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Abstract

The performance of many computer vision and machine learning algorithms are
heavily depend on the distance metric between samples. It is necessary to e xploit abun-
dant of side information like pairwise constraints to learn a robust and reliable distance
metric. While in real world application, large quantities of labeled data is unavailable
due to the high labeling cost. Transfer distance metric learning (TDML) can be utilized
to tackle this problem by leveraging different but certain related source tasks to learn a
target metric. The recently proposed decomposition based TDML (DTDML) is superior
to other TDML methods in that much fewer variables need to be learned. In spite of
this success, the learning of the combination coefficients in DTDML still relies on the
limited labeled data in the target task, and the large amounts of unlabeled data that are
typically available are discarded. To utilize both the information contained in the source
tasks, as well as the unlabeled data in the target task, we introduce manifold regulariza-
tion in DTDML and develop the manifold regularized transfer distance metric learning
(MTDML). In particular, the target metric in MTDML is learned to be close to an inte-
gration of the source metrics under the manifold regularization theme. That is, the target
metric is smoothed along each data manifold that is approximated by all the labeled and
unlabeled data in the target task and each source metric. In this way, more reliable tar-
get metric could be obtained given the limited labeled data in the target task. Extensive
experiments on the NUS-WIDE and USPS dataset demonstrate the effectiveness of the
proposed method.

1 Introduction
Distance metric is critical in a number of machine learning and pattern recognition algo-
rithms [4, 4, 11, 12, 17]. For instance, the simple k-nearest neighbor (kNN) classifier is
sometimes superior to other well designed classifier with a suitable distance metric [4, 14].
Also in unsupervised settings such as clustering, a proper distance metric will help find a
plausible patterns that meaningful to users.
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In order to learn a robust distance metric to reveal data similarity, we need a large amount
of side information [15, 16, 17]. These side information is usually cast in a form of pairwise
constraint that indicates weather samples are similar or not. However, abundant labeled
samples is unavailable in practice due to the high labeling cost. A natural solution to tackle
this problem is to utilize the large amount of unlabeled data [5, 8, 9]. For example, Hoi
et al. [5] proposed a Laplacian regularized metric learning algorithm for image retrieval.
Recently, many works focus on transfer distance metric learning (TDML), which aims to
derive a reliable target metric by leveraging auxiliary knowledge from some different but
related tasks [10, 18, 19]. For example, the target metric is learned in [18] by minimizing
the log-determinant divergence between the source metrics and target metric. Zhang and
Yeung [19] proposed to learn the task relationships in transfer metric learning, and therefore,
allow modeling of negative and zero transfer. DTDML [10] is superior to both of these two
methods in that the number of variables to be learned is reduced significantly, by representing
the target metric as a combination of some "base metrics". However, in the learning of the
combination coefficients, only the source metrics pre-trained on the labeled data in the source
tasks and limited labeled data in the target task are utilized. But the large amount of unlabeled
data in the target task are discarded.

Therefore, in this paper, we propose manifold regularized transfer distance metric learn-
ing (MTDML), which could make full use of both the label information in the source tasks
and all the available (labeled and unlabeled) data in the target task. In particular, a source
metric is learned by utilizing the abundant labeled data in a certain source task. Then a data
adjacency graph is constructed by applying a learned source metric on all the data in the tar-
get task. This leads to multiple graphs, and we integrate them to reveal the geometric struc-
ture of the target data distribution, which is assumed to be supported on a low-dimensional
manifold. Finally, the Laplacian of the integrated graph is formulated as a regularization
term to smooth the target metric. In this way, both the large amount of label information
and the abundant unlabeled data in the target task are utilized in the learning of the target
metric. The learned target metric not only is close to an integration of the source metrics,
but also respects the data distribution of the target task. We therefore obtain more reliable
solutions given the limited side information. In the optimization, the "base metric" combina-
tion coefficients and the source graph Laplacian integration weights are learned alternatively
until converge. We conduct experiments on NUS-WIDE, which is a challenge web image
annotation dataset and USPS, a handwritten digit classification dataset. The results confirm
the effectiveness of the proposed MTDML.

