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Abstract

Methods to detect local features have been made to be invariant to many transforma-
tions. So far, the vast majority of feature detectors consider robustness just to over-land
effects. However, when capturing pictures in underwater environments, there are media
specific properties that can degrade the visual quality the captured images. Little work
has been made in order to study the robustness that the popular feature detectors have to
underwater environment image conditions. We develop a new dataset, called TURBID,
where we produced real seabed images with different amounts of degradation. On this
dataset, we search over multiple feature detectors from the literature to indicate the ones
with more robust properties.

We concluded that scale-invariant detectors are more robust to degradation of un-
derwater images. Finally, we elected Center Surround Extremas, KAZE, Difference of
Gaussians and the Hessian-Laplace as the best detectors for this environment on all
tested scenes.

1 Introduction
The understanding and development of techniques to find local features has been largely
improved for over-land images in the past decades. Local features are important due to their
robustness and generality, i.e., they can be used in many applications [28]. In the early
stages, the objective was to find local features on regions that are invariant to rotation and
translation, e.g. the Harris corner detector [12] or the Hessian blob detector [6]. Invariance
to scale was also incorporated to feature points detectors after the development of the scale
space theory for computer vision [13]. Many popular detectors like SIFT (DoG) [16], or
SURF (Fast-Hessian) [4], have been developed with this approach. Several studies evaluated
feature detectors, with respect to their invariance to general transformations [18] [2] [26].
Nevertheless, there is a clear lack of studies concerning robustness towards specific noise
conditions.
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We are here interested in the specific conditions that exist in the underwater environ-
ment. Its photometric properties demand a special treatment in order to overcome the image
degradation caused by underwater media properties, here called turbidity for simplicity. The
image acquired by visual sensors is highly degraded by the light scattering process on under-
water images. The degradation is especially true for higher distances, where the scene could
be considered as planar. One could use restoration methods [25] or even try to directly re-
cover the color or contrast properties of the captured image. However, finding local features
on an image with an enhanced quality, does not implicate into finding features with higher
robustness to the underwater scattering-based degradation.

Today, with the advent of ROVs (Remotely Operated Vehicles) and AUVs (Autonomous
Underwater Vehicles) several images are collected from the underwater environment favour-
ing new computer vision applications. With this, applications benefited by finding descrip-
tive feature points in underwater environments grows every year. They are essential for many
applications like 3D reconstruction [5], visual odometry [7] and ocean floor mapping [21].

However, most of these applications rely on the best over-land feature detectors, without
considering the water photometric properties. It is likely that some algorithms have a better
behaviour than others when applied on images degraded by specific underwater conditions.
Hence, it is fundamental that feature detectors are tested under different turbidity levels. This
is important since, on common ocean survey missions, images are captured under different
levels of degradation (Figure 1).

Figure 1: Different turbidity levels of a seabed scene captured on a AUV survey mission
[23].

In this context, to evaluate feature detectors, we propose a new dataset called TURBID.
This dataset is based on real underwater scenes photographs. The pictures are placed on
the bottom of a tank filled with a milk-water solution and then are re-photographed with the
degradation controlled by the amount of milk. This dataset is an improvement in terms of
visual diversity when compared to previous efforts [11] and is one of the main contributions
of this work.

On this dataset, we test feature detectors, considering different detection approaches,
with respect to their robustness to the degradation caused by turbidity. The objective is to
find which are the detectors that are more robust to the general structural degradation of
underwater environments, and which are the properties that these detectors hold to sustain
this robustness. Finally, we also will present the applications that could be benefited by this
study.

2 Underwater Noise Properties
When light propagates in an underwater environment, it interacts with the suspended parti-
cles in the medium being both scattered and absorbed. With this, the amount of light that is
scattered or absorbed instead of transmitted on a straight line is defined as turbidity.
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The turbidity culminate into certain results when imaging an underwater scene. Besides
the shortening of information imaged, a corruption of information also happens. Backscat-
tering is when reflected sources from outside the captured scene are scattered in a wide angle
eventually reaching the image plane. This effect creates a characteristic veil on the image
that reduces contrast and suppress fine structures on the image. Forward-scattering is when
light is spread on a short angle, blurring the information from the image scene and creating
a contrast reduction.

