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Abstract 

Advance in technology and commercial media has simplified the process of 

collecting large-scale visual data, but it also raises new challenges in data 

organization. In this paper, we propose to characterize data association by recovering 

an intrinsic order from an unorganized dataset. Our method is motivated by smooth 

manifold geometry. We advocate that the optimal data order should encode the shape 

of underlying manifold as well as the latent data association. Following the data order, 

we find a smooth path to visualize the latent topic of visual data with a perceptually 

reasonable transition. We develop an efficient algorithm Permutation on Manifolds 

(PoM) to solve this NP-hard permutation problem. Experiments on synthetic and 

real-world dataset demonstrate the potential of PoM to serve as a core technique of 

numerous applications.  

1 Introduction 

Collecting visual data becomes incredibly easy nowadays. With various media tools and 

widespread internet, many people prefer to record their daily lives with photos or videos, 

and quickly share their own interpretation of the world. A new wave on communicating 

with the world is emerging: click on one picture and share other’s life experience readily. 

For example, we may upload a travel photo into internet and soon find more photos of 

nearby landscape we are interested. However, the ever-increasing scale of ubiquitous 

visual data also raises new challenges, especially when we try to use the unorganized 

dataset for subsequent analysis. More specifically, if no semantic prior or domain 

knowledge is available, how can we automate the invisible data association from the 

visible data collection? 

In this paper, we address the issue of visual data organization by recovering an intrinsic 

order from an unorganized dataset. We observe that, although the sources of data 

collection are unpredictable, a collection of visual data usually shares similar topics (e.g., 

landmarks, personal albums) and most of them are created for some special events (e.g., 

sports games, family gathering). Assuming that there exists a strong relation among the 

unorganized visual content, we recast our problem as finding a smooth path to visualize the 

latent order of the visual data with a smooth transition. This technique could be adopted to 

numerous applications, such as photo grouping, image browsing, album organization, and 

so on. Some pioneer work, which was called photo sequencing, has been proposed to 

discover a set of still images for estimating the temporal order of a dynamic scene [1, 2] or 
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the spatial order of an instantaneous event [3]. These methods adopt different hypotheses 

when capturing images, such as similar view points or ring-like camera arrangement. 

Unlike these methods, our goal is to provide a general framework for visual data ordering 

without imposing additional constraints on data collection. 

The proposed method is built on the inherent nature of manifold geometry. In [4], 

cognitive experiments have suggested that human visual system represents objects in the 

form of continuous manifolds under geometric and photometric changes. Under the 

observation that strong relation exists among visual content, we assume a visual dataset 

lies on a manifold and thus changes smoothly from point to point. By exploiting the 

linearity within nearby data points, our goal then becomes to visit all of the data points 

along a manifold-guided order and to characterize the specific manifold’s shape. We 

believe that this order should encode the underlying manifold as well as the latent data 

association. To the best of our knowledge, this is the first work that leverages manifold 

geometry to permute unorganized data for data analysis. In Sec. 2, we will detail our 

algorithm, permutation on manifolds (PoM), and show that even with increasing problem 

size, PoM can solve the permutation of high-dimensional data efficiently, whereas most 

off-the-shelf solvers fail. With the optimal data permutation, we can then organize a given 

dataset in terms of visual coherency for numerous applications. 

1.1 Related Work 

Our target task is related to photo organization [5, 6, 7] and image navigation [8, 9]. 

Existing work of photo organization focus on analysing specific type of images (e.g., 

human faces [5], urban scenes [6]) and thus these methods can exploit structure constraints 

on facial appearance or planar façade to organize the data. However, these methods usually 

require pre-processing like 3D registration and segmentation to align the image space. 

