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Abstract
In visual recognition, sub-categorization has been proposed to deal with large intra-

class variance of samples in a category. Instead of learning a single classifier for each
category, discriminant sub-categorization approaches divide a category into several sub-
categories and simultaneously train classifiers for each sub-category. In this paper, we
propose a novel approach for discriminative sub-categorization. Our method jointly
trains the exemplar classifier for each positive sample to address the intra-variance of
a category and exploits the low rank structure to preserve common information while
discovering sub-categories. We formulate the problem as a convex objective function
and introduce an efficient solver based on alternating direction method of multipliers.
Comprehensive experiments on various datasets demonstrate the effectiveness and effi-
ciency of the proposed method in both sub-category discovery and visual recognition.

1 Introduction
Visual recognition is one of the central challenges in computer vision, which is often e-
valuated by the performance of classifying images into pre-defined categories from the
vocabulary of a lexical database [8, 36]. However, a category in the real world contains
large intra-variance, which increases the difficulty in modeling and classification. The sub-
categorization approach, which divides a category into several sub-categories to deal with
the intra-variance challenge, has been successfully applied to many applications including
object detection and classification [7, 9, 11, 15, 22, 26, 27]. Sub-categories are often auto-
matically discovered by unsupervised clustering [14, 16, 24, 28, 32, 38]. Meanwhile, recent
discriminant sub-categorization approaches utilize samples that do not belong to the catego-
ry under consideration as negative data for supervision, and cluster positive samples of the
category into sub-categories, then simultaneously train the corresponding classifier for each
sub-category [1, 15, 22, 41].

In the unified clustering and classification framework of previous methods [15, 22], the
classifier for each sub-category is trained by using samples hard-assigned to the sub-category.
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However, it is difficult to separate samples based on the hard boundary between two sub-
categories while training, since the intra-variance of a category is caused by complex factors
in the real world. The visual appearance of samples changes continuously and some sam-
ples could contribute to the training of several sub-categories. Moreover, sub-categories are
closely related since they are discovered from the same category. The common information
among these sub-categories is beneficial for the training of classifiers. To utilize common
information when learning multiple related classifiers has been studied from the perspective
of multi-task learning [2, 6, 25]. Instead of using pre-defined tasks in multi-task learning,
sub-categorization needs to discover tasks (sub-categories) during learning.

In this paper, we propose a new approach for discriminative sub-categorization, which
adopts the exemplar based method to address the intra-variance in each category, and ex-
ploits low rank structure to preserve common information while discovering sub-categories.
Our approach builds up the exemplar-LDAs [21], which generate a set of exemplar classifier-
s with each classifier trained by a single positive sample and all the negative samples. The
extreme case of sub-categorization is the atomic sub-category, which has only one positive
sample, and is a compact set for training and modeling. In order to share common infor-
mation among exemplar classifiers while preserving diversity, we jointly train the exemplar-
LDAs for all the positive samples and introduce the trace-norm regularizer on the matrix of
weights of exemplar-LDAs, as we assume the weights lie on a union of subspaces such that
the matrix of weights is low-rank. To solve the convex formulation in our model, we propose
an efficient algorithm based on the scaled form of alternating direction method of multipliers
(scaled ADMM) [4]. We conduct comprehensive experiments on various datasets to validate
the effectiveness of our approach in sub-category discovery and visual recognition.

2 Low-rank least squares exemplar-LDAs
In this section, we introduce the proposed low-rank least squares exemplar-LDAs (LRLSE-
LDAs) for sub-categorization. We start from conducting the least squares form of exemplar-
LDAs, and then form the LRLSE-LDAs by adding the trace-norm regularizer on the weights
of exemplar classifiers. After that, we introduce an efficient algorithm based on scaled AD-
MM to solve the optimization problem of LRLSE-LDAs. Finally, we discuss LRLSE-LDAs
based clustering and classification method for sub-category discovery and visual recognition.