Schechner and Kapel [27] showed that most of the degradation on underwater images
happens due to the backscattering effect. Thus, for this work, we discarded the forward
scattering component. We also assumed that the illumination is homogeneous. With this, a
common simplification of the underwater propagation model is presented as:

Ti(x) = J(x)e−cid(x)+A(x)(1− e−cid(x)), (1)

where Ti(x) is an image with a certain i amount of turbidity, in a image position x. J(x) is the
clear image, e−cid(x) is the turbidity portion that determines the amount of degradation. A(x)
is a function that represents the contribution from the backscattering effect. The ci is called
the media attenuation constant and is proportional to the amount of floating particles in the
media.

Given an image Ti(x), it is possible to measure the amount of the degradation the scene
J(x) has suffered. This is proportional to the amount of turbidity from the environment.
The turbidity is dependent of the quantity and the type of floating sediment that scatters
the incident light. However, to estimate degradation in a image we must consider that the
illuminated volume and the intensity of light are also applicable [11].

Image signals are usually highly structured, their pixels show a dependency that carries
most of the information from the scene [30]. When the image signal J(x) is attenuated
and the backscattering effect dominates, the original image (J(x)) structure is naturally lost.
Under these considerations, Garcia and Gracias [11] proposed to use a variation of the
Structural Similarity Index (SSIM) [30] to evaluate image degradation due to turbidity called
Structural Degradation Index (SDI). The SSIM measures the structural similarity between
image. The SDI is a simple variation to SSIM computed as:

SDI = 100(1−SSIM). (2)

The SDI performed fairly well to measure image quality. However, to help the comparison
between different scenes we used a normalized version of the SDI (NSDI).

Let an image TN as being one image completely formed by the backscattering, A(x), of
a given scene. We measure the NSDIi of an arbitrary turbid image Ti as a ratio between the
degradation from the pure backscattering SDIN and the degradation SDIi from an arbitrary
image, hence:

NSDIi = SDIi/SDIN . (3)

3 Achieving Turbidity Robustness in Local Feature
Detection

A local feature is usually defined as a small region that differs from its immediate neighbour-
hood [28]. A local feature detector normally search for invariant patterns on images. These
patterns can be invariant to rotation, translation, scale, and be robust to many noise sources.
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A scale invariant pattern is an special class , where it is detected based on simulating a 3D
representation L(x,σ), of the image J(x) with a scale parameter σ . Based on the diffusive
properties of scale, the scale can be simulated by the application of a smoothing function on
the original image:

L(x,σ) = J(x)∗d(x,σ), (4)

where d(x,y,σ) is a function to that is a solution to the diffusion equation that models the
scale space [15]. The maxima of a gradient function, such as Laplacian, at the L(x,σ) space,
is used to find the good scale invariant points. After, a blob or corner detector is used to
improve the detection quality.

The local extrema detected by the maxima of gradient functions usually have more in-
variance to structural deformation due to scale [14]. As stated before, underwater phenomena
also create structural degradation. Further, it tends to eliminate all the finer scale structures,
which is equivalent to the scale phenomena. This can be observed on Figure 2 where we
show a comparison between scale generate by a Gaussian blur and a certain level of turbidity
with a similar computed SDI.

Figure 2: The structural degradation generated by both turbidity and scale generation. First
column, original image. Second column, underwater image degraded by turbidity. Third
column, image blurred by Gaussian filter of σ = 41. Both degradations show a similar SDI
index of about 0.08. The fine scale structures are lost in both situations.

Consequently, we can assume the invariant points detected by some scale invariant de-
tector can have also a good robustness to turbidity. For that, we propose to analyze the
robustness of different scale-space generations functions d(x,σ) and maxima detection ap-
proaches.

4 The TURBID Dataset
Multiple datasets exist to isolate some special properties that are interesting to evaluate algo-
rithms [19]. For the underwater properties, it is quite a challenge to reproduce in a controlled
manner since it is hard to obtain untouched seabed structures.

