: The "core" channels (HOG+LUV) are used as the baseline of channel com-
bination. We further add LBP channel and use LDCF [20] to expand the channels by 4 times.
As shown in Figure 4(c), the best performance is obtained by using "HOG+LUV+LBP+LDCF"
and the use of "core" channels also performs competitively.

Classifier: We evaluate the performance for different number of weak classifiers and
different tree depths. As can be observed in Figure 4(d), the best performance is achieved
by using 3072 weak classifiers. A small number of weak classifiers may not be distinctive
enough due to the large variances of pedestrians, while too many number of weak classifiers
may lead to overfitting. Figure 4(e) shows that a depth-5 tree performs the best as it can
sufficiently exploit the information in the rich channels.

Smoothing: Figure 4(f) and Figure 4(g) show the evaluations for pre-smoothing and
post-smoothing with binomial filters, respectively. Specifically, without pre-smoothing on
colors achieves best performance and using larger radius results in worse results. Post-
smoothing on channels seems to have a slightly effect on performance.

Image normalization: The influences of different image normalization algorithms are
shown in Figure 4(h). We only evaluate global image normalization as local normalization
seems to be ineffective [2, 30]. The same as Roerei [2], automatic color equalization
(ACE) and GreyWorld [28] are considered. Different from Roerei, we obtain best perfor-
mance without any normalization.

With the above analysis, we set the parameters for testing on Caltech-USA test set as
follows: 25,000 sym+cross+haar features (10,000 for INRIA); HOG+LUV+LBP+LDCF
channels (no LDCF for INRIA); 4096 weak classifiers with depth-5 (2048 depth-2 trees
for INRIA); no pre-smoothing; post-smoothing of radius 1; no image normalization. Note
that we use all the six training videos to train the detector for testing on Caltech-USA test
set. Due to the increase of training data, we actually use 4096 weak classifiers.

5.2 Comparison with State-of-the-art Detectors
In this section, we compare our results with some state-of-the-art results on Caltech-USA
and INRIA test sets. For a fair comparison, we use the public evaluation code of [9]. The
evaluation criterion is the ROC curve and the overall performance is summarized by average
miss rate.

Figure 5(a) shows the results on the "reasonable" [9] subset of Caltech-USA test set. Our
detector ours not only outperforms baseline detectors ChnFtrs and LDCF by about 34%
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Figure 4: Evaluation of different parameters on Caltech-USA validation set.

(a) Caltech-USA test set (b) INRIA test set
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Figure 5: Results of different detectors on Caltech-USA and INRIA test sets. Dashed lines
in (a) represent detectors using motion features.

(a) Scale = large (b) Scale = near (c) Scale = medium (d) Scale = far

10−6 10−4 10−2 100

.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s 
ra

te

86.21% VJ
37.93% HOG
30.17% ChnFtrs
21.97% WordChannels
18.21% InformedHaar
14.19% ACF+SDt
11.30% ACF−Caltech+
11.00% SpatialPooling
8.83% ours
8.21% LDCF
7.71% SpatialPooling+
6.75% Katamari

10−6 10−4 10−2 100

.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s 
ra

te

89.85% VJ
44.04% HOG
35.12% ChnFtrs
26.54% WordChannels
20.97% ACF+SDt
19.77% InformedHaar
14.32% SpatialPooling
13.44% ACF−Caltech+
10.46% LDCF
9.75% Katamari
8.60% ours
7.98% SpatialPooling+

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s 
ra

te

99.38% VJ
87.39% HOG
77.35% ChnFtrs
73.16% WordChannels
69.55% ACF+SDt
69.36% InformedHaar
66.76% ACF−Caltech+
65.49% SpatialPooling
63.38% SpatialPooling+
63.13% Katamari
61.82% LDCF
61.27% ours

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s 
ra

te

100.00% ours
100.00% Katamari
100.00% ACF−Caltech+
100.00% LDCF
100.00% SpatialPooling+
100.00% SpatialPooling
100.00% InformedHaar
100.00% WordChannels
100.00% ACF+SDt
99.67% VJ
97.15% HOG
95.18% ChnFtrs

Figure 6: Results under different "scale" subsets of Caltech-USA test set. Detectors using
motion features are dashed.

(a) Occ = none
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Figure 7: Results under different "occlusion" subsets of Caltech-USA test set. Detectors
using motion features are dashed.
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Caltech-USA
Detector INRIA Reas Scale Occlusion

-onable Large Near Medium Far Non Partial Heavy

VJ 72.48% 94.73% 86.21% 89.85% 99.38% 99.67% 94.25% 98.67% 98.78%
HOG 45.98% 68.46% 37.93% 44.04% 87.39% 97.15% 66.47% 84.47% 95.97%

ChnFtrs 22.18% 56.34% 30.17% 35.12% 77.35% 95.18% 54.28% 73.02% 94.79%
ACF 17.28% 51.36% 23.48% 28.71% 76.44% 96.81% 48.86% 71.55% 94.72%