In the following sections, vectors/matrices are denoted by lowercase/uppercase letters in
boldface. The transpose of a vector/matrix is denoted by using superscript ′. A = [ai j] ∈
Rm×n defines a matrix A with ai j being its (i, j)-th element for i = 1, . . . ,m and j = 1, . . . ,n,
1n ∈ Rn represents a vector with all entries being 1. 0n ∈ Rn represents a vector with all
entries being 0, and In ∈ Rn×n is an identity matrix.

2.1 Least squares exemplar-LDA
We conduct the least squares form of exemplar-LDAs in this section. Exemplar-SVMs and
exemplar-LDAs have been wildly adopted in visual recognition [3, 7, 21, 29, 39]. Each
exemplar classifier is learned from one positive sample and all the negative samples. We
adopt exemplar classifiers to represent atomic sub-categories and preserve intra-variance in
each category. Particularly, our approach builds up the exemplar-LDAs [21], which has
a closed-form solution, requires little effort to train, and achieves similar performance as
exemplar-SVMs.
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Let S =S+∪S− denote the set of training samples, in which S+ = {s+1 , . . . ,s+n } is the set
of positive training samples, and S− = {s−1 , . . . ,s−m} is the set of negative training samples.
Each training sample s+ or s− is a d-dimensional column vector, i.e., s+,s− ∈ Rd . Each
exemplar-LDA for a positive sample s+i is a linear classifier represented by weight vector wi
trained by maximizing the following Fisher criterion:

JFisher(wi) =
w′i(s

+
i −µµµ−)(s+i −µµµ−)′wi

w′iQwi
, (1)

where µµµ− is the mean of negative samples in S−, Q = ∑s∈S−(s− µµµ−)(s− µµµ−)′ is a s-
caled covariance matrix of the negative samples. The Fisher criterion aims to simultaneously
maximize between-class distance and minimize within-class distance. The training of each
exemplar-LDA benefits from the closed-form solution of the two class linear discriminant
analysis [13, 21]. As a special case of LDA with only one positive sample, exemplar-LDA
has a closed form solution, i.e.,

wi = Q−1(s+i −µµµ
−) (2)

The Fisher criterion in Eq. 1 is a non-convex function. However, it is known that the LDA
solution can be achieved by a linear regression model with the proper choice of regression
labels [13, 30, 40]. Following [13, 30, 40], we now conduct the least squares formulation
for exemplar-LDAs. While training the exemplar-LDA weight wi for the positive sample s+i ,
we choose the regression label for the positive sample s+i as z+i = 1 and regression labels for
all negative samples s−j ∈ S− as z−j =− 1

m . We then formulate the least squares form of the
objective function as:

J1(wi) =
1
2

m

∑
j=1
‖(s−j −µµµ i)

′wi +
1
m
‖2 +

1
2
‖(s+i −µµµ i)

′wi−1‖2 (3)

where µµµ i =
1

m+1 (∑s∈S− s+ s+i ) is the mean of all training samples for learning wi.
For exemplar-LDA, the number of negative samples is much larger than the single pos-

itive sample, so µµµ i can be approximated by the mean µµµ− of the negative samples. We
represent the centered sample as:

x+i = s+i −µµµ
−,∀s+i ∈ S

+,

x−j = s−j −µµµ
−,∀s−j ∈ S

−, (4)

and write the positive and negative samples in the matrix form as X1 = [x+1 , . . . ,x
+
n ] and

X2 = [x−1 , . . . ,x
−
m ]. Since the samples are centered by negative mean µµµ−, we have X21m = 0d .

Then the objective function is transformed into:

J2(wi) =
1
2
‖X′2wi‖2 +

1
2
‖w′ix+i −1‖2. (5)

Furthermore, we ignore the quadratic term 1
2‖w

′
ix

+
i ‖2 for the positive sample as it is relatively

small compared with the quadratic term for negative samples:

J3(wi) =
1
2
‖X′2wi‖2−w′ix

+
i . (6)
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The solution of minimizing J3(wi) can be achieved by setting its gradient to zero:

wi = argmin
wi

J3(wi) = (X2X′2)
−1x+i , (7)

which is the same as the closed-form solution for exemplar-LDA in Eq. 2. The least squares
form of exemplar-LDA in Eq. 6 minimizes the within-class distance by the quadratic term
1
2‖X

′
2wi‖2 and maximizes the between class distance by the linear term w′ix

+
i .

