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Abstract 

Computer Aided Diagnosis (CADx) systems are designed to assist doctors in 

medical image interpretation. However, a CADx is often thought of as a "black box" 

whose diagnostic decision is not intelligible to a radiologist.  Therefore, a system that 

uses semantic image interpretation, and mimics human image analysis, has clear 

benefits. 

We propose a new method for automatic textual description of medical image 

findings, such as lesions in medical images. The method performs joint estimation of 

semantic features of lesions from image measurements. We formalize this problem as 

learning to map a set of diverse medical image measurements to a set of semantic 

descriptor values. We use a structured learning framework to model individual 

semantic descriptors and their relationships. The parameters of the model are 

efficiently learned using the Structured Support Vector Machine (SSVM). 

The proposed approach generates radiological lexicon descriptors used to make a 

diagnosis of various diseases. This can help radiologists easily understand a diagnosis 

recommendation made by an automatic system, such as CADx. We apply the 

proposed method to publicly available and to proprietary breast and brain imaging 

datasets, and show that our method generates more accurate descriptions, as 

compared to other alternative approaches. 

1 Introduction 

One of the most important medical imaging tasks is lesion classification, which is used 

afterwards for disease diagnosis. For example, tumour lesions in various organs and 

modalities are classified by radiologists as malignant or benign, according to their semantic 
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 features. Usually, the most important semantic features are lesion shape, boundary type, 

density characteristics, and others. Therefore, automatic classification of lesions requires 

explicit or implicit representation of the above semantic features by corresponding image 

measurements used during the classification process. 

During the automatic diagnosis process, Computer Aided Diagnosis (CADx)  systems 

use various image features derived from various image measurements. The features 

usually include histograms of intensity values, shape and texture descriptors, and others 

(see ‎[1],‎[2] for an overview of such methods in breast imaging). Based on such features, 

CADx system makes a diagnosis decision.  

Doctors often complain that CADx diagnostic decision process is not intelligible to 

them.  Therefore, a system that has an ability to interpret medical images in semantic 

terms, offers several important advantages. In particular, automatically extracted semantic 

lesion descriptors can be used as a basis for a simplified radiological report. This, in turn, 

would reduce the load in a laborious reporting process, resulting in a faster and more 

coherent reporting system. Furthermore, providing a lucid presentation of the reasons for a 

given image interpretation, using the standard radiological lexicon would promote a 

physician's trust in the performance of the automated system. For example, a physician 

would know that the system classified a given tumour as benign due to its 'sharp edges' 

and 'parallel to skin orientation'. 

The physician would be able to weigh these features relative to, for example, 

'inhomogeneous tumour structure'. This approach would allow setting the system 

parameters to match a physician's individual preferences. Today, the user can control only 

system trade-offs between sensitivity and specificity. In the semantic system, it would be 

possible to also control the relative impact of each feature. 

Notice, that the semantic step in a CADx system is not a necessary step for making 

lesion classification. As mentioned above, typical CADx system uses various image 

features to make its final diagnosis. However, there are benefits in designing a system that 

can produce textual lesion description as an intermediate step. 

In natural images, there is a growing number of papers dealing with the problems of 

automatic semantic tagging (see, for example, ‎[4]), and of automatic description generation 

of images (see, for example, ‎[5]-‎[7]). However, in medical imaging domain, it seems that 

this topic is yet to gain popularity. Adopting the aforementioned semantic approach to 

medical image description poses its own set of problems. Foremost is the choice of 

semantic descriptors. It is important that such a semantic system would be able to interact 

with a human reader using the standard radiological lexicon. The need for standardized 

terminology is not new. It is used in breast image reporting by human readers even without 

a CADx system being used. For that reason, the American College of Radiology developed 

the Breast Imaging Reporting and Data System (BI-RADS) ‎[3] that standardizes the 

assessment and reporting of breast lesions. Although there are no analogues to BI-RADS 

standard in other radiological fields, doctors use similar semantic features, and describe 

lesions and write their reports in a similar manner.  