2 Manifold Regularized Transfer Distance Metric
Learning

In this section, we propose our manifold regularized transfer distance metric learning (MT-
DML) model. The following are some notations that used throughout this paper: Let D =

{(xl
i ,x

l
j,yi j)}nl

i, j=1 denotes the labeled training set for the target task, wherein xi, x j ∈ Rd and
yi j = ±1 indicates xl

i and xl
i are similar/dissimilar to each other. The number of labeled

samples nl is very small, and thus we assume there are large amount of nu unlabeled data
{xu

i ,x
u
j}, as well as m different but related source tasks with abundant labeled training data

Dp = {(xpi,xp j,ypi j)}
np
i, j=1, p = 1, . . . ,m.
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2.1 Background and Overview of MTDML
In distance metric learning (DML), a metric is usually learned to minimize the distance
between the data from the same class and maximize their distance otherwise. This leads to
the following loss function for learning the metric A:

Φ(A) = ∑
yi j=1

∥xi − x j∥2
A −µ ∑

yi j=−1
∥xi − x j∥2

A

= tr(S ·A)−µtr(D ·A)
(1)

where dA(xi,x j) = ∥xi − x j∥A =
√

(xi − x j)T A(xi − x j) is the distance between two data
points xi and x j, tr(·) is the trace of matrix, µ is a positive trade-off parameter. Here, S
and D are given by,

S = ∑
(xi,x j)∈S

(xi − x j)(xi − x j)
T ,

D = ∑
(xi,x j)∈D

(xi − x j)(xi − x j)
T (2)

The loss function (1) above is widely used in [5, 13, 18]. A regularization term Ω(A) =
∥A∥2

F can be added in (1) to control the model complexity. However, when the number
of labeled data nl is small, especially less than the number of variables to be estimated
in metric matrix A, such a simple regularization is often insufficient to control the model
complexity. Transfer distance metric learning (TDML) methods [10, 18, 19] tackle this
problem by leveraging auxiliary knowledge from some different but related source tasks.
The recently proposed decomposition based TDML (DTDML) [10] algorithm is superior to
the previous TMDL approaches in that much fewer variables are needed to be learned.

Given the m source tasks, we learn m corresponding metrics Ap ∈ Rd×d , p = 1, . . . ,m
independently. Considering that any metric A can be decomposed as A = Udiag(θ)UT =

∑d
i=1 θiuiuT

i , DTDML proposed to learn a combination of some base metrics to approximate
the optimal target metric. The base metrics can be derived from the source metrics or some
randomly generated base vectors. For example, we can apply singular value decomposition
(SVD) to Ap and obtain a set of source eigenvectors Up = [up1 . . .upd ]. Then the base metric
is calculated as Bp j = up juT

p j and this leads to m×d base metrics for m source tasks. Based
on this idea, the formulation of DTDML is given by

argmin
β ,θ

Φ(β ,θ)+
γA

2
∥A−AS∥2

F +
γB

2
∥β∥2

2 +
γC

2
∥θ∥2

1 (3)

where Φ(·) is some pre-defined convex loss, A = ∑m×d
r=1 θruruT

r , and AS = ∑m
p=1 βpAp is an

integration of the source metrics.
Although the limited labeled samples in the target task and the auxiliary source metrics

are effectively utilized in problem (3) by simultaneously minimizing the losses Φ(β ,θ) and
the divergence between AS and A, the large amount of unlabeled data in the target task are
discarded. Therefore, we propose to utilize manifold regularization [2] to take advantage of
all the given labeled and unlabeled information in a unified metric learning framework. The
diagram of the proposed MTDML is shown in Figure. 1. Each source task learns a corre-
sponding source metric independently. These metrics are used to construct several graphs
by using the labeled and unlabeled data in target task. The different graph Laplacians are



