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Adaptive support weights and over-parameterized disparity estimation truly
improve the accuracy of stereo matching by enabling window-based sim-
ilarity measures to handle depth discontinuities and non-fronto-parallel
surfaces more effectively. Nevertheless, a disparity map sequence ob-
tained in a frame-by-frame manner still tends to be inconsistent even with
the use of state-of-the-art stereo matching methods. To solve this in-
consistency problem, we propose a window-based spatiotemporal stereo
matching method exploiting 3D disparity profiles.

Energy modeling and minimization For a rectified stereo image se-
quence, we employ an energy minimization scheme for each frame. Our
energy function is defined by an over-parameterized disparity h=

[
z nxz nyz

]⊤
and a guidance disparity h̃ =

[
z̃ ñxz ñyz

]⊤ as

E(H,H̃) = ∑
p∈P

Dp(hp)+ ∑
p∈P

∑
q∈Np

Vp,q(hp,hq)+ ∑
p∈P

Tp(hp, h̃p). (1)

Dp is the data cost, and it is computed by the combination of census trans-
form and mutual information. Vp,q is the smoothness cost that encourages
a smooth disparity map. Tp is the temporal cost that encourages consistent
disparity values between frames, and it is defined with guidance disparity
and normal values, z̃p, ñxz,p and ñyz,p, as

Tp(hp, h̃p) =[
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)
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(2)

Ideally, z̃p, ñxz,p and ñyz,p should be ground truth values. However, since
ground truth values are not given, we determine guidance values by ex-
ploiting a 3D disparity profile which is a structure representing disparities
and normal vectors of a window over multiple frames. In general, objects
and cameras in a scene can be assumed to move with smooth variations in
direction and velocity. In this case, the window shape and location must
also be changed smoothly. It means that smoothly varying disparity and
normal values between frames are more reliable than largely varying dis-
parity and normal values. Hence, we set values that can make disparity
and normal values between consecutive frames smoothly varied as guid-
ance values. To obtain such guidance values, we compose a disparity
profile, and fit the profile to a polynomial function.

We find the optimal solution to Eq.(1) in the PatchMatch Belief Prop-
agation (PMBP) framework. PMBP starts with the initialization of par-
ticles with random sampling. Afterwards, in each iteration, particles are
propagated from neighborhoods q to pixel p. Our propagation step con-
sists of spatial, view, and temporal propagation. If the disbelief of a prop-
agated state is lower than that of current states of p, the propagated state
is selected as a new member of the particle set of p. After the propaga-
tion step, a random search around the state of p is performed for state
refinement as in [2]. Before the next iteration, we update data with an
intermediate disparity map sequence having the minimum energy in the
current iteration. First, we update optical flows. Next, we update joint
histograms for mutual information. Lastly, we update guidance values by
fitting the disparity profile from the intermediate disparity map sequence.
After a few iterations, the particle with the minimum disbelief is selected
as the optimal solution of p.

Temporal correspondence establishment To obtain the 3D disparity
profile, we must establish the temporal correspondences across frames.
To this end, we employ the LDOF method [3] to handle large displace-
ments by rapidly moving object or cameras. And, a forward-backward
optical flow consistency check is used for filtering out incorrect flows.
However, the consistency check makes the profile fragmentary. To re-
solve this problem, we propose an optical flow transfer method for estab-
lishing more reliable disparity profile by using optical flows of both views.

Experimental results We evaluated our method using a synthetic dataset
presented in [4] and a real dataset provided by KITTI. For comparison,
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Figure 1: Average bad-pixel rates for synthetic data sets according to in-
creasing noise level
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Figure 2: Results for real dataset.

we selected the original PMBP-based method [1] as a baseline. Here, the
baseline and proposed methods are referred to as PMBP and PMBP-3D,
respectively. To see clearly the consistency improvement, we analyzed the
accuracy of disparity maps for synthetic image sequences with noise. Fig-
ure 1 shows average bad-pixel rates according to different noise levels. As
the noise level increases, average bad-pixel rates of PMBP increase faster
than those of PMBP-3D. Next, we analyzed the results for a real dataset.
Figure 2 illustrates disparity maps for three successive frames. To clearly
compare the performance of PMBP and PMBP-3D, we provide magnified
results with contrast adjustment for a specific area of the disparity map.
The specific area is marked with a yellow square in the disparity map.
Because the image captured for a real scene contains ambiguous regions
and inevitable noise, PMBP is likely to provide temporally inconsistent
disparity maps. Whereas, PMBP-3D generates a consistent disparity map
sequence.
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