In medical imaging, semantic descriptors have been primarily used in content-based 

information retrieval (CBIR) for the automatic retrieval of similar cases. In ‎[8], for 

example, the authors presented a content-based mammogram retrieval system, which uses 

a query example to search for similar mammograms in the database. The mammographic 

lesions are interpreted based on their medical characteristics as specified in the BI-RADS 

lexicon. Then, the authors apply a hierarchical similarity measure based on a distance 

weighting function; each medical feature is considered independently. 
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Another use of semantic descriptors was proposed in ‎[9], and aimed to extend the 

classification to specific disease classes, in contrast to usual benign-or-malignant binary 

classification traditionally used in CADx. The authors used semantic features that were 

extracted manually by radiologists. They introduced a Bayesian network that models the 

probabilistic relationships between breast diseases, mammographic findings, and patient 

risk factors to provide a disease specific classification. As in ‎[8], the semantic terms are 

assumed to be conditionally independent.  

In ‎[10], the BI-RADS lexicon is used to extract texture characteristics associated with 

image regions obtained from a human reader’s mammography reports. The method 

searches similar regions by computing the Mahalanobis distance of feature vectors that 

describe the shape and texture characteristics of the selected regions. Then, using the k-

Nearest Neighbours (KNN) approach, the authors extract BI-RADS semantic descriptors in 

new images. 

The above methods can be categorized into two major types. The first category of 

methods performs independent estimation of semantic descriptors. This assumption is 

used, for example, in ‎[9].  The second category of methods is based on the KNN approach. 

This method is used, for example, in ‎[10]. In the first type of the above methods, the 

independent estimation of each of the semantic descriptors is performed by a multiclass 

classification approach. The second type of methods applies unsupervised clustering 

approach. Our approach is genuinely different from these methods, since it learns 

individual representations and dependencies of the semantic features from data in a 

discriminative manner. 

The main contributions of this work are as follows: 1) a new model for textual 

description of lesions, which captures semantic feature relationships; 2) a novel, 

discriminative method for automatic extraction of a basic radiological report which is 

medically sound and based on the standard radiological terminology; 3) the proposed 

method mitigates one of the major complaints of radiologists about CADx systems, 

namely, the lack of intelligibility of their decision process. Our method 'explains' to a 

radiologist why a particular diagnosis is made, using the standard radiological language. 

2 Proposed approach 

The main mode of operation of the proposed method is illustrated in Figure 1. Two 

examples of input images, of the detected lesion contours, and of the corresponding 

automatically generated textual descriptions of lesions using the proposed method are 

depicted in Figure 1a-1c, respectively. 

In the following sections we describe the methodology of the proposed method in 

details. Here, we give a brief description of the main steps of the method. Given a medical 

image, the first step is to localize a lesion and to find its contour. In this work, we 

concentrate on the problem of automatic generation of semantic description of lesions. We, 

therefore, use semi-automatic lesion detection and contour extraction, instead of a fully 

automatic approach. We assume that the bounding box around a lesion is found or given 

by a radiologist. Then, an active contour type method is applied to find the lesion contour 

inside of the bounding box. Given the found lesion contour, we calculate various image 

measurements and, based on it, construct visual features. Finally, we use the learned in 

advance model of mapping from visual features to semantic values, and generate the 

semantic description of a new lesion.   
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                    (a)                         (b)                                               (c) 

Figure 1: Examples of automatically generated textual description of lesions, using the 

proposed method:  (a) region of interest (ROI) taken from a breast mammography image, 

(b) found lesion contour (c) textual description of the lesion (estimated semantic 

descriptors are marked in yellow colour). 

 

2.1 Semantic descriptors and their corresponding image measurements 

Having found a lesion, a radiologist examines its visual appearance characteristics to make 

a final diagnosis. In particular, in breast ultrasound (US), the radiological lexicon 

standardized by BI-RADS contains the following semantic descriptors: shape, margin, 

orientation, acoustic transmission (posterior enhancement/shadowing), boundary, and echo 

pattern. A graphical illustration of these semantic descriptors and corresponding semantic 

values is presented in Figure 2. Similarly, in mammography (MG), the semantic 

descriptors defined in BI-RADS are: shape, margin, and density. In contrast, in brain 

imaging, for example, there is no strict standard such as BI-RADS. Nevertheless, doctors 

describe brain lesions using similar terms. In particular, brain tumour semantic descriptors 

usually include: shape, margin, boundary type, contrast enhancement, localization, mass 

effect on surrounding tissues, edema and others.  

