Exploring Prior Knowledge for Pedestrian Detection
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Pedestrian detection is a classical and hot issue in object detection.
Many approaches have been proposed in this area. However, it remains
a challenging problem due to the variances in lighting conditions, scene
structures, clothes, view angles, postures, scales, occlusions, efc.

Previous survey [1] has summarized that using better features plays an
important role in improving detection quality. In addition, prior knowl-
edge has shown good success in designing haar-like features for pedes-
trian detection [4]. Inspired by it, our work aims to integrate more prior
knowledge into the design of features to enhance performance of pedes-
trian detection. By observing the pedestrian samples, we have discovered
several important priors that are always ignored by previous methods, e.g.
the symmetry of human body and the differences among different chan-
nels. We therefore utilize these priors to design two kinds of features: 1)
symmetric features which capture the difference between two local sym-
metric regions, and 2) cross-channel features which capture the difference
between two different channels of the same region. Figure 1 gives some
visual examples of these two features. To the best of our knowledge, we
are the first to use symmetric and cross-channel priors in designing fea-
tures for pedestrian detection. By integrating these prior information into
feature design, our detector achieves state-of-the-art performance.

Figure 1: (a) Symmetric features. Rectangles with the same color in the
same channel represent one symmetric feature. (b) Cross-channel fea-
tures. Rectangles with the same color in different channels represent one
cross-channel feature.

Symmetric Features: A pedestrian body shape model can be ob-
tained by computing an average edge map based on gradient magnitudes
extracted from a large number of training samples [4]. The shape model
seems like a fairly standard silhouette of a person standing facing the
front, with hands falling naturally on body sides and feet keeping natu-
rally together. It is worth to mention that, this fairly standing body silhou-
ette is symmetrical about the vertical line at the center of the model, as
the red dashed lines shown in Figure 1. This symmetry should be a good
prior for designing effective features.

Based on this observation, we design a kind of symmetric features
to capture the symmetric prior. For convenient implementation and ef-
ficient computation, we constrain our feature templates to be rectangles.
More specifically, we define the symmetric features to be second-order
rectangle features which are composed of two separate local symmetric
rectangular regions. The two local symmetric regions share the same size
and should be in the same channel. See Figure 1(a) for some examples.
The feature values can be effectively computed as the difference between
the responses of these two symmetric regions by using integral image.

To enrich the symmetric information, we actually take consideration
of 3 more symmetry axes with 0°, 45°, and 135°symmetry angles (see
Figure 2) in our implementation. In addition, as the whole human body
is not symmetrical about these three additional axes, we actually divide
the model region into 4 subregions and generate symmetric rectangles in
these subregions to capture the local symmetric information.

Cross-channel Features: In recent pedestrian detectors with multi-
ple channels, e.g. HOG+LUV channels, different channels contain dif-
ferent kinds of information. Previous methods mainly use features that
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Figure 2: Some simple examples of symmetric rectangles.
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capture the information in a single channel, e.g., ChnFtrs only takes
responses of rectangles in one channel at a time. Such features inevitably
lose information cross different channels. To deal with this problem, we
propose a kind of cross-channel features to capture such valuable informa-
tion by comparing the responses of the same rectangle in different chan-
nels. Note that the cross-channel features are also second-order features.
Differently, the two rectangles share the same size and position but lo-
cate in different channels. The difference of responses between these two
rectangles is recorded as feature value. To make the values of different
channels comparable, it is required to normalize all the channels before
computing such features. See Figure 1(b) for some examples.

Generating Feature Pool: The details for generating the proposed
symmetric and cross-channel features are described as follows. Firstly,
we denote a rectangle as a 4 dimensional vector r = (x,y,w,h) in which
x, y are the coordinates of the top-left vertex and w, & are the width and
height respectively. Then, the valid rectangle set R is defined as the set of
all possible rectangles that are inside of the model region and larger than
a predefined area threshold S. In an usual image coordinate system, e.g.
with the origin being the top-left vertex of the model region, the positive
x-axis pointing right and the positive y-axis pointing down, such a set can
be represented as:

R= {I‘i x < W*Wl',y,' < Hfh,-,wl- < W,h,' < H,w; X hi > S,x,-,y,-,w,—,h,- € N}

()]
where W and H are the width and height of the model region respectively.
With the valid rectangle set, we can further generate a pool of rectangular
templates. For symmetric features, we select two symmetric rectangles
rj and rj from R and randomly generate their channel index. For cross-
channel features, we select one rectangle rj € R and randomly generate
two different channel indexes.

Experiments: We conduct our experiments on two public benchmark
data sets: the INRIA [2] and Caltech-USA [3] pedestrian data sets. For
Caltech-USA data set, we conduct a dense sampling of the training data
(every 4 frames) and report our results on the "reasonable", "scale" and
"occlusion" subsets of the test set. Our detector achieves three best perfor-
mances among all the tested detectors and six best performances among
the detectors without using motion features.
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