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Aiming at efficient similarity search, hash functions are designed to em-
bed high-dimensional feature descriptors to low-dimensional binary codes
such that similar descriptors will lead to the binary codes with a short
distance in the Hamming space. It is critical to effectively maintain the
intrinsic structure and preserve the original information of data in a hash-
ing algorithm. In this paper, we propose a novel hashing algorithm called
Latent Structure Preserving Hashing (LSPH), with the target of finding
a well-structured low-dimensional data representation from the original
high-dimensional data through a novel objective function based on Non-
negative Matrix Factorization (NMF) [2]. Via exploiting the probabilistic
distribution of data, LSPH can automatically learn the latent information
and successfully preserve the structure of high-dimensional data. After
finding the low-dimensional representations, the hash functions can be
acquired through multi-variable logistic regression. Experimental results
on two large-scale datasets, i.e., SIFT 1M and GIST 1M, show that L-
SPH can significantly outperform the state-of-the-art hashing techniques.
The outline of the proposed approach is depicted in Fig. 1.
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Figure 1: The outline of the proposed method. Part-based latent informa-
tion is learned from NMF with the regularization of data distribution.

Theoretically, it is expected that the low-dimensional data V given by
NMF can obtain locality structure from the high-dimensional data X . We
propose to minimize the Kullback-Leibler divergence between the joint
probability distribution in the high-dimensional space and the joint proba-
bility distribution in the low-dimensional space. Then through combining
the data structure preserving part and the NMF technique, we can obtain

the following new objective function:

O f = ‖X−UV‖2 +λKL(P‖Q), (1)

where P is the joint probability distribution in the high-dimensional s-
pace, Q is the joint probability distribution in the low-dimensional space,
V ∈ {0,1}D×N , X ,U,V > 0, U ∈ RM×D, X ∈ RM×N , and λ controls the
smoothness of the new representation.

Motivated by [3], we first relax the data V ∈ {0,1}D×N to the range
V ∈ RD×N for obtaining real values. The Lagrangian of our problem will
be:

L= ‖X−UV‖2 +λKL(P‖Q)+ tr(ΦUT )+ tr(ΨV T ), (2)

where matrices Φ and Ψ are two Lagrangian multiplier matrices. By some
algebraic deviations, we have the following update rules for any i, j:

Vi j←
(UT X)i j +2λ

N
∑

k=1

p jkVik+q jkVi j

1+‖v j−vk‖2

(UTUV )i j +2λ
N
∑

k=1

p jkVi j+q jkVik

1+‖v j−vk‖2

Vi j, Ui j←
(XV T )i j

(UVV T )i j
Ui j. (3)

The proof of convergence about U and V is similar to the ones in [1, 4].
Then we need to convert the low-dimensional real-valued representa-

tions from V = [v1, · · · ,vN ]∈RD×N into binary codes via thresholding: if
the d-th element in vn is larger than the specified threshold, this real-value
will be represented as 1; otherwise it will be 0, where d = 1, · · · ,D and
n = 1, · · · ,N. Therefore, with the vector-valued sigmoid function

hΘ(vn) =

(
1

1+ e−(ΘT vn)i

)T

i=1,··· ,D

for the matrix Θ ∈ RD×D, our cost function for the corresponding regres-
sion matrix Θ can be defined as:

J(Θ)=− 1
N

(
N

∑
n=1

(
v̂T

n log(hΘ(vn))+(1− v̂n)
T log(1−hΘ(vn))

)
+δ‖Θ‖2

)
where log(·) is the element-wise logarithm function and 1 is an D×1 all
ones matrix. We use δ‖Θ‖2 as the regularization term in logistic regres-
sion to avoid overfitting.

The updating equation is shown as follows:

Θ
(t+1) = Θ

(t)− α

N

N

∑
n=1

(h
Θ(t)(vn)− v̂n)vT

n −
αδ

N
Θ
(t). (4)

where α is the learning rate. Since hΘ is a sigmoid function, the hash
code for the new coming sample Xnew ∈ RM×1 can be represented as:

V̂new = bhΘ(QXnew)e, (5)

where b·e means the nearest integer function for each entry of hΘ and
Q = (UTU)−1UT which is the pseudoinverse of U .
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