 

"A well defined, homogeneous, 
oval mass with no architectural 
distortion" 
 
 
 
 
 
"An ill defined, heterogeneous, 
irregular mass with architectural 
distortion" 
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Figure 2: Example of semantic descriptors and corresponding semantic values in the 

ultrasound imaging modality (graphical illustration).  

 

The estimation of semantic descriptor values requires explicit or implicit representation 

by a diverse set of image measurements that describe each one of the semantic descriptors 

quantitatively. We use these image measurements to calculate the informative features, 

such as histograms of pixel values, shape and texture descriptors and others. The following 

are brief explanations of semantic descriptors and their corresponding image 

measurements that form image features. 

Shape and orientation. The shape of a lesion is the most important semantic 

characteristic. Malignant tumours tend to have more irregular and lobular shapes. We 

calculate different quantities such as the area of the lesion, its aspect ratio, and the 

curvature along the boundaries. Other shape features obtained by fitting an ellipse to the 

borders include: the ellipse orientation, the ratio between the minor and the major axes, 

and L1 norm and the maximum of distances between the contour and the ellipse. We also 

use a variant of the shape context descriptor ‎[11]. 

Margin and boundary. Sharp margins may indicate a benign tumour while smooth 

margins may indicate a malignant one. To assess the sharpness of the boundaries we divide 

the mass into 8 sectors of 45 degrees, and calculate the sharpness of the boundary in each 

sector. The sharpness is calculated as the maximal slope of the boundary profile. 

Intensity and texture characteristics. Density and echo pattern semantic descriptors 

are defined by the pixel intensity measurements. We compute two normalized intensity 

histograms of the inner and the outer (that is, next to the boundary), areas of the lesion. In 

addition, we characterise texture content of a lesion using several descriptors: entropy 

values of a local patch around each pixel computed from three dyadic scales of an image, 

and the Local Binary Pattern (LBP) descriptor ‎[12]. We found these simple texture 

descriptors work well.  

Other descriptors and measurements. More complex measurements, such as 

acoustic transmission and echo pattern, are used in ultrasound images. These 

measurements require additional detection capabilities. The posterior of the mass is an 

important characteristic when assessing the risk of malignancy. Strong enhancement and 

edge shadowing are common in benign masses such as cysts, while posterior shadowing is 

common in malignant tumours. To assess the level of the posterior enhancement or 

shadowing, we automatically detect the area below the mass, and calculate ratios of the 

median intensities and intensity variances inside its different segments. 
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Another important characteristic of masses examined by doctors is their echogenicity 

compared to the fat tissue. High values may indicate malignancy; the echogenicity and 

mass uniformity are useful for diagnosis of specific types of tumours. To quantify these 

features we use heuristics to recognize the fat tissue which is located on the upper side of 

the US images. We then compare the histogram of the lesion interior values to the one of 

the fat tissue. 

An additional semantic descriptor which is used sometimes in radiological reporting is 

the architectural distortion. It is defined by the BI-RADS system as "an appearance that 

may include spiculations radiating from a point and focal retraction or distortion at the 

edges". The shape features described above serve as a good predictor of this descriptor 

value.  (In contrast to other semantic descriptors that can take multiple possible values, the  

architectural distortion is a binary value descriptor.) 

All the above image measurements represent feature channels, and are combined into 

the feature vector containing 236 values. These features are used to learn the model 

parameters and to make the inference as described in the next section. 

