
Sparse 3D convolutional neural networks

Ben Graham
b.graham@warwick.ac.uk

Department of Statistics
University of Warwick
CV4 7AL, UK

Convolutional neural networks (CNNs) are powerful tools for under-
standing data with spatial structure such as photos. They are most com-
monly used in two dimensions, but they can also be applied more gen-
erally. One-dimensional CNNs are used for processing time-series such
as human speech. Three dimensional CNNs have been used to analyze
movement in 2+1 dimensional space-time [2] and for helping drones find
a safe place to land [3]. Three dimensional convolutional deep belief net-
works have been used to recognize objects in 2.5D depth maps [4].

In [1], a sparse two-dimensional CNN is implemented to perform
Chinese handwriting recognition. When a handwritten character is ren-
dered at moderately high resolution on a two dimensional grid, it looks
like a sparse matrix. If we only calculate the hidden units of the CNN
that can actually see some part of the input field the pen has visited, the
workload decreases.

Sparsity is a useful optimization in two dimensions, and it is poten-
tially even more useful in three or higher dimensions. This is related to
the curse of dimensionality; an N×N×N cubic grid contains many more
points than an N ×N square grid. We have adapted the algorithm from
[1] to implement sparse CNNs on range of different graphs. CUDA GPU
code for running sparse 2, 3 and 4 dimensional CNNs is available at:

https://github.com/btgraham/SparseConvNet
The world we live in is three dimensional, and time can also be thought of
as an extra dimension, so there are a large number of possible applications
for three and even four dimensional CNNs. Figure 1 shows what happens
to sparse 3D data as it passes though a CNN. In this paper I apply CNNs
to a variety of sparse 3D datasets.

When applying CNNs to sparse data, it may be better to use small
convolutional filters, as they do a better job of preserving sparsity in the
computationally expensive lower layers of the network. To reduce the size
of the filters, we have experimented with changing the underlying graph.
See Figure 2.

Figure 3 shows a variety of objects from the SHREC2015 Non-rigid
3D Shape Retrieval dataset, each stored as a mesh of triangles in the OFF-
file format. The dataset contains 1200 exemplars split evenly between 50
classes (aliens, ants, armadillo, ...). The dataset was intended to be used
for unsupervised learning, but as CNNs are most often used for super-
vised learning, we used 6-fold cross-validation to measure the ability of
our 3D CNNs to learn shapes. To stop the dataset being too easy, we ran-
domly rotated the objects during training and testing. This is to force the
CNN to truly learn to recognize shape, and not rely on some classes of ob-
jects tending to have a certain orientation. We tested a variety of network
architectures to explore the trade-off between speed and accuracy.

Figure 4 shows an image from the Recognizing Human Actions video
dataset. Taking differences between successive frame converts the dataset
to a collection of sparse 2+1 dimensional objects. We also experimented
with the more complicated UCF101 video dataset.

[1] Ben Graham. Spatially-sparse convolutional neural networks. 2014.
URL http://arxiv.org/abs/1409.6070.

[2] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional
neural networks for human action recognition. IEEE Trans. Pattern
Anal. Mach. Intell., 35(1):221–231, January 2013. ISSN 0162-8828.
doi: 10.1109/TPAMI.2012.59. URL http://dx.doi.org/10.
1109/TPAMI.2012.59.

[3] D. Maturana and S. Scherer. 3D Convolutional Neural Networks for
Landing Zone Detection from LiDAR. In ICRA, 2015.

[4] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep
representation for volumetric shapes. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

Figure 1: Left to right: A trefoil knot has been drawn in the cubic lattice;
these are the input layer’s active sites. Applying a 2×2×2 convolution,
the number of active (i.e. non-zero) sites increases. Applying a 2×2×2
pooling operation reduces the scale, which tends to decrease the number
of active sites.

Figure 2: Convolutional filter shapes for different lattices: (i) A 4× 4
square grid with a 2× 2 convolutional filter. (ii) A triangular grid with
size 4, and a triangular filter with size 2. (iii) A 3×3×3 cubic grid, and
a 2×2×2 filter. (iv) A tetrahedral grid with size 3, and a filter of size 2.

In d-dimensions, the smallest practical filter for the triangu-
lar/tetrhedral/hypertetrahedral lattice contains d + 1 vertices, while the
smallest practical filter for the square/cubic/hypercubic lattice contains 2d

vertices. Thus, the higher the dimension, the greater the potential benefit
in terms of efficiency from considering non-square lattices.

Figure 3: Items from a 3D object dataset, embedded into a 40× 40× 40
cubic grid. Top row: four items from the snake class. Bottom row: an ant,
an elephant, a robot and a tortoise.

Figure 4: Left: a frame from a video from the Recognizing Human Ac-
tions video dataset. Right: the difference between that frame and the pre-
vious frame, with thresholding applied to increase sparsity. Stacking the
frame differences produces a sparse 2+1 dimensional space-time object.

https://github.com/btgraham/SparseConvNet
http://arxiv.org/abs/1409.6070
http://dx.doi.org/10.1109/TPAMI.2012.59
http://dx.doi.org/10.1109/TPAMI.2012.59