Feature detectors are highly dependent on the image texture, and shape properties. In
order to isolate the turbidity properties, here we propose an dataset that have the real under-
water scenes, with all different visual aspects, but having a controlled produced turbidity.
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Here we propose the TURBID dataset 1. We photograph scenes compressing three differ-
ent high quality printed pictures of real underwater seabed scenes previously photographed
at the Bahamas. The printed scenes were selected as the ones with lesser prior degradation
possible (Fig. 4 first column). The scenes contains the actual structures of the underwa-
ter floor, plus some human made structures, with a natural drawback that is the change of
resolution due to printing and re-photographing.2

The pictures were photographed inside a 1000 litres tank, uniformly illuminated with
two 30 watts fluorescent light strips (Figure 3) and completely filled with fresh water. As
an image capture device, we used a static Go Pro Hero3 Black Edition with a resolution
of 3000x4000 pixels. The fluorescent light strips were placed outside the water in order to
simulate natural lightning. We capture multiple images where the only changing properties
between scenes is the image degradation due to turbidity. We did it in order to minimize any
other possible phenomena on the scene.

Figure 3: The experimental setup created in order to evaluate feature detection algorithms.
It is composed by a camera, fluorescent lights and underwater seabed printed photos.

We first photograph a image, T0, on a totally clean fresh water. After that, the amount
of degradation is controlled by successively adding whole milk in water in the tank. That
process was repeated 19 times producing the images T1...T19. We choose to use whole milk
since it has a higher size particle that induces a lot of wide angle scattering, increasing the
backscattering effect [20], the main source of underwater degradation [27].

The amount of milk added is also successively increased as show on Table 1. Note that
for the last image we added 60 ml of milk to obtain a image with approximately just the
backscattering effect.

On the Figure 4, we show the images obtained by the experiment. Each row represents a
different printed picture with different levels of turbidity on each column.

This dataset differs from its previous [11] by the following advantages: i: it uses real and
varied image visual aspect; ii: more turbidity levels, containing a level where the original
aspects are completely attenuated (T19) and; iii: higher image resolution, allowing a more
precise accuracy analysis.

Apparently, the considered scenes are not extensive to evaluate general 3D scenes. How-
ever, we endorse that the produced illuminated volume is 3D, and yet there are no particular
differences in depths, the formed turbid phenomena is real. Also, the visual structures previ-
ously photographed are maintained.

1 The link to download the dataset can be found at
https://mega.co.nz/#!h05FQJpI!8u5BcyeewSn6mVfc6vBwXjvaTZtzelnDFLnHeKk3hDE

2 There was mainly a change from 20 pixels/mm2 to 4 pixels/mm2 of resolution and some additional noise
from printing issues.
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Image (Ti) Amount of Whole Milk Milk Added
T1 5 ml 5 ml
T2 10 ml 5 ml
T3 15 ml 5 ml
T4 20 ml 5 ml
T5 25 ml 5 ml
T6 30 ml 5 ml
T7 36 ml 6 ml
T8 42 ml 6 ml
T9 50 ml 8 ml
T10 58 ml 8 ml
T11 66 ml 8 ml
T12 74 ml 8 ml
T13 82 ml 8 ml
T14 90 ml 8 ml
T15 100 ml 10 ml
T16 110 ml 10 ml
T17 120 ml 10 ml
T18 130 ml 10 ml
T19 190 ml 60 ml

Table 1: Amounts of milk added for each obtained image on the experiment.

More important, as previously showed, when capturing scenes underwater, usually the
turbidity phenomena is just significant on larger distances. For this case the depths differ-
ences on the scene are not meaningful, especially when turbidity gets higher. With this, we
can easily approximate the scenes with 2D photos. This can be observed comparing the real
and simulated photos from, respectively, Figures 1 and 4.

Finally, the proposed dataset and methodology is not only useful for feature detection
evaluation, but also can be used to test many underwater computer vision algorithms, spe-
cially for an accurate ground truth on image restoration algorithms.

5 Evaluating Local Features

On this section we present how to evaluate the robustness of local features towards water
turbidity.

We use the repeatability criteria, which is associated with the possibility to find a feature
point in the same spot after an image transformation. We defend that, if a point detected
is repeated under different levels of turbidity, it means that this feature detector is able to
find good points under image degradation due to turbidity. Also, the repeatability is closely
correlated to feature detector quality [26]. Related to this, the Localization Accuracy is also
accounted to measure how close the points are repeated.