Health et al. [7] proposed a more general framework to increase the connectivity between 

common image regions by building a spectral graph. This method focused more on 

effective graph construction than on explicit data organization. On the other hand, research 

of image navigation seeks to explore data paths for browsing and rendering. For example, 

Snavely et al. [8] proposed to navigate a 3D scene by discovering a range of camera 

viewpoints; and Arpa et al. [9] introduced an angled graph to guide the navigation of 

crowd images with the user-specified direction. Note that, all the above-mentioned 

methods consider finding a path from only a subset of images as data organization. This 

problem can be solved efficiently by the shortest path algorithm. By contrast, our task is 

much more challenging because we attempt to recover the intrinsic order of the entire 

dataset. 

The most similar work to ours is [3], where the authors assume that the images 

captured over an event should reveal a ring-topology in spatial ordering as well as in low-

dimensional distribution. Different from [3], we impose no constraint on the shape of 

manifold and only exploit locally-smooth geometry through pseudo graph. Accordingly, 

our method is more general to comprehensive sources of visual data. In addition to [3], 

another similar idea was adopted for image restoration. In [10], the authors partitioned an 

image into overlapped patches and then reordered these patches by estimating a smooth 

path to facilitate image denoising and inpainting. Although this method [10] shares similar 

viewpoints to ours, it only focused on the smoothness of the “path” instead of treating the 

geometry formed by image patches as a manifold. Because the smoothness was measured 

in terms of one nearest neighbour in the graph principle, the method [10] finds the shortest 
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possible path by merely solving the traveling salesman problem (TSP). In Sec. 2.1, we will 

show that TSP is a special case of our problem formulation. Specifically, our method 

solves a special case of quadratic assignment problem (QAP) and this case is much more 

difficult than TSP in combinatorial optimization. 

2. Method

2.1 Pseudo Graph 

To characterize the manifold geometry, traditional methods first construct an explicit data 

affinity matrix under a graph representation. This data affinity matrix is then used to infer 

the intrinsic data dimension so that we can obtain a compact data distribution. Given an 

unorganized dataset, if the underlying manifold did exist, its low-dimensional distribution 

should form a specific shape. In other words, the manifold geometry should constrain the 

data implicitly even though the data organization is unknown. We are motivated by this 

reasoning and propose to explore the data organization from a manifold-guided perspective. 

We use Figure 1 to clarify our idea. Because a manifold, though may be nonlinear, is 

highly probable to be smooth, exploring the shape of manifold is similar to visiting all the 

data points along a shape-guided order. To estimate the smooth ordering, we first construct 

a template of smooth manifold, and then discover the optimal permutation between data 

points to fit this smooth shape. We use a pseudo graph to build the template and define the 

corresponding Laplacian matrix 𝐋 = 𝐃 − 𝐖 by 

𝑤𝑖𝑗 = exp(−
(𝑖−𝑗 )2

𝜂g
2 ) and 𝑑𝑖𝑗 =  

 𝑤𝑖𝑘𝑘 , if 𝑖 = 𝑗

0  , if 𝑖 ≠ 𝑗
   .  (1) 

In Equation (1), the edge weight 𝑤𝑖𝑗  is simply measured according to the adjacency

between indices to ensure the well-ordered smoothness. The parameter 𝜂g  roughly controls

the size of effective neighbourhood. We fix 𝜂g = 2 in all of our experiments and find that

this simple setting already works well in general cases. Fig. 1(c) illustrates the template of 

the smooth manifold derived from the pseudo graph. 

(a) 

(b) 

(c) 

Fig. 1. Illustration of our proposed idea. (a) Data points in the original high-dimensional 

space; (b) the low-dimensional manifold approximated by classic methods; and (c) the 

smooth manifold approximated by permutation. 
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Note that our goal is essentially different from those of traditional methods. Rather than 

inferring the low-dimensional data distribution, we try to measure an explicit order 

indicator 𝑖 ⟼ 𝜙 𝑖  (see Sec. 2.2 for detailed description) to reveal the data organization 

encoded by the manifold geometry. With the smooth template built on the pseudo graph, 

this indicator connects data smoothly and is believed to be the optimal permutation 

between data points. In addition, Equation (1) generalizes several related methods based on 

spectral graph theory (see Sec. 1.1). For example, when we fix the number of nearest 

neighbours to be one, the problem reduces to TSP [10]. If we further establish an edge link 

between starting and ending data points, the target manifold then embodies a ring topology, 

which has been introduced in [3] to characterize the spatial ordering of a temporal event. 