In practice, the matrix Q = X2X′2 is regularized by adding a small value to its diagonal
entries to avoid unstable solutions, which is equivalent to adding an isotropic prior on wi
modeled by an `2 regularizer. Adding this regularizer, we finally formulate the least squares
exemplar-LDA objective function for sample s+i as:

Ji
LSE−LDA(wi) =

δ

2
‖wi‖2 +

1
2
‖X′2wi‖2−w′ix

+
i . (8)

2.2 Low-rank least squares exemplar-LDAs

From the least squares exemplar-LDA objective function for a single exemplar in Eq. 8, we
construct the objective function for learning the weight matrix W = [w1, . . . ,wn] ∈ Rd×n for
all the exemplars in S+:

JLSE−LDAs(W) =
δ

2
‖W‖2

F +
1
2
‖X′2W‖2

F − trace(X′1W) (9)

where ‖ · ‖F is the Frobenius norm of a matrix, trace(·) represents the trace of a matrix.
The weight wi for each exemplar-LDA is trained by the positive sample s+i and all neg-

ative samples S−, but does not utilize the other positive samples s+k ∈ S
+,k 6= i. In this

way, the positive training samples for each exemplar-LDA are compact and the diversity
of exemplars is preserved. However, the common information is not utilized by training
exemplar-LDA for each positive sample independently, as samples of a sub-category have
close relation. We assume the weights of exemplar-LDAs for samples from the same sub-
category lie on a subspace. Therefore the weight matrix W lies on a union of subspaces and
should be low-rank. To discover the structure of sub-categories, we jointly learn the weight
for positive samples/exemplars of the category and regularize the weight matrix with a low-
rank constraint. Finally, we arrive at the objective function for our low-rank least squares
exemplar-LDAs:

JLRLSE−LDAs(W) = ξ‖W‖∗+ JLSE−LDAs(W) (10)

‖ ·‖∗ is the trace norm used to constrain the weight matrix, which is a convex approximation
of the rank of a matrix [20, 39]. The formulation is convex and can be solved efficiently
using the algorithm introduced in the following section.

2.3 Scaled ADMM for LRLSE-LDAs

In this section, we discuss how to minimize the objective function for our LRLSE-LDAs
model in Eq. 10. We adopt the alternating direction method of multipliers (ADMM) in
scaled form [4, 17] to solve the minimization problem. Minimizing objective function
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JLRLSE−LDAs(W) in Eq. 10 can be equivalently transformed into an equality-constrained con-
vex optimization problem by introducing an intermediate variable F:

min
W,F

JLSE−LDAs(W)+ξ‖F‖∗ s.t. W = F (11)

Then the augmented Lagrangian for the formulation in Eq. 11 can be written as:

L(W,F,ΛΛΛ) = JLSE−LDAs(W)+ξ‖F‖∗+
τ

2
(‖W−F+ΛΛΛ‖2

F −‖ΛΛΛ‖2
F) (12)

where ΛΛΛ is the scaled dual parameter matrix, and τ is the penalty parameter. We iteratively
update variables W,F,ΛΛΛ to solve Eq. 12, where W,F are updated by solving two subprob-
lems both with closed-form solutions, and ΛΛΛ is updated by dual ascent. We describe the steps
in detail as follows.

Update W: Each iteration begins by fixing variables F and ΛΛΛ and updating the weight
matrix W by solving the subproblem

W = argmin
W

JLSE−LDAs(W)+
τ

2
‖W−F+ΛΛΛ‖2

F (13)

= (X2X′2 +(δ + τ)Id)
−1(X1 + τ(F−ΛΛΛ)). (14)

The closed-form solution of Eq. 14 is derived by setting the gradient of the objective function
in Eq. 13 to zero.