To compute the Repeatability criteria, we first compute the feature points for each de-
tector on the clean image T0 and also for each turbid image ( T1...T19). Feature points tend
to concentrate on higher saliency regions, especially on underwater images where the illu-
mination is less uniform. Regarding to this issue, we applied a non-maxima-suppression
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Figure 4: The images captured over different levels of degradation due to turbidity controlled
by milk addition. We photographed three different printed pictures, Photo 1 (first row),
Photo 2 (second row) and Photo 3 (third row). On the first column we show the clean image
(no milk) for each captured photography. The second column represents a Low Turbidity
degradation range with around 15 ml of milk (T4). The Medium Turbidity level range is
show on the third column and contains around 50 ml of milk (T10). Finally the last (fourth)
column is the High Turbidity level range with around 100 ml of milk (T16).

technique that selects only the best on each local neighbourhood. We determine the param-
eter of the non-maxima-suppression as δ . This parameter determines the minimum distance
each feature will have from others. After this, the N best features are selected based on each
feature detector own criteria.

The number N of detected features should be sufficiently large, such that a considerable
number of features are detected on every object. However higher quantity of features usually
induces the problem of less robust features being found. To compute the NSDI index we used
the image T19 as the backscatter image for normalization.

Having the features computed, the repeatability criteria is calculated as following: on the
clean image (T0), we take each feature and evaluate if it is still resistant with the presence of
turbidity. For the feature to be considered resistant, on a level NSDIi of degradation, for an
image Ti, it has to be detected on the Ti and not move more than a predefined location error
factor e pixels with respect to T0. Subsequently, the number of resistant features found, from
T1 to T19 are counted. Considering this procedure, the repeatability is measured by:

Ri =
Ni

N0
, (5)

where N0 is the number of features on the clean image, and Ni is the number of features
repeated on the image Ti.

The ε parameter is associated with the localization accuracy. The higher is ε , higher
is the tolerance on localization accuracy when evaluating the feature detectors. Further, for
lower values of ε we evaluate just the feature points that can be very accurately located.
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(a) Photo 1 (b) Photo 2 (c) Photo 3
Figure 5: Results for N = 1500 ε = 5. Testing the repeatability with respect to the ranging
of the NSDI degradation index. The best results were obtained by DoG [16].

(a) Photo 1 (b) Photo 2 (c) Photo 3
Figure 6: Results for N = 100 and ε = 5, showing the repeatability with respect to the
ranging of the NSDI degradation index. For this case the CenSurStar [1] and KAZE [2] got
the best results

6 Results

6.1 Tested Feature Detectors

As single scale detectors we evaluate, Harris [12], Hessian [6] and Laplacian [28]. All the
three implementations were done in Matlab [17].

We analyzed the scale-invariant Harris-Laplace [18], Hessian-Laplace [18] and the Dif-
ference of Gaussians (DoG) 2004 methods using the VL FEAT implementation [29].

Also with scale invariance we evaluate the popular FastHessian from SURF [4] with the
MATLAB implementation.

We tested Center Surround Extremas (CenSurStar) detector [1] using a eight sided star
shaped polygon. The implementation is from OpenCV [8] adapted to MATLAB.

Finally, we analysed the the anisotropic diffusion based KAZE detector [2] with different
kernels( KAZE G1, KAZE G2, KAZE G3) and using the original author’s implementation.
For all methods the N best points were selected based on the peak scores returned by the
methods.

6.2 Robustness to Turbidity

Figures 5 and 6 shows the obtained results for repeatability for a High Quantity, N = 1500,
and High Response, N = 100, feature situations. The two situations are a trade-off between
high dispersion of features (N = 1500) or computing just the most accurate features (N =
100).

On each case we show the plots for the value of repeatability from the three printed
photos testing multiple detectors in function of the NSDI index. For both cases a δ = 30 was
used, this assures that the points are not overly located on salient regions. We set an error to
ε = 5.
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(a) Photo 1 (b) Photo 2 (c) Photo 3
Figure 7: Plots showing the average localization error considering a maximum search of
ε = 15. There is a clear better result for scale invariant methods, with emphasis to DoG.