4 HAIBO SHI, YONG LUO, CHAO XU, YONGGANG WEN: MTDML

dog

cat

Unlabeled data

ddog

cat

Source domains

Unlabeled data

Target domain

…

…

( )qdiag( )g( )
Source eigenvectors Source eigenvectors 

or random bases

U

A

Result metric

*
A

R

Labeled d data

Source metrics

Manifold Integration

Preserve Locality

…

…

MManiifffffollllddddddd IIIntegratiiion

Preserve Locality

zebra

horse

…

1A m
A

1L m
L

L

…

ee 11LL

Label Information

Figure 1: Diagram of the proposed MTDML algorithm.

weightedly combined as an integrated Laplacian matrix L, which is used to preserve locali-
ty in the feature space and approximate the data distribution. Meanwhile, the target metric
A = Udiag(θ)UT is represented by a group of base metrics that generated from decom-
position of source metrics. By incorporating the limited label information, and smoothing
the target metric A along the data manifold that is approximated with the integrated L, we
learn the base metric combination coefficients and the graph Laplacian integration weights
simultaneously, and finally, obtain the result metric.

2.2 Problem Formalization

Manifold regularization framework [2] implies the geometry of the intrinsic data probability
distribution is supported on the low-dimensional manifold. The Laplacian of the adjacency
graph computed in an unsupervised manner using Laplacian Eigenmap[1] with both labeled
and unlabeled samples. The data manifold can be approximated with the graph Laplacian.
Moreover, the distance measure is a key point for graph Laplacian construction. Since both
the integrated source metric AS and target metric A are derived from the same feature space
and related tasks, these two metrics should be similar. Rather than explaining this similarity
by simply minimizing the least squares difference in DTDML, we formulate it as a smooth-
ing penalty term. Based on the obtained source metric Ap, we construct an adjacency graph
Wp by using all the labeled and unlabeled data in the target task. This leads to multiple
graphs Wp, p = 1, . . . ,m. Considering the target metric A, distance between two samples
can be further written as, dA(xi,x j) =

√
(xi − x j)T A(xi − x j) =

√
(xi − x j)T PPT (xi − x j) with
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P ∈Rd×d . As a consequence, it is equivalent to learn the target metric A and the linear map-
ping P. Following the manifold regularization principle, we can smooth P along the data
manifold [2, 18], which is approximated by the Laplacian of the graph Wp. By summing
over all the different graphs {Wp}m

p=1, we obtain the following regularizer for the mapping P
as well as the metric A, i.e.,

Ω(A) =
1
2

m

∑
p=1

βp(∑
i, j
∥Pxi −Px j∥2Wp(i, j))

=
m

∑
p=1

βptr(XLpXT PPT )

= tr(XLXT A)

(4)

where L = ∑m
p=1 βpLp, is the integrated graph Laplacian, and each Lp = Dp −Wp. Here, Dp

is a diagonal matrix with the entity Dpii =∑nl+nu

j=1 Wpi j. In this way, target metric A is not only
close to an integration of the source metrics, and also smooth along the data manifold. This
leads to lower model complexity compared with DTDML, and thus better generalization
ability for metric learning.

By introducing the regularizer (4) in (1), and adopting the decomposition based metric
learning strategy in [10], we obtain the following optimization problem for our MTDML:

argmin
β ,θ

tr(S ·A)−µtr(D ·A)+ γAtr(XLXT A)

+
γB

2
∥β∥2

2 +
γC

2
∥θ∥2

2

s.t.
m

∑
i=1

βi = 1,βi ≥ 0, i = 1, . . . ,m

(5)

where γA,γB,γC are positive trade-off parameters. By the use of the learned θ ∗, we can easily
construct A∗ = ∑m×d

r=1 θ ∗
r uruT

r as optimal distance metric for next step classification.