Update F: After updating W, we fix the weight matrix W and dual parameter ΛΛΛ, and
update the low-rank matrix F by solving the subproblem:

F = argmin
F

ξ‖F‖∗+
τ

2
‖W−F+ΛΛΛ‖2

F (15)

Eq. 15 can be solved by the singular value thresholding (SVT) method [5]. We first compute
the singular value decomposition for matrix W+ΛΛΛ as UΓΓΓV′, where U,V are two orthogonal
matrices, and ΓΓΓ is a diagonal matrix of singular values. We represent the singular values
as {γ1, . . . ,γl} where l = min{n,d}. We update intermediate variable F with a closed-form
solution by SVT as:

F = UD(ΓΓΓ,ξ/τ)V′ (16)

where D(·, ·) is the singular value shrinkage operator. The result of D(ΓΓΓ,ξ/τ) is a diagonal
matrix with shrinked nonnegative singular values {γ∗1 , . . . ,γ∗l } as diagonal elements, where
γ∗k = max{0,γk−ξ/τ},∀k ∈ {1, . . . , l}.

Update ΛΛΛ: The last step of the iteration updates the scaled dual variable ΛΛΛ. We update
ΛΛΛ to ΛΛΛ

∗ by gradient ascent with step size 1 in scaled ADMM:

ΛΛΛ
∗ = ΛΛΛ+W−F. (17)

Algorithm Discussion: We summarize the optimization procedure for our low-rank least
squares exemplar-LDAs in Algorithm 1. We first preprocess input samples by centering the
samples with Eq. 4. Then we initialize variables W,F,ΛΛΛ with uniformly random values
between 0 and 1 and start the iterations. In each iteration, we sequentially update W, F,
and ΛΛΛ by Eqautions 14,16, and 17, respectively . The above update steps are repeated until
convergence or the maximum number of iterations is reached.
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Algorithm 1 Optimization for LRLSE-LDAs
Input: Training data S, and parameters δ ,ξ .

1: Center input data by Eq. 4
2: Random initialize W,F,ΛΛΛ
3: repeat
4: Update W by closed-form solution in Eq. 14 with current F,ΛΛΛ
5: Update F by the SVT method in Eq. 16 with updated W and current ΛΛΛ

6: Update ΛΛΛ by Eq. 17 with updated W,F
7: until Convergence or the maximum number of iterations is reached.

Output: The weight matrix W.

2.4 Sub-category discovery and visual recognition
After efficiently solving the LRLSE-LDAs (Eq. 10) using Algorithm 1, we have obtained
the weight matrix W, in which each column wi is the weight of an exemplar-LDA classifier.
We now investigate how to utilize the weights discovered from the LRLSE-LDAs (Eq. 10)
to explicitly find interpretable sub-categories, and utilize the low-rank structure from sub-
categories for visual recognition.

LRLSE-LDAs exploits the structure of sub-categories implicitly by adding the low-rank
regularizer on the exemplar-based methods. To demonstrate the ability of LRLS-ELDA in
discovering sub-categories, we use prediction scores of exemplar-LDAs on positive samples
to perform clustering. To make prediction scores of exemplar-LDAs comparable to each
other, we normalize the score for a test sample t with the prediction scores of the average
negative training samples for each classifier wi:

p(wi, t) = w′it−w′iµµµ
−. (18)

We then compute the affinity matrix A ∈ Rn×n for positive samples. We define each entry
ai j ∈ A that represents affinity between s+i and s+j as:

ai j =

{
max{p(w j,s+i )+ p(wi,s+j ), 0}, i 6= j
0, i = j.

(19)

A high prediction score p(w j,s+i ) means s+i can be recognized by exemplar classifier w j.
High scores of p(w j,s+i ) and p(wi,s+j ) lead to high affinity and indicate s+i and s+j are likely
from the same sub-category. We perform spectral clustering [32] with this affinity matrix.

For visual recognition, we adopt an approach inspired by Xu et al. for domain general-
ization [39]. The top K prediction scores from trained exemplar classifiers are fused together
to form the final prediction score for a sample t:

p(W, t) =
1
K ∑

i∈T (t)
p(wi, t), (20)

where T (t) = {k |1 < k < n, p(wk, t) is one of the top K predictions for t} is the set of in-
dices of selected exemplar classifiers. By selecting the top K exemplar classifiers, we have
implicitly assigned the test sample to the same sub-category as the selected K exemplars.
The multiclass classification is achieved by a one-versus-all strategy with the fused predic-
tion scores.
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Table 1: The statistics of datasets used to evaluate sub-category discovery. This table shows
the number of classes, the dimension of features, and the number of samples for each dataset.