ACF-Caltech+ – 29.76% 11.30% 13.44% 66.76% 100% 27.44% 47.34% 85.63%
LDCF 13.79% 24.80% 8.21% 10.46% 61.82% 100% 22.28% 43.19% 81.34%

WordChannels 15.95% 42.30% 21.97% 26.54% 73.16% 100% 40.02% 60.72% 87.34%
InformedHaar 14.43% 34.60% 18.21% 19.77% 69.36% 100% 31.85% 57.21% 80.95%

Roerei 13.53% 48.35% 16.07% 21.79% 74.16% 97.40% 45.82% 68.49% 90.38%
SketchTokens 13.32% – – – – – – – –
SpatialPooling 11.22% 29.24% 11.00% 14.32% 65.49% 100% 26.23% 52.52% 84.12%
∗ACF+SDt – 37.34% 14.19% 20.97% 69.55% 100% 34.94% 54.99% 87.40%

∗SpatialPooling+ – 21.89% 7.71% 7.98% 63.38% 100% 19.47% 39.25% 78.25%
∗Katamari – 22.49% 6.75% 9.75% 63.13% 100% 20.13% 41.74% 84.38%

ours 14.54% 21.86% 8.83% 8.60% 61.27% 100% 19.32% 41.29% 80.86%

Table 1: Performance comparisons for state-of-the-art detectors under various conditions.
The average miss rates for different datasets or their subsets are summarized in correspond-
ing columns. ∗ indicates detectors using motion features, the bold ones indicate best perfor-
mance among detectors without using motion features, and the underlined ones indicate best
performance among all the tested detectors. Our detector achieves three best performances
among all the tested detectors and six best performances among the detectors without using
motion features.

and 3% respectively, but also outperforms all state-of-the-art detectors even including detec-
tors which consider additional motion features (Katamari and SpatialPooling+) and
an exhaustive over-complete feature pool (Katamari).

Results on INRIA test set are shown in Figure 5(b). Our detector achieves comparable
results with state-of-the-art detectors. Due to the difference of performances on Caltech-
USA and INRIA data sets, we conclude that our features are better at detecting relatively
small pedestrians, i.e., pedestrians which are far from the camera, like the smaller ones in
Caltech-USA data set rather than the bigger ones in INRIA data set. We further evaluate this
conjecture by the following experiments about "scale".

Figure 6 shows the experimental results respect to "scale". We consider four "scale"
levels: scale = large (100 pixels or taller), scale = near (80 pixels or taller), scale = medium
(30 to 80 pixels), and scale = far (20 to 30 pixels) follow [9]. The performances of all
detectors drop significantly as scale reduces. Fortunately, our detector seems to be better at
dealing with relatively small scales and achieves overall best performance at medium scale.
It is worth to mention that, detection at medium scale is critical for automotive applications
[9]. With the common vehicle speed of 55 km/h, the person which is 1.5 s to 4 s away is about
30 to 80 pixels in a normal 720p camera. Therefore, detecting too large (near) pedestrians
seems to leave insufficient time to alert the driver, while too small (far) pedestrians seem to
be less relevant.

We also evaluate our detector respect to "occlusion" and plot the results in Figure 7. We
consider three "occlusion" levels: occ = none (no occlusion), occ = partial (1-35% occluded),
and occ = heavy (35-80% occluded) as in [9]. Although the performances of all detectors
drop significantly as occlusion increases, our detector ours always keeps a top 2 ranking.
Actually, it achieves best performance among all detectors without using motion features in
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all levels of occlusion and is a slightly worse than SpatialPooling+, which considers
optical flow as motion features, for the cases of partial and heavy occlusion. We conclude
that our proposed features are relatively robust against occlusions.

For a more clearer comparison, we summarize all the results from Figure 5 to Figure 7 in
Table 1. As summarized in this table, our detector achieves three best performances among
all the tested detectors and six best performances among the detectors without using motion
features.

5.3 Runtime
We implement our detector in Matlab, on an Intel Core-i5 CPU (3.1GHz). It takes 22 hours
for training 4 rounds on Caltech-USA data set (every 4 frames sampling). An average time
for testing on a 640× 480 image is 3.88 seconds. We further evaluate the time costs of
different components of our detector and show the results in Table 2. As can be observed,
half of the time are spent on computing integral images as there are a total of 44 channels and
27 scales ( one integral image for each channel in each scale). Fortunately, we can parallel
these computations to further speed up.

Channel
pyramid

LDCF Integral
image

Sliding window
detection

All

Time (seconds) 0.23 0.70 1.58 0.75 3.88

Table 2: Detailed (average) time statistics for each computation.

6 Conclusion
In this paper, we have explored two human body priors for pedestrian detection by inte-
grating symmetric and cross-channel information into feature design. With these useful
prior knowledge, our detector achieves superior performance and even outperforms detectors
which take consideration of motion features. Furthermore, evaluation results on "scale" sub-
sets of Caltech-USA test set demonstrate that our detector has great potential to be integrated
into real-world applications.
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