2.3 Optimization

The solution of problem (5) can be obtained by alternately solving two sub-problem, which
correspond to the minimization w.r.t β = [β1, . . . ,βm]

T and θ = [θ1, . . . ,θm×d ]
T respectively

until convergence.
For fixed β , the optimization problem with respect to θ is formulated as:

argmin
θ

n

∑
i=1

θitr((S−µD+ γAXLXT ) · (uiuT
i ))+

γC

2
∥θ∥2

2 (6)

Equation above can be further written in a compact form:

θ ∗ = argmin
θ

θ T h+
γC

2
∥θ∥2

2 (7)

where h = [h1, . . . ,hn] with each hi = tr((S−µD+ γAXLXT )(uiuT
i )). Since (6) is a convex

problem and has close form solution, we can get θ ∗ efficiently.
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With fixed θ , the optimization problem with respect to β is formulated as:

argmin
β

γA

m

∑
i=1

βitr(XLiXT A)+
γB

2
∥β∥2

2

s.t.
m

∑
i=1

βi = 1,βi ≥ 0, i = 1, . . . ,m
(8)

where A is derived from optimized θ ∗ obtained last step. Similarly, (8) can be written as:

β ∗ = argmin
β

β T g+
γB

2
∥β∥2

2

s.t.
m

∑
i=1

βi = 1,βi ≥ 0, i = 1, . . . ,m
(9)

where the constant term has been omitted, g = [g1, . . . ,gm] with each gi = γAtr(XLiXT A).
(9) is a standard quadratic programming problem with linear constraints. Typically, it can be
solved by adopting coordinate descent algorithm. In each iteration, we select two elements βi
and β j for updating while the others fixed. Due to the constraint ∑m

i=1 βi = 1, the summation
of βi and β j will not change after current iteration. Therefore, we obtain the following
updating rule:

β ∗
i =

γB(βi +β j)+(h j −hi)

2γB

β ∗
j = βi +β j −β ∗

j

(10)

To satisfied βi ≥ 0, we set β ∗
i = 0 and β ∗

j = βi + β j if γB(βi + β j) + (h j − hi) < 0. We
iteratively traversal over all pairs of elements in β with (10) until the object function in (5)
does not decrease.

In sum, the two group of coefficients are learning alternately by this two sub-problem
until convergence.

3 Experiment Evaluation
In this section, experiments are conducted to validate the effectiveness of the proposed MT-
DML on two popular datasets, a challenge real-world web image annotation dataset and a
handwritten image dataset. For comparison purpose, we also evaluate the following meth-
ods:

• RDML[6] A regularized distance metric learning method. The regularization term,
∥A∥2

F , used to control model complexity. An online algorithm is demonstrated to be
efficient and effective for solving the problem. In this paper, we conduct an aggrega-
tion strategy which is simply applying RDML on the training set that consists of data
from both source and target tasks. This method also serves as a baseline for regularized
metric learning.

• LRML[5] A semi-supervised distance metric learning method by utilizing unlabeled
data. The LRML algorithm is formulated as Semidefinite Program (SDP) and solved
by convex optimization techniques. This method serves as a baseline for semi-supervised
metric learning.
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• L-DML & M-DML[18] A transfer metric learning method that utilizes the auxiliary
knowledge by adopting Bregman divergence as well also manifold regularization. The
entries in target metric are estimated also by solving a SDP problem and we reimple-
ment the algorithm by the toolbox, SDPT3 solver.

• TML[19] A transfer metric learning algorithm proposed recently. Relationship be-
tween the source and target tasks is learned for transfer by solving a second-order
cone programming (SOCP). An online algorithm is developed for target metric’s opti-
mization.

• STML[19] A metric learning model based on the TML. It is provided as semi-supervised
extension in the same paper with [19].

• DTDML[10] A transfer metric learning method learned by decomposition based method.
Our method is built on top of DTDML and is further improved by exploiting useful
information contained in the unlabeled data.