Dataset #classes #features #points Dataset #classes #features #points
Gas Sensor 6 128 13910 Semeion 10 256 1593

Landsat 6 36 4435 MNIST 10 784 60000
Segmentation 7 19 2310 Letter 26 16 20000
Steel Plates 7 27 1941 Isolet 26 617 6238

Digits 10 64 5620 Amazon 50 10000 1500

3 Experiments
We evaluate our low-rank least squares exemplar-LDAs (LRLSE-LDAs) approach for sub-
category discovery and visual recognition. We perform LRLSE-LDAs based clustering on
various public datasets for sub-category discovery, and perform LRLSE-LDAs based classi-
fication on object recognition and human activity recognition datasets for visual recognition.

3.1 Sub-category discovery
We validate our LRLSE-LDAs based clustering introduced in Section. 2 on several publicly
available datasets to demonstrate the capacity of discovering interpretable sub-categories
in our approach. Following [22], we use the MNIST dataset and nine datasets from the
UCI repository: Gas Sensor, Landsat, Segmentation, Steel Plates, Digits, Semeion, Letter,
Isolet, and Amazon. We exclude the Wine Quality dataset because the public data provide
11 dimensional feature, which is different from the 12 dimensional feature claimed in [22].
Results are summarized in Tab. 1. The datasets used cover a wide range of types types
from images, texts and sensors. The number of samples varies from 1500 to 60000, and the
dimensionality of features varies from 16 to 10000.

Following the experimental setting in [22], we randomly split ground truth classes of
each dataset into two roughly equal halves, one is regarded as positive and the other as neg-
ative. Then both data sets are randomly divided into training and validation subsets. We use
the training data to learn the weights of our LRLSE-LDAs by Algorithm 1, and use the binary
classification performance on the validation set to tune the hyper-parameter ξ for the low-
rank regularizer in LRLSE-LDAs (Eq. 10) among {0.01,0.1,1,10,100} by cross-validation.
In all our experiments, we fix the the least squares penalty parameter in exemplar-LDA
(Eq. 8) to δ = 1. We adopt the LRLSE-LDAs based clustering method introduced in Sec-
tion 2.4 to discover sub-categories, using the number of ground truth classes for clustering.
The clustering performance can be evaluated by many different metrics [12]. To measure the
performance of sub-category discovery, we calculated purity [22] for clustering as follows:
First, we remove all the ground truth labels and perform clustering. Then, we find the best
one-to-one association between clusters and ground truth labels by the Hungarian algorithm
and calculate the percentage of correct assignments. Each experiment is repeated 50 times
and the means and standard errors are reported.

We compare our LRLSE-LDAs based clustering method against k-means, latent SVM
(LSVM) [15] and discriminant sub-categorization method (Sub-C) [22], which are reported
in [22]. We additionally report the results of exemplar-LDAs (E-LDAs), which is a special
case of our method when the low-rank parameter ξ is set to zero. We apply the same clus-
tering method introduced in Section 2.4 for E-LDAs baseline and our LRLS-LDA approach.
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Table 2: Clustering purity measures for discovering sub-categories. The mean and standard
error of 50 runs are reported for different methods on each dataset. Results within one
standard error of the maximum value are denoted in boldface.

