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In visual recognition, sub-categorization, which divides a category
into some sub-categories, has been proposed to deal with large intra-class
variance in the real world. Recent discriminant sub-categorization ap-
proaches utilize samples that do not belong to the category under con-
sideration as negative data for supervision, and cluster positive samples
of the category into sub-categories, then simultaneously train the cor-
responding classifier for each sub-category [2, 4]. In the jointly clus-
tering and classification framework of previous methods, the classifier
for each sub-category is trained by using samples hard-assigned to the
sub-category. However, some samples would contribute to the training
of several sub-categories since the intra-variance of a category is caused
by complex factors. Moreover, sub-categories are closely related since
they are discovered from the same category, and the common information
among these sub-categories is beneficial for classifier training.

We propose a new approach for discriminative sub-categorization,
which adopts the exemplar based method to address the intra-variance
in category, and exploits the low rank structure to preserve common in-
formation while discovering sub-categories. Our approach builds up the
exemplar-LDAs [3], which generates a set of exemplar classifiers with
each classifier trained by a single positive sample and all the negative
samples. The extreme case of sub-category is to have only one positive
sample, which is a compact set for training and modeling. We adopt ex-
emplar classifiers to represent the compact sub-categories and preserve
intra-variance in a category. In order to share common information a-
mong exemplar classifiers while preserving diversity, we jointly train the
exemplar-LDAs for all the positive samples and introduce the trace-norm
regularizer on the matrix of weights, as we assume the weights lie on a
union of subspaces such that the matrix of weights is low-rank.

We formulate the proposed low-rank least squares exemplar-LDAs
(LRLSE-LDAs) as follows. Let X1 = [x+1 , . . . ,x

+
n ] and X2 = [x−1 , . . . ,x

−
m ]

denote the centered data matrix1 for positive samples and negative sam-
ples, W = [w1, . . . ,wn] denote the weight matrix where each wi is the
weight vector of exemplar-LDA for a positive sample. The objective func-
tion for training the exemplar-LDAs of positive samples together is

JLSE−LDAs(W) =
δ

2
‖W‖2

F +
1
2
‖X′2W‖2

F − trace(X′1W) (1)

where ‖ · ‖F is the Frobenius norm of a matrix, trace() represents the
trace of a matrix. We minimize the least squares form in Eq. 1 instead of
maximizing the Fisher criterion so that the objective function is convex,
inspired by [6]. Eq. 1 has closed-form solution as

W = (X2X′2 +δ I)−1X1 (2)

where I is the identity matrix. To discover the structure of sub-categories,
we jointly learn the weight for positive samples/exemplars of the category
and regularize the weight matrix with a low-rank constraint. Finally, we
arrive at the objective function of LRLSE-LDAs,

JLRLSE−LDAs(W) = ξ‖W‖∗+ JLSE−LDAs(W) (3)

‖ · ‖∗ is the trace norm used to regularize the weight matrix, which is a
convex approximation of the rank of a matrix

To solve the convex formulation in Eq. 3, we propose an efficient al-
gorithm based on the scaled form of alternating direction method of multi-
pliers (scaled ADMM) [1]. We reformulate minimizing JLRLSE−LDAs(W)

1Data matrix is centered by subtracting the mean of training samples from each sample. We
use mean of negative samples to approximate the mean of all negative sample and a positive
sample for each exemplar classifier.

in Eq. 3 as an equality-constrained convex optimization problem by intro-
ducing an intermediate variable F,

min
W,F

JLSE−LDAs(W)+ξ‖F‖∗ s.t. W = F (4)

The augmented Lagrangian for the formulation in Eq. 4 can be written as:

L(W,F,ΛΛΛ) = JLSE−LDAs(W)+ξ‖F‖∗+ τ

2 (‖W−F+ΛΛΛ‖2
F −‖ΛΛΛ‖2

F ) (5)

where ΛΛΛ is the scaled dual parameter matrix, and τ is the penalty param-
eter. We iteratively update variables W,F,ΛΛΛ as in scaled ADMM, where
W,F are updated by solving two subproblems both with closed-form so-
lutions, and ΛΛΛ is updated by dual ascent. The two subproblems are

W = argmin
W

JLSE−LDAs(W)+
τ

2
‖W−F+ΛΛΛ‖2

F (6)

F = argmin
F

ξ‖F‖∗+
τ

2
‖W−F+ΛΛΛ‖2

F (7)

where Eq. 6 has a closed-form solution benefits from the least squares
form and Eq. 7 can be solved by singular value thresholding method.

After training the weights of LRLSE-LDAs, we utilize those exem-
plar classifiers to perform sub-category discovery and visual recognition.
For sub-category discovery, we adopt spectral clustering with affinity ma-
trix defined by the prediction scores on positive samples. For visual recog-
nition, we adopt the cross domain recognition approach in [5] by fusing
the top-K prediction scores from trained exemplar classifiers.

We conduct comprehensive experiments on various datasets to vali-
date the effectiveness and efficiency of our approach in sub-category dis-
covery and visual recognition. We follow the experimental setting in [4]
to evaluate the performance of sub-category discovery. We conduct ex-
periments on ten public datasets from the UCI repository and MNIST,
which cover a large variant types of data. LRLSE-LDAs based clustering
achieves promising results measured by purity on those datasets. We fol-
low the experimental setting in [5] to evaluate the performance of visual
recognition. We use the Office-Caltech dataset for object recognition and
the IXMAS dataset for action recognition. LRLSE-LDAs based classifi-
cation achieves order-of-magnitude speedup with matching performance
comparing with state-of-the art in [5].
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