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The performance of many computer vision and machine learning algo-
rithms are heavily depend on the distance metric between samples. It
is necessary to exploit abundant of side information like pairwise con-
straints to learn a robust and reliable distance metric[2, 3]. Let D =
{(xl

i ,x
l
j,yi j)}nl

i, j=1 denotes the labeled training set for the target task, where-
in xi, x j ∈ Rd and yi j = ±1 indicates xl

i and xl
i are similar/dissimilar to

each other.
Then, a metric is usually learned to minimize the distance between

the data from the same class and maximize their distance otherwise. This
leads to the following loss function for learning the metric A:

Φ(A) = ∑
yi j=1

∥xi − x j∥2
A −µ ∑

yi j=−1
∥xi − x j∥2

A

= tr(S ·A)−µtr(D ·A)
(1)

where dA(xi,x j) = ∥xi−x j∥A =
√
(xi − x j)T A(xi − x j) is the distance be-

tween two data points xi and x j, tr(·) is the trace of matrix, µ is a positive
trade-off parameter. Here, S and D are given by S = ∑(xi − x j)(xi − x j)

T ,
(xi,x j) ∈ S, D = ∑(xi − x j)(xi − x j)

T , (xi,x j) ∈D.
The loss function (1) above is widely used in distance metric learning

(DML) method. A regularization term Ω(A) = ∥A∥2
F can be added in (1)

to control the model complexity. However, when the number of labeled
data nl is small, such a simple regularization is often insufficient to control
the model complexity. The recently proposed decomposition based TDM-
L (DTDML) [2] algorithm is superior to the previous TMDL approaches
in that much fewer variables are needed to be learned. Given the m source
tasks, we assume there are large amount of nu unlabeled data {xu

i ,x
u
j}, as

well as m different but related source tasks with abundant labeled training
data Dp = {(xpi,xp j,ypi j)}

np
i, j=1, p = 1, . . . ,m. Then we learn m corre-

sponding metrics Ap ∈ Rd×d , p = 1, . . . ,m independently. Considering
that any metric A can be decomposed as A =Udiag(θ)UT = ∑d

i=1 θiuiuT
i ,

DTDML proposed to learn a combination of some base metrics to approx-
imate the optimal target metric. The base metrics can be derived from the
source metrics or some randomly generated base vectors. Based on this
idea, the formulation of DTDML is given by

argmin
β ,θ

Φ(β ,θ)+
γA

2
∥A−AS∥2

F +
γB

2
∥β∥2

2 +
γC

2
∥θ∥2

1 (2)

where Φ(·) is some pre-defined convex loss, A = ∑m×d
r=1 θruruT

r , and AS =

∑m
p=1 βpAp is an integration of the source metrics.

Although the limited labeled samples in the target task and the aux-
iliary source metrics are effectively utilized in problem (2) by simulta-
neously minimizing the losses Φ(β ,θ) and the divergence between AS
and A, the large amount of unlabeled data in the target task are discard-
ed. Therefore, we propose to utilize manifold regularization [1] to take
advantage of all the given labeled and unlabeled information in a unified
metric learning framework.

Manifold regularization implies the geometry of the intrinsic data
probability distribution is supported on the low-dimensional manifold.
The Laplacian of the adjacency graph computed in an unsupervised man-
ner using Laplacian Eigenmap with both labeled and unlabeled samples.
The data manifold can be approximated with the graph Laplacian. More-
over, the distance measure is a key point for graph Laplacian construc-
tion. Since both the integrated source metric AS and target metric A are
derived from the same feature space and related tasks, these two met-
rics should be similar. Rather than explaining this similarity by simply
minimizing the least squares difference in DTDML, we formulate it as a

smoothing penalty term. Based on the obtained source metric Ap, we con-
struct an adjacency graph Wp by using all the labeled and unlabeled data
in the target task. This leads to multiple graphs Wp, p = 1, . . . ,m. Con-
sidering the target metric A, distance between two samples can be further

written as, dA(xi,x j) =
√

(xi − x j)T A(xi − x j) =
√
(xi − x j)T PPT (xi − x j)

with P ∈ Rd×d . As a consequence, it is equivalent to learn the target
metric A and the linear mapping P. Following the manifold regulariza-
tion principle, we can smooth P along the data manifold [1, 3], which is
approximated by the Laplacian of the graph Wp. By summing over all
the different graphs {Wp}m

p=1, we obtain the following regularizer for the
mapping P as well as the metric A, i.e.,

Ω(A) =
1
2

m

∑
p=1

βp(∑
i, j

∥Pxi −Px j∥2Wp(i, j))

= tr(XLXT A)

(3)

where L = ∑m
p=1 βpLp, is the integrated graph Laplacian, and each Lp =

Dp−Wp. Here, Dp is a diagonal matrix with the entity Dpii =∑nl+nu

j=1 Wpi j .
In this way, target metric A is not only close to an integration of the source
metrics, and also smooth along the data manifold. This leads to lower
model complexity compared with DTDML, and thus better generalization
ability for metric learning.

By introducing the regularizer (3) in (1), and adopting the decom-
position based metric learning strategy in [2], we obtain the following
optimization problem for our MTDML:

argmin
β ,θ

tr(S ·A)−µtr(D ·A)+ γAtr(XLXT A)

+
γB

2
∥β∥2

2 +
γC

2
∥θ∥2

2

s.t.
m

∑
i=1

βi = 1,βi ≥ 0, i = 1, . . . ,m

(4)

where γA,γB,γC are positive trade-off parameters selected empirically by
grid search. With learned θ∗, we can easily construct A∗ = ∑m×d

r=1 θ∗
r uruT

r
as optimal distance metric for next step classification.

In the optimization, the "base metric" combination coefficients and
the source graph Laplacian integration weights are learned alternatively
until converge. We therefore obtain more reliable solutions given the lim-
ited side information. Experiments are conducted on NUS-WIDE, which
is a challenge web image annotation dataset and USPS, a handwritten
digit classification dataset. The results confirm the effectiveness of the
proposed MTDML.
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