Dataset k-means LSVM [15] Sub-C [22] E-LDAs LRLSE-LDAs
Gas Sensor 46.38 ± 0.69 56.74 ± 1.88 60.82 ± 1.64 67.02 ± 1.69 70.95 ± 1.82

Landsat 78.72 ± 2.08 69.37 ± 2.32 76.73 ± 2.38 79.01 ± 1.71 81.52 ± 1.07
Segmentation 71.96 ± 1.75 65.89 ± 2.36 74.41 ± 1.85 80.97 ± 1.87 82.00 ± 1.54
Steel Plates 53.29 ± 1.51 52.64 ± 2.02 54.60 ± 1.98 50.74 ± 1.32 54.44 ± 1.20

Digits 76.38 ± 1.72 77.83 ± 1.57 80.15 ± 1.18 88.34 ± 0.89 90.61 ± 0.88
Semeion 64.64 ± 1.20 64.32 ± 1.58 66.74 ± 1.43 68.24 ± 1.49 71.71 ± 1.50
MNIST 65.38 ± 1.43 63.99 ± 1.36 66.18 ± 1.34 65.80 ± 1.33 95.20 ± 0.81
Letter 33.35 ± 0.48 40.27 ± 0.88 44.38 ± 0.74 45.48 ± 0.77 47.27 ± 0.71
Isolet 62.15 ± 1.22 61.95 ± 1.22 64.08 ± 1.18 75.23 ± 1.11 76.71 ± 1.15

Amazon 24.93 ± 0.32 24.89 ± 0.41 25.08 ± 0.38 48.38 ± 0.57 46.90 ± 2.28

The experimental results are summarized in Tab. 2. The table shows that the benefit
of LSVM over k-means baseline is uncertain since LSVM improves performance on two
datasets, decreases performance on two datasets, and achieves similar performance on the
other datasets. Meanwhile, the Sub-C method performs at least as well as LSVM and k-
means, outperforms LSVM on eight datasets, and outperforms k-means on six datasets. Our
LRLSE-LDAs based clustering method performs best on eight out of ten datasets and ranks
second on the two exceptions: Steel Plates and Amazon. Our LRLS-LDA method improves
the performance of exemplar-LDA on all the datasets except Amazon, which demonstrates
the ability of the low-rank regularizer in Eq. 10 to discover sub-categories. By the low-
rank regularizer, we assume weights of exemplar classifiers for samples from the same sub-
category lie on a subspace and are similar to each other. While using those classifiers to build
the affinity matrix for clustering in Section 2.4, strong connections are achieved between
samples from the same sub-category. For the Amazon dataset, the small number of samples
(1500 samples from 50 classes) with high dimensional features (10000 dimensions) may
be quite different from each other, hence each sample would form a sub-category (which
is the assumption of exemplar based methods). Note that the results of LRLSE-LDAs are
generated by tuning the low-rank parameter ξ using cross-validation. Our LRLSE-LDAs
could achieve similar results as E-LDAs by setting the low-rank parameter as ξ = 0.

In addition ,we discuss an observation on parameters. On all ten datasets in Tab. 2, the
performance of our LRLSE-LDAs is slightly better or not worse than the results listed in
the table when we fix the low-rank parameter ξ = 0.1. Since the results are generated by
tuning ξ based on cross validation of binary classification, this indicates there may exist a
gap between using LRLSE-LDAs for clustering and for classification.

3.2 Visual recognition
We further evaluate the performance of our LRLSE-LDAs approach for visual recognition
following the domain generalization experiment in [39]. Domain generalization focuses
on cross-domain visual recognition, which assumes the training samples are from several
domains and the testing samples are from unseen domains [25, 31, 33]. Recent research of
latent domains [19, 23, 39] automatically discovers domains in samples, where each domain
can be regarded as a sub-category. Particularly, Xu et al. [39] proposed to exploit low-
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rank structure by introducing a trace-norm regularizer on the likelihood matrix of exemplar-
SVMs. Our approach differs from this work in several ways. First, our trace-norm regularizer
on the weight matrix is based on the assumption that the weights of exemplar classifiers lie
on a union of subspaces. Moreover, our objective function is convex and could be efficiently
solved by ADMM since each subproblem has a closed-form solution, which benefits from
using LDA instead of SVM and constraining weight matrix instead of likelihood matrix. We
also focus more on the advantage of exploiting low-rank structure for sub-category discovery.

