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Active object recognition (AOR) refers to problems in which an agent
interacts with the world and controls its sensor parameters to maximize
the speed and accuracy with which it recognizes objects. A wide range
of approaches have been developed to re-position sensors or change the
environment so that the new inputs to the system become less ambigu-
ous [1, 2] with respect to goals such as 3D reconstruction, localization
or recognition of objects. Many of the active object recognition methods
are built around a specific hardware system, which makes the replication
of their results very difficult. Other systems use off-the-shelf computer
vision datasets, which include several views of objects captured by sys-
tematically changing object’s orientation in the image. However, these
datasets do not offer any active object recognition benchmark per se.

In this paper, we present and make publicly available the GERMS
dataset (see Figure 1), that was specifically developed for active object
recognition. The data collection procedure was motivated by the needs
of the RUBI project, whose goal is to develop robots that interact with
toddlers in early childhood education environments [4]. To collect data,
we asked a set of human subjects to hand the GERM objects to RUBI
in poses they considered natural. RUBI then pretends to examine the
object by bringing it to its center of view and rotating the object. The
background of the GERMS dataset was provided by a large screen TV
displaying video scenes from the classroom in which RUBI operates, in-
cluding toddlers and adults moving around.

Figure 1: Object set used in GERMS dataset. The objects represent
human cell types, microbes and disease-related organisms.

We also propose an architecture (DQL) for AOR based on deep Q-
learning (see Figure 2). To our knowledge, this is the first work em-
ploying deep Q-learning for active object recognition. An image is first
transformed into a set of features using a DCNN borrowed from [3] which
was trained on ImageNet. We add a softmax layer on top of this model to
recognize GERMS objects; the output of this softmax layer is the belief
over different GERMS objects given an image. This belief is combined
with the accumulated belief from the previous images using Naive Bayes.
This accumulated belief represents the state of the AOR system in each
time step.

The accumulated belief is then transformed by the policy learning
network into action values. This network is composed of two Rectified-
Linear-Unit (ReLU) layers followed by a Linear-Unit (LU) layer. Each
unit in the LU represents the action value for a given accumulated belief
and one of the possible actions. In order to train this module, we imple-
ment the Q-learning iterative update:

Q(s,a)← Q(s,a)+α{R(s,a)+ γ max
a∗

Q(s∗,a∗)−Q(s,a)} (1)

Figure 2: The proposed architecture for DQL.

into the following stochastic gradient descent weight update rule for the
network:

W ←W −λ

(
Rt + γ max

a
Q(Bt+1,a)−Q(Bt ,at)

)
∂

∂W
Q(Bt ,at). (2)

Here, W is the weights of the policy learning network, Q(s,a) is the
action-value learned by the network for action a in state s, γ is the reward-
discount factor and Rt is the reward at the tth time step.

The number of output units in the policy learning network is equal
to the number of possible actions. Each output unit calculates the action
value Q(s,a) for one action a. We implemented a set of actions which ro-
tate the robot’s wrist from its current position by±π/64,±π/32,±π/16,
±π/8, ±π/4. The allowable range of rotation for both robot wrists is in
[0,π].

Table 1 shows the superior performance of the proposed DQL method
compared to random and sequential action selection strategies. For de-
tailed description of the dataset and the training algorithm, please refer to
the paper.

Table 1: Number of steps required by the sequential, random and DQL
policies to reach the same level of prediction accuracy on GERMS dataset.

Method

Prediction
Accuracy(%) 48 53 55 58 62

Sequential 18 30 - - -
Right ArmRandom 2 4 6 10 -

DQL 1 2 2 3 10
Sequential 15 24 - - -

Left ArmRandom 3 10 18 - -
DQL 1 3 3 7 -
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