The curves from Figs. 5 and 6 confirm our previous hypothesis as there is a clear ten-
dency of robustness from the scale invariant methods. The best detectors were in all cases
Hessian-Laplace, DoG, KAZE and CenSurStar.

The Harris-Laplace obtained poor results, mainly because the know bad compatibility
between corners and scale space generation. The Box-Filter approximations of the FastHes-
sian introduce noise in the scale-space, making the repeatability of detection decreased, for
some features.

CenSurStar obtained good results specially for the most accurate features (Fig. 6), which
was also true for KAZE. This helps to conclude about the importance to consider non-
Gaussian scale-space representations. However, note that CenSurStar had bad repeatability
for a higher quantity of features (Figure 5).

The results obtained by scale invariant detector are also able to find more stable points.
Figure 7 shows the average localization error ε for each level of degradation with a N = 1500
and a maximum error of 15. We can perceive again a clear advantage of the DoG and the
KAZE methods.

The obtained results contrasted with the results obtained by Garcia and Gracias [11].
This difference is mainly because our test scenes had more diverse visual aspects. More im-
portantly, the difference happens due to fine parameter tuning explained on the next section.

6.3 Parameter Selection
All the detectors parameters were tuned to optimize their results for TURBID. We did that
since it is remarkable the sensibility of the methods over implementation details [16] [4], for
instance, a change in the initial image smoothing can lead into a high change of repeatability.
With this, all the methods had an initial Gaussian blur of σ = 1.6.

Also, the number of scales searched is also important for scale invariant methods. For
the Harris-Laplace, Hessian-Laplace and DoG, a set of scales with 8 octaves and 3 scales
per octave was set. For the FastHessian a box filter size to from 9 to 383 was used. For
CenSurStar we ranged the star box filter sizes from 3-283. Each KAZE kernel was made
with 4 octaves and 4 scale per octave.

6.4 Summary and Applications
Harris [12] Hessian [6] and Laplacian[28] approaches performed poorer than the scale in-
variant methods. Harris is generally used as very precise detector and is used in underwater
tracking applications [9]. However, we show that, on the present scenario, the use of scale
is useful also for precision. We present below some underwater vision applications, and the
recommended feature detectors.
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Camera Calibration and Tracking: These kind of applications demand precision,
whereas the feature point must be located on the same image spots. These applications
have been largely used on underwater environments [22] [5] [9]. For this case, we recom-
mend the use of DoG[16] or Hessian-Laplace [18]. Both had the best results for localization
accuracy (Figure 7).

Robot Localization and Object Classification: Feature detectors have been explored
on these applications underwater for loop closing on SLAM [10] [3] or visual vocabulary
building [24]. For this case, the general repeatability is more important than a precise lo-
calization accuracy. We would not recommend the FastHessian algorithm, commonly used
in some applications [3]. On the other hand DoG [16] or Hessian-Laplace [18] are recom-
mended in general. However, it is useful to also use CenSurStar [1] or KAZE G2 [2] specially
when less features are expected to be found.

7 Conclusions

This paper evaluated multiple feature detectors in underwater environments in order to con-
clude about the characteristics that produce robustness to turbidity.

We proposed a completely new and open dataset (TURBID), containing several pho-
tographed real seabed printed pictures that had different amounts of turbidity degradation.
Besides the use for local feature evaluations, the TURBID dataset can be used for multiple
applications, with emphasis on serving as a ground truth for underwater restoration applica-
tions.

We measured the structural degradation (SDI) of our produced image and evaluated the
feature detectors repeatability and localization accuracy towards this degradation.

We found that, finding scale invariant points is a useful way to find structural degradation
robust points. We elected KAZE [2], Center Surround Extremas [1], Difference of Gaussians
[16] and Fast Hessian [4] as good feature points detectors for underwater environments in
all tested scenes. This is important, specially since detectors without scale invariance are
normally recommended to be used in situations where scale changing is low. We identified
some specific applications and recommended the best feature detectors for each application.

As a future work, we endorse that scale-space generation functions that consider the
turbidity based image degradation would obtain even more robust features.
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