Two datasets are used in our experiments for visual recognition, one is the Office-Caltech
dataset [18, 34] for object recognition, and the other is the IXMAS dataset [37] for action
recognition, following [19, 39]. The Office-Caltech dataset contains images from four do-
mains: Amazon (A), Caltech-256 (C), images captured by digital SLR camera (D) ,and web
camera (W). We extract DeCAF6 features [10] using the pre-trained Convolutional Neural
Networks for images in Office-Caltech. The IXMAS dataset contains the videos from eleven
actions captured by five cameras (Cam 0, Cam 1, . . . , Cam 4) from different viewpoints, and
each action is performed three times by twelve actors. To exclude the irregularly performed
actions as suggested by [19, 39], we keep the first five actions (check watch, cross arms,
scratch head, sit down, get up) performed by six actors (Alba, Andreas, Daniel, Hedlena,
Julien, Nicolas). Dense trajectories features [35] are extracted to form a bag-of-words repre-
sentation for each video sequence. For the two datasets, we mix samples from several ground
truth domains/views for training and testing, and perform cross-domain visual recognition.
The classification performance is measured by multi-class recognition accuracy.

We compare our LRLSE-LDAs approach against the discriminant sub-categorization
(Sub-C) approach [22] and the low-rank exemplar-SVMs (LRE-SVMs) approach [39], which
are reported in [39]. We additionally report the results of SVM, exemplar-SVMs (E-SVMs),
and exemplar-LDAs (E-LDAs) as baselines. The parameter in our LRLSE-LDAs is empir-
ically fixed as ξ = 0.1 for all the experiments. In cross-domain recognition, we do not use
cross validation since the distributions of training and testing samples are different. The
experimental results are summarized in Tab. 3. In this experiment, methods that consider
sub-categories outperform SVM methods that do not consider sub-categories. Our LRLSE-
LDAs outperforms Sub-C in five out of six cases, and is generally better than E-SVMs and
E-LDAs without exploiting the low-rank structure. SVM based exemplar classifiers perform
slightly better than LDA based exemplar classifiers. Comparing with LRE-SVMs, which
exploits low-rank structure from likelihood matrices to build up exemplar-SVMs, LRLSE-
LDAs performs slightly worse. However, our LRLSE-LDAs has a convex formulation that
could be solved efficiently. Our LRLSE-LDAs usually converges in less than 20 iterations,
while LRE-SVMs usually stops when the maximum iteration number is achieved. In all the
six cases, the training of LRLSE-LDAs only takes seconds while LRE-SVMs takes hours,
as shown in Tab. 3. The time is evaluated with an Intel Core i7 2.9GHz CPU.

4 Conclusion
We proposed a novel approach for discriminative sub-categorization. Our approach trains the
exemplar classifiers for atomic sub-categories to address the intra-variance of a category, and
simultaneously exploits low rank structure to preserve information while discovering sub-
categories. The problem is formulated as a convex objective function that is efficiently solved
using ADMM. We conduct comprehensive experiments on various datasets to validate the
effectiveness and efficiency of our method for sub-category discovery and visual recognition.
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Table 3: Recognition accuracies (%) of different methods for cross-domain visual recog-
nition. The first- and second-best results for each dataset are denoted in boldface and with
underline, respectively. Note that our LRLSE-LDAs is much faster than LRE-SVMs without
losing much performance.

Training A,C D,W C,D,W Cam 0,1 Cam 2,3,4 Cam 0,1,2,3
Testing D,W A,C A Cam 2,3,4 Cam 0,1 Cam 4
SVM 82.68 76.06 90.73 71.70 63.83 56.61

Sub-C [22] 82.61 78.65 90.75 78.11 76.90 64.04
E-SVMs 82.73 80.85 91.47 76.86 68.04 72.98

LRE-SVMs [39] 84.59 81.17 91.87 79.96 80.15 74.97
E-LDAs 82.56 80.30 91.24 76.82 65.56 67.08

LRLSE-LDAs 84.99 80.92 91.86 77.39 77.78 68.19
Train time LRE-SVMs 1.51e+4 2.19e+3 1.09e+4 2.06e+3 1.95e+3 3.56e+3
(seconds) LRLSE-LDAs 24.21 7.67 15.44 49.67 45.53 36.52
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