2.2 Problem Formulation 

Given 𝑁 high-dimensional data points 𝐗 = [𝐱1, ⋯ , 𝐱𝑖 , ⋯ , 𝐱𝑁] where 𝐱𝑖  denotes the feature 

descriptor of the 𝑖th  data point, our goal is to uncover the intrinsic data order 𝑖 ⟼ 𝜙 𝑖  

under a guidance of smooth manifold geometry. Specifically, we formulate the problem as 

min f 𝐏 = min   𝐱𝜙 𝑖 − 𝐱𝜙 𝑗   2

2
𝑤𝜙 𝑖 𝜙 𝑗  1≤𝑖,𝑗≤𝑁 = min tr 𝐗𝐏𝐋𝐏T𝐗T ,         (2) 

where𝐋  is the Laplacian matrix derived from a pseudo graph, tr(∙)  denotes the trace 

function, and 𝐏 ∈ Π is a permutation matrix satisfying 

Π =  𝐏  𝑝𝑖𝑗 =  0,1 ,  𝑝𝑖𝑗
𝑁
𝑗=1 = 1, ∀ 𝑖,  𝑝𝑖𝑗

𝑁
𝑖=1 = 1, ∀ 𝑗}.               (3) 

Equation (2) is an NP-hard combinatorial optimization problem and remains very 

challenging without off-the-shelf solvers. Note that we can also rewrite the objective 

function f 𝐏  as a special case of quadratic assignment problem (QAP) [11]: 

min f 𝐏 = min tr 𝐗𝐏𝐋𝐏T𝐗T = min tr 𝐏𝐋𝐏T𝐗T𝐗 = min tr 𝐏𝐀𝐏T𝐁 ,   (4) 

where 𝐀  and 𝐁  denote the weight matrix and the distance matrix defined in QAP, 

respectively. However, to the best of our knowledge, most QAP solvers fail to solve our 

problem for two reasons: 

 When the problem size 𝑁 increases (e.g., 𝑁> 20), exact QAP algorithms (e.g., 

branch-and-bound [12], cutting plane [13]) become computationally intractable. 

 Few convex relaxation methods [14] are scalable to large 𝑁  by relaxing the 

binary integer constraints into nonnegative constraints. Unfortunately, this 

relaxation strategy just leads to trivial solutions (𝑝𝑖𝑗 = 1 𝑁 , ∀ 𝑖, 𝑗) in our case 

because, in Equation (2), the nature of quadratic penalty encoded by 𝐋 

encourages a smooth result. 

By contrast, as we will detail in Sec. 2.3, the proposed algorithm can address the 

scalability issue and reach local optima of Equation (2) efficiently. As a byproduct, our 

method can even solve the symmetric cases of QAP provided that the weight matrix 𝐁 is 

decomposable (i.e., 𝐁 = 𝐗T𝐗). 

2.3 Algorithm 

We name our algorithm Permutation on Manifolds (PoM) in the following sections. To 

make Equation (2) tractable without reaching wrong optima (i.e., 𝑝𝑖𝑗 = 1 𝑁 , ∀ 𝑖, 𝑗), we 

first use variable splitting technique and obtain 

min tr 𝐗𝐩𝐋𝐗𝐩
T      s.t. 𝐗𝐩 = 𝐗𝐏.                                    (5) 
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Equation (5) is a constrained optimization problem and can be solved efficiently by first-

order method. Most importantly, the unknown 𝐏 is now splitting from the Laplacian matrix 