With metric learned by above algorithms, we apply 1-Nearest Neighbor classifier on the
test set and report the average classification accuracy.

3.1 Web Image Annotation
We first utilize the well-known natural image dataset NUS-WIDE[3] to justify the signifi-
cance of the proposed method for learning a reliable distance metric, especially under the
data deficiency condition. This dataset contains 269,648 images and corresponding fea-
tures. Our experiments use features extracted by SIFT [7] descriptor with 500-D bag of
visual words, which is available on the homepage1 of the dataset.

To perform transfer meaningfully, we select 12 animal concepts: bear, bird, cat, cow,
dog, elk, fish, fox, horse, tiger, whale and zebra. For each concept, 100 samples are random-
ly picked from the dataset. In this setting of experiment, we randomly select 6 concepts as
source tasks and target task requires annotation of all others. It forms as a multi-class prob-
lem. The pair constraints are labeled as similar if they are from the same class, otherwise
dissimilar.

Table 1: Average Annotation Performance on NUS-WIDE Dataset
Method Split 1 Split 2 Split 3
RDML 30.8 27.7 32.7
L-DML 28.6 28.3 31.7
M-DML 28.9 29.9 33.0
TML 32.3 31.7 36.6
DTDML 33.6 33.7 37.3
MTDML 35.3 35.3 38.7

The source metrics are trained by using the RDML method with all available data in the
source tasks. For the target task, we divide the dataset by 6 labeled training samples for each
class and 300 for testing, others as unlabeled data for semi-supervised setting. All trade-off
parameters are determined empirically by adopting grid search. The overall classification

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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result is reported in Table. 3.1. We perform 3 different random splits of the concept set and
run the program for 5 iterations and calculate the average accuracy.

We then show that the performance of different semi-supervised distance metric learning
method w.r.t the number of labeled samples in each class. The result shows in Figure. 2.
MTDML always performs the best compared with other semi-supervised metric learning
methods. In particular, our method harvests a 6.5% improvement on the average over M-
DML when only 4 labeled samples are used in each class.
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Figure 2: Comparison with other Semi-supervised Distance Metric Learning method.

3.2 Handwritten Image Classification

USPS2 is a handwritten digit dataset, which contains 7,291 samples. Each sample is con-
structed by an image of size 16×16 in raw pixels. These raw images are treated as features
of d = 256 dimension. Here, we conduct the same experiment settings with DTDML for
comparison, i.e. nine tasks: 0/6, 0/8, 1/4, 2/7, 3/5, 4/7, 4/9, 5/8 and 6/8, each corresponding
to a binary classification task. While training, we choose one of the nine tasks as target task
and others as source tasks. Also, the source metrics for our method are obtained by RDML
and all trade-off parameters are set empirically with grid search.

We present the average performance over all settings of MTDML with some related
distance metric learning method. The result shows in Figure. (3).

From the result, we observe that: 1) Comparing to RDML, our method achieves a better
classification performance which shows that source metrics and unlabeled data greatly help
with learning target metric. 2) Our algorithm is superior than LRML which may due to ex-
ploiting information in source metrics as well as the finding of a bad local minima in LRML
optimization steps. 3) The performance of all compared methods tends to be improved while
training samples increasing. MTDML outperforms other methods and especially stable un-
der training data deficiency condition.

2www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
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Figure 3: USPS dataset in comparison with some baseline method.

4 Conclusion

This paper proposed the manifold regularization transfer distance metric learning model,
MTDML. By integrating source and target tasks with a data geometric constraint, MTDML
learns a robust and reliable metric from both labeled samples and unlabeled samples. More-
over, our algorithm can be solved quite efficiently under an alternative optimization frame-
work. From the experimental validation on the web image annotation and handwritten image
classification task, MTDML outperforms other transfer metric learning and semi-supervised
metric learning methods, especially under training data deficiency conditions.
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