2.2 Structured learning formulation for semantic description of a 

lesion 

We pose the problem of semantic description of a lesion as learning to map a set of image 

based informative features to a set of semantic descriptor values. A lesion is described by a 

set of J semantic descriptors. Semantic description of the i-th lesion is an assignment 

                 where each j-th semantic descriptor      can have one of the possible 

discrete values              corresponding to the radiological lexicon. Following the 

standard practice in structured learning ‎[14], the energy function of the above assignment 

is a sum of unary and pair-wise terms: 

 

1 1 2 2

,

( ) ( , ) ( , , ),T T

i ij i ij ik i

j j k

E y y y 


  y u X u X                             (1) 

 

where    are image measurements (visual features);    , and    are unary and pair-wise 

potentials, respectively, defined below; S is the set of all possible pairs of semantic 

descriptors;                               . The unary potentials capture the 

relationship between the image measurements and semantic descriptor values; the 

pairwise potentials capture joint relationships between the semantic descriptors, and 

reflect the likelihood of semantic descriptors to jointly have particular values. The unary 

potentials for j-th descriptor and feature channel c are defined as: 

 

1, , 1, 1, ,( , ; ) ~ ( | ; ).
j

c c

j c ij j i j Y ij j i j cy Y P Pr y Y   X X                             (2) 

 

They are modelled using a softmax classifier whose parameters         are learned from 

a training set of examples.      can be seen as a predictor of a semantic descriptor      

given a set of measurements    . Similarly to the unary potentials, the pairwise potentials 

 

2, , 2, , , 2, ,( , , ; ) ~ ( , | ; )
j k

c c

j c ij j ik k i j c Y Y ij j ik k i j cy Y y Y P Pr y Y y Y     X X                (3) 
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are modelled using a  softmax classifier with parameters        .   

2.3 Learning and inference 

We learn the parameters 
1 2[ ]T T Tu u u  of the model (1), using Structured SVM (SSVM) 

framework. In particular, given N training examples, the model parameters are learned by 

optimizing the regularized large-margin objective ‎[13], ‎[14]: 
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where the unary and the pairwise potentials are concatenated into a column vector: 

 

   1 2,
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T
T T

i i ij ij ij ik ij ikj j k
y y y  


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  
 y X X X X                             (5) 

We use the normalized weighted Hamming loss as the task loss: 

 
* *( , ) I( ) ,i i j ij ij jj j

w y y w   y y                                          (6) 

 

where weights     are defined (or learned in advance) by the relative importance of 

semantic descriptors in a diagnosis process,  and I is the indicator function that equals 1 

whenever the predicted value ijy  is different from the actual value 
*

ijy .  

  

Once the model parameters are learned (as described above), the inference goal is, 

given a new a lesion, to find the best assignment whose semantic values result in the 

lowest energy (1). This is achieved by solving: 

 

 ˆ , ( , ) .arg minˆ

i

i
i i


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y

u y Xy                                                  (7) 

 

The solution of (7) can be found using the Sequence Alignment algorithms ‎[13]. Notice, 

that the above formulation of the learning problem is similar to the Conditional Random 

Field (CRF) modelling used in object segmentation, natural language processing, and other 

fields (see for example, ‎[15]). 

After semantic descriptor values are estimated, they can be presented to a doctor in a 

form of a simplified radiology report. In addition, they can be used for making a lesion 

classification or a diagnosis, wherein they are used as features in a standard binary 

(malignant-or-benign) or a multiclass (specific disease) classification problem. This 

classification can be performed using, for example, SVM classifier. As mentioned above, 

the final diagnosis or lesion classification can be performed without the 'semantic step', 

directly from the image data. In fact, we compared both methods (with and without the 

intermediate 'semantic step'), and did not find any statistically meaningful difference in the 
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final diagnosis accuracy. However, the 'semantic step' provides readable explanation and 

insights, and, therefore, we believe, is beneficial for radiologists. 