𝐋. Hence we circumvent the risk of relaxing binary integer constraints into nonnegative 

constraints [14]. In this work, we use augmented Lagrange multiplier (ALM) method to 

solve Equation (5).The convergence of ALM has been well-studied and recently shown its 

success in computer vision and machine learning community [15]. By introducing an 

augmented Lagrange function: 

L 𝐗𝐩, 𝐏, 𝐘, 𝜇 = tr 𝐗𝐩𝐋𝐗𝐩
T +  𝐘, 𝐗𝐩 − 𝐗𝐏 +

𝜇

2
 𝐗𝐩 − 𝐗𝐏 

F

2
,            (6) 

we follow ALM to approximate 𝐏 iteratively by 

𝐗𝐩
(𝑡+1) = arg min𝐗𝐩

L 𝐗𝐩, 𝐏(𝑡), 𝐘(𝑡), 𝜇(𝑡) ,       (7) 

𝐏(𝑡+1) = arg min𝐏 L 𝐗𝐩
(𝑡+1), 𝐏, 𝐘(𝑡), 𝜇(𝑡) ,       (8) 

𝐘(𝑡+1) = 𝐘(𝑡) + 𝜇 𝑡 (𝐗𝐩 − 𝐗𝐏), and  (9) 

𝜇(𝑡+1) = 𝜌𝜇(𝑡),  (10) 

where 𝑡 denotes the iteration index and 𝜌 is a constraint-penalty parameter larger than one 

(we fix 𝜌 as 1.1 in all of our experiments). Let 𝐈 be an 𝑛 × 𝑛 identity matrix, the analytic 

solutions of Equations (7) is readily derived by 

𝐗𝐩
(𝑡+1) = (𝜇 𝑡 𝐗𝐏 𝑡 − 𝐘(𝑡))(𝐋 + 𝐋T + 𝜇 𝑡 𝐈)−1.   (11) 

The core of our algorithm then boils down to 

𝐏(𝑡+1) = arg min𝐏 𝐗𝐏 − 𝐙 F
2    s.t.  𝐏 ∈ Π,                              (12)

where 𝐙 = 𝐗𝐩
(𝑡+1) + 𝐘(𝑡)/𝜇(𝑡). Note that solving Equation (12) is not trivial. If we simply

adopt convex relaxation with 0 ≤ 𝑝𝑖𝑗 ≤ 1, we will obtain floating-point results on 𝐏 and

still lose the problem precision after binary thresolding. The numerical solution should be 

carefully approximated to reach good local optima.  

Because the matrix element of a desired 𝐏 is either zero or one, we rephrase Equation 

(12) by a sequence of additive costs and obtain 

𝐏(𝑡+1) = arg min𝐏    𝐱𝑖 − 𝐳𝑗 
2
𝑝𝑖𝑗

𝑁
𝑗 =1

𝑁
𝑖=1    s.t. 𝐏 ∈ Π,  (13) 

where 𝐳𝑗  is the 𝑗th  column of the augmented matrix 𝐙 and 𝑝𝑖𝑗  denotes the (𝑖, 𝑗)th  element

of 𝐏. Now Equation (13) becomes a binary integer programming problem but remains 

intractable when 𝑁 is very large. Fortunately, if we relax binary integer constraints into 

nonnegative constraints, the optimal solution of Equation (13) is guaranteed by linear 

programming solved with simplex method [16]. That is, in average cases, we probably 

solve Equation (13) in polynomial time; however, its worst case complexity is still 

exponential time. To further reduce the computational cost, we propose two guidelines to 

constrain our problem size: 

 Each data point 𝐱𝑖  is only allowed a limited number of moves, and its moving

destination is selected from its 𝑘 nearest data points among 𝐳1, ⋯ , 𝐳𝑁 .

 The best number 𝑘 , as small as possible, is determined by a binary search

strategy so that every 𝐳𝑖  can be accessed by 𝐱1, ⋯ , 𝐱𝑁 at least once.