3 Experiments 

We tested the accuracy of our method, and compared it with other approaches on breast 

and brain lesion imaging datasets. We used the widely known DDSM dataset ‎[16], where 

we chose MG images with masses with annotated semantic descriptors of shape, margin, 

and density. After removing images with rare combinations (that make it difficult to train 

the system properly), the final set contains total of 1546 images (corresponding to 773 

cases, or patients). Additionally, our proprietary dataset contains 408 US images (203 

cases), and 270 digitally acquired MG images (160 cases). The values of semantic 

descriptors in our US and MG datasets were annotated by a trained radiologist according to 

BI-RADS: 6 descriptors for US, and 3 for MG. We used data from the 

Brain Tumor Segmentation (BRATS) MICCAI 2013 challenge. For BRATS sequences, 

our radiologist annotated each case using 4 descriptors: shape, margin, enhancement, and 

T1 homogeneity. The resulting brain dataset contained 1400 images (30 cases). 

To extract accurate lesion boundaries, we used semi-automatic segmentation in all 

datasets. The radiologist chose a square region of interest (ROI) around a lesion.  We then 

used the active contour type algorithm ‎[17] to extract the contours. In DDSM, we used the 

original annotated contours to define the ROI, and applied the above active contour type 

algorithm to extract more accurate boundaries. We used these accurate contours to 

compute features described in Section ‎2.1.  

To the best of our knowledge, there are no systems that attempt to model and describe 

medical findings using complex relationships between the semantic descriptors. We 

therefore compared our method with the approaches that can be considered as competing 

methods: 1) independent estimation of semantic descriptors (for example, ‎[9]), and 2) the 

KNN based approach (for example, ‎[10]).  

One of the goals of our experiments is to compare the proposed SSVM based semantic 

descriptor estimation method with other possible approaches. In particular, we show that 

modelling the relationships between the semantic descriptors has a clear advantage over 

independent assumption based ones. Therefore, to exclude the factor of predictive ability 

of specific image features, we used the same image features in all experiments. 

(Obviously, using more sophisticated features is expected to give higher predictive ability). 

Notice also, that our goal is not the accuracy improvement of the final diagnosis, but rather 

introducing an intermediate 'semantic step' which helps to radiologists to understand a 

CADx system decision. We, therefore, do not present the final diagnosis accuracy. (As 

mentioned above, using or omitting the 'semantic step', had minor effect on the final 

diagnosis accuracy). 

We compared the proposed SSVM-based method with KNN-based and with 

independent semantic descriptor estimation. In the KNN-based method, we implemented 

the approach proposed in ‎[10]. For independent estimation, we used multiclass SVM 

classifier with RBF kernel.  

In all the experiments, we used the following experimental methodology. The set of 

images was divided (with stratification) into three equal parts (denoted by segments A, B 

and C). Segment C was reserved as a testing set. Every algorithm was trained on segment 

A. The optimal values of parameters, evaluated on the segment B (the validation segment) 
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were picked, and the algorithm was retrained on both segment A and B. Then, the 

algorithm was tested on segment C. This process was repeated with reversed roles for 

segments A and B, namely with segment B as the training set and segment A as the 

validation. This procedure was repeated five times (5x2 cross validation), and concluded 

with 10 trials. For each one of the semantic descriptors, we calculated the means and the 

standard deviations (STD) of the following three performance metrics: 1) the accuracy,  

ACC=(TP+TN)/M, 2) the positive predictive value, PPV=TP/(TP+FP), and 3) the true 

positive rate,  TPR=TP/(TP+FN). Here, M is the total number of testing examples, TP, TN, 

FP, and FN are the number of true positives, of true negatives, of false positives, and of 

false negatives, respectively.      

In DDSM experiments, we used the following descriptors and their corresponding 

values: shape {round; oval; lobulated; irregular; architectural distortion}, margin 

{circumscribed; ill-defined; spiculated; microlobulated; obscured}, and four density 

values. The results of the means of the performance metrics are summarized in Table 1. 

The STD's of the metrics were all under 5% of the mean values. 

The results of the means of the performance metrics for our proprietary breast US and 

MG datasets are summarized in Table 2 and Table 3 respectively. In this case, the STD's of 

the metrics were all under 4.7 and 7.6% of the mean values, respectively. Because of the 

relatively small number of examples, we used a reduced set of semantic values. In 

particular, in US experiments, we used 3 classes (possible values) for margin, shape, and 

echo, and 2 classes for the rest. In MG experiments, we used 3 classes for shape and 

margin, and 2 classes for density. We report only the accuracy for these experiments, since 

these numbers represent well the overall tendency. The results of the means of the 

performance metrics for the BRATS brain tumour dataset are presented in Table 4.  