The first criterion effectively limits the search range in simplex method, while the second 

criterion guarantees one-to-one mapping between 𝐗 and 𝐙. In practice, we observe that 

increasing 𝑘 by a small constant makes our algorithm more stable and thus we use 𝑘 + 5 as 

the neighbourhood size in all of our experiments.  
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2.4 Extensions 

In addition to data permutation, we study the potential of extending PoM Algorithm to 

different applications, especially for unsupervised tasks if the data order is essential to the 

underlying problem. For example, we can seamlessly embed PoM into linear dimension 

reduction methods when the data affinity matrix is unavailable. That is, we use the 

permuted pseudo-graph 𝐏𝐋𝐏T  to approximate the affinity matrix under the graph-

embedding framework [17]: 

𝐕 , 𝐏 = arg min tr 𝐕T𝐗𝐏𝐋𝐏T𝐗T𝐕    s.t.  𝐏 ∈ Π.                       (14) 

The projection matrix 𝐕 and the permutation matrix 𝐏 are then iteratively refined until the 

objective cost is unchanged. 

Equation (14) can be also modified and used as a regularization term in data 

completion problem. For example, a recent tensor completion method called STDC [18] 

was proposed to exploit within- or joint-manifold priors, under the assumption that these 

priors are known a priori and can be measured from the semantics of data. However, this 

assumption is sometimes impractical because we usually lack sufficient knowledge of 

incomplete data. To render STDC into a fully-unsupervised one, instead of defining the 

data affinity from data semantics, we can follow PoM and introduce the permutation 

matrix 𝐏 into manifold priors. Interested readers may refer to [18] for more technical 

details. We will provide preliminary simulation results in our experimental section. 

3. Experiments 

3.1 Validation on Synthetic Dataset 

Because the Swiss roll has a smooth manifold shape and is a good candidate to justify 

our hypothesis, we sample 300 data points from the Swiss roll (see Fig. 2(a)) as the 

(a) (b) 

(c) (d) 

Fig. 2. (a) The 300 data points sampled from a Swiss roll; and the data-linking results 

obtained by (b) ground truth labels; (c) PoM; and (d) GNCGCP [19]. 
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synthetic dataset. To visualize the results, we apply the proposed PoM Algorithm to the 

dataset and link data points along the estimated order. In addition, we compare with a 

recently proposed QAP solver, called GNCGCP [19], by recasting Equation (2) into a 

QAP formulation, using the source code downloaded from the author’s website. Because 

GNCGCP is a first-order optimization method, it can handle large-scale cases if we tune its 

initialization (let 𝐏 = 𝐈 rather than 𝑝𝑖𝑗 = 1 𝑁 ) carefully. 

Figure 2(b)-(d) demonstrates the ground truth and the data-linking results of GNCGCP 

and PoM. In comparison with the ground truth, where the order is determined by labels, 

the proposed PoM approximately recovers the order along the manifold’s shape. In 

contrast, GNCGCP shows poor linking and incurs high computational overhead (about 4.5 

hours) for convergence, whereas our method takes less than five minutes. 

3.2 Regularization as Manifold Priors 

We first show that the proposed PoM can be used for linear dimension reduction. We 

solve Equation (14) to reduce the data dimension of Fig. 2(a) from three to two. Figure 3 

demonstrates the two-dimensional subspaces in comparison with two classic algorithms 

PCA [20] and LPP [21], where the data affinity matrices are constructed from global 

distribution and local topology, respectively. Note that the focus here is not to unroll the 

Swiss roll (infeasible for linear methods) but to justify the significance of intrinsic order. 

Both PCA and LPP characterize the first two principal dimensions where a few data points 

overlap disorderly. By contrast, our method characterizes the first and the third principal 

dimension and thus preserve the manifold’ shape as well as the label coherency. 