The proposed approach outperformed the two other methods in nearly all figures. We 

attribute this to the ability of our more sophisticated model to better capture hidden 

relationships between different semantic descriptors. It should be noticed that in some 

cases, such as density value prediction, there was very marginal gain in the performance, 

as compared to the independent estimation. This may indicate that this descriptor has weak 

relationship with the other descriptors. 

 
       Semantic descriptor  

Estimation method 

Shape Margin Density 

ACC  PPV TPR ACC PPV TPR ACC PPV TPR 

Independent estimation 0.64 0.64 0.66 0.62 0.63 0.63 0.71 0.72 0.71 

k-NN based ‎[10] 0.67 0.67 0.68 0.64 0.65 0.67 0.72 0.72 0.73 

Proposed SSVM based 0.71 0.71 0.72 0.69 0.68 0.69 0.73 0.72 0.73 

Table 1. DDSM dataset: semantic descriptor estimation; mean performance (bold indicates 

the best result). The STD's of the metrics are all under 5% of the mean values. 

 

   Semantic descriptor 

Estimation method 

Shape 

ACC 

Margin 

ACC 

Density 

ACC 

Independent estimation 0.73 0.72 0.81 

k-NN based ‎[10] 0.74 0.76 0.80 

Proposed SSVM based 0.79 0.78 0.82 

Table 2. Mammography dataset (proprietary): semantic descriptor estimation; mean 

performance (bold indicates the best result). The STD's of the metrics are all under 4.7% of 

the mean values. 
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   Semantic descriptor 

Estimation method 

Shape 

ACC 

Orient. 

ACC 

Margin 

ACC 

Echo 

ACC 

Transm. 

ACC 

Boundary 

ACC 

Independent estimation 0.62 0.98 0.6 0.75 0.79 0.74 

k-NN based ‎[10] 0.64 0.92 0.63 0.76 0.78 0.76 

Proposed SSVM based 0.68 0.94 0.69 0.78 0.81 0.76 

Table 3. Ultrasound dataset (proprietary): semantic descriptor estimation; mean 

performance (bold indicates the best result). The STD's of the metrics are all under 7.6% of 

the mean values. 

 

   Semantic descriptor 

Estimation method 

Shape 

ACC 

Margin 

ACC 

Enhancement 

ACC 
Homogeneity 

ACC 

Independent estimation 0.72 0.84 0.8 0.79 

k-NN based ‎[10] 0.74 0.85 0.83 0.77 

Proposed SSVM based 0.78 0.9 0.83 0.8 

Table 4. Brain dataset (BRATS2013): semantic descriptor estimation results; mean 

performance (bold indicates the best result). The STD's of the metrics are all under 4.9% of 

the mean values. 

4 Discussion 

We presented a novel discriminative method for automatically generating semantic 

descriptions of lesions using a structured learning approach. The method addresses one of 

the major complaints of radiologists: the lack of intelligibility of the CADx decision 

process. Our system can ’explain’ to a radiologist why a particular diagnosis is made, 

using the standard radiological lexicon. The proposed method improves the accuracy of 

semantic feature estimation by modelling their relationships. It outperforms the competing 

KNN-type method by up to 5% in accuracy. Similar gain in the accuracy is achieved on the 

brain MRI data (MICCAI BRATS 2013 challenge).  

The main obstacle in making such a system completely automatic is the difficulty to 

design highly accurate fully automatic lesion localization and segmentation algorithms. 

Obviously, the accuracy of the semantic descriptor estimation is greatly dependent on the 

accuracy of the feature calculation, which, in turn, relies on the segmentation method. We 

plan to investigate dependable lesion segmentation methods, along with improvements in 

image feature measurements that will make our system less sensitive to the segmentation 

errors and provide more accurate results. Also, in order to use our system for free-text 

radiological report generation, natural language processing (NLP) methods should be 

engaged in the future. 
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