Fig. 3. The linear dimension reduction results of Fig. 2(a) obtained by (a) PCA [20]; (b) 

LPP [21]; and (c) PoM. Note the difference that PoM characterizes the shape of Swill 

roll while both PCA and LPP fail. 

(a) (b) (c) 

(a) (b) (c) (d) 

Fig. 4. The image “Lena” with 80% missing entries: (a) before and (b) after permutation 

(50% rows and columns are randomly reordered); and its image completion results 

obtained by (c) STDC (PSNR=17.61 dB) and (d) STDC-PoM (PSNR=20.95 dB). 
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Next, we incorporate the proposed PoM into STDC [18] framework using the 

permutation matrices as a set of augmented variables. This modification enables an 

unsupervised STDC even when the within- or joint-manifold priors are not known a priori. 

Fig. 4 demonstrates an application on image completion, where Fig. 4(a) and Fig. 4(b) 

show the incomplete images before and after randomly permuting rows and columns, 

respectively. The data missing rate is 80% and the permutation rate is 50%. We give the 

image completion results of the original method [18] and its PoM extension in Fig. 4(c)-(d). 

Note that the role of PoM here is to characterize the smooth manifold priors for improving 

data completion rather than to infer the original row and column arrangements absolutely. 

For better visualization, we rearrange the rows and columns of two results with correct 

order to show the improvements. Because the local smoothness of 2-D image no longer 

holds after permutation, STDC obtains a quite noisy result and loses fine-scale structure. 

By contrast, STDC-PoM generates a visually-pleasant image as well as higher PSNR. 

3.3 Visual Data Organization  

We use two image sets “Basketball” and “Slide” released from [1] to verify our method. 

The “Basketball” dataset contains eight images captured by a pair of mobile phones, while 

the “Slide” dataset consists of tens images captured by five different cameras. The images 

of each dataset are initially unorganized and exhibit viewpoint changes. Because our goal 

is to evaluate the feasibility of the PoM algorithm, we include no pre-processing step (e.g., 

3D calibration) and just adopt a simple descriptor “image signature” (IS) [22] for feature 

representation. Other advanced features, for example, SIFT or SURF as suggested in [3], 

can be used if one considers a more challenging dataset. 

Following [22], each image is downsampled to the size of 36x64 and encoded by IS 

descriptor. We then vectorize the feature maps of three color channels and concatenate the 

feature vectors into 𝐱. Fig. 5 and Fig. 6 demonstrate the results of photo ordering measured 

by our algorithm. As shown in Fig. 5, after we permute images by PoM, one can observe a 

Fig. 5. The photo ordering results of the image set “Basketball”. 

Fig. 6. The photo ordering results of the image set “Slide”. 
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smooth change of the position of children which somewhat reveals the spatial order of 

cameras. Likewise, in Fig. 6, the images with similar viewpoints are grouped together, 

although our method cannot determine which image is the best starting point. From the 

results, we can conclude that the proposed PoM algorithm is able to approximate a 

perceptually reasonable order from a given image set, provided that a proper feature 

representation is chosen. The estimated order organizes image data implicitly and enables 

the possibility of numerous applications, such as visualization, image browsing, photo 

grouping, and so on. 

4. Conclusion 

In this paper, we propose to organize visual data with a perceptually reasonable order, 

which corresponds to the shape of manifold where the data lie on. This new perspective, 

posing no hypothesis on local topology of observed data, is simply built on the smoothness 

prior of manifold geometry. By constructing a template of smooth manifold, we recast our 

problem into binary integer programming and propose a scalable algorithm to solve it 

efficiently. We summarize our contributions from three aspects: 1) to the best of our 

knowledge, this is the first work that leverages smooth manifold geometry to organize 

visual data; 2) the proposed pseudo graph generalizes the use of spectral graph theory and 

bypasses the measurement of data affinity in traditional methods; and 3) from our 

experiments, the proposed PoM algorithm shows its potential to serve as a core technique 

of numerous applications. 
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