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Kinship verification from facial images is an interesting and challeng-
ing problem. The current algorithms on this topic typically represent faces
with multiple low-level features, followed by a shallow learning model. In
this paper, we propose to extract high-level features for kinship verifica-
tion based on deep convolutional neural networks. Our method is end-to-
end, without complex pre-processing often used in traditional methods.
The high-level features are produced from the neuron activations of the
last hidden layer, and then fed into a soft-max classifier to verify the kin-
ship of two persons.

We first propose a basic structure of CNN (CNN-Basic) contains three
convolutional layers, followed by a fully-connected layer and a soft-max
layer. As shown in Figure 1, the input is a pair of 64× 64 images with
three channels (RGB). Following the input, the first convolutional layer is
generated after convolving the input via 16 filters with a stride of 1. Each
filter is with the size 5×5×6. The second convolutional layer filters the
input of the previous layer with 64 kernels of size 5× 5× 16. The third
convolutional layer contains 128 kernels of the size 5 × 5 × 64. After
the convolutional layers, a fully-connected layer projects the extracted
features into a subspace with 640 neurons. Max-pooling layers follow the
first and second convolutional layers. Finally, this network is trained via
a two-way soft-max classifier at the top layer.

We adopt the ReLU function [1] as the activation function of the con-
volution layers, which has been shown to achieve better performance than
the sigmoid function. With ReLU, the convolution operation is formulat-
ed as

y j(r) = max

(
0,b j(r)+∑

i
wi j(r) ∗ xi(r)

)
, (1)

where xi and y j are the i-th input map and the j-th output map, respec-
tively. wi j denotes the weight between the i-th input map and the j-th
output map. b j is the bias of the j-th output map, and × denotes the
convolutional operation.

We choose max-pooling with a neighboring region size of 2×2. Max
pooling is helpful to increase the translation invariance and avoid over-
fitting, which is defined as

yi
j,k = max

0≤m,n≤s

{
xi

j·s+m,k·s+n

}
, (2)

where yi
j,k denotes the outputs of the i-th feature map in the location of

( j,k). Similarly, xi
j,k denotes the value of location ( j,k) in the i-th feature

map.
The CNN is trained by back-propagation with logistic loss over the

predicted scores using the soft-max function. To initialize weights, we
use a Gaussian distribution with zero mean and a standard deviation of
0.01. The biases are initialized as zeros. In each iteration, we update
all the weights after learning the mini-batch with the size of 128. In all
layers, the momentum is set as 0.9 and the weight decay is set as 0.005.
To expand the training set, we also randomly flip images during training.

When a subject is demanded to verify the kinship from two face im-
ages, it is highly possible that the key-points are focused, such as their
eyes, mouth and nose. We consider that the facial key-points have a sig-
nificant impact on kinship analysis, and thus design a key-points-based
feature representation for kinship verification. In particular, we detec-
t the centers of two eyes, the corners of the mouth and the nose with a
facial point detection algorithm [2]. Then each face image is cropped and
aligned according to the five key-points. To extract more complementary
information, we also crop other five face regions without key-points de-
tection. The five images are the original image and its four local regions,
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Figure 1: The proposed architecture of basic CNN for kinship verification.
For all layers, the length of each cuboid is the map number, and the width
and height of each cuboid are the dimension of each map.
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Figure 2: Overview of the proposed CNN-Points structure for kinship
verification. The input is a pair of RGB images, which are cropped into
ten face regions and fed into different basic CNNs.

i.e., the top-left corner, the top-right corner, bottom-left corner, bottom-
right corner.

In order to improve kinship verification with these face regions, we
propose a new structure (CNN-Points) which is shown in Figure 2. The
new structure contains 10 basic CNNs (see Figure 1), each of which re-
ceives a pair of face regions. Ten sets of 640-dimensional features are
produced from the last hidden layer of the basic CNNs. The last hidden
layer of the CNN-Points is fully-connected to the ten basic CNNs, which
is defined as

yi = f

(
10

∑
k=1

640

∑
j=1

wi
j,k ∗x j,k +bi

)
, (3)

where y j is the output of the i-th neuron activation, wi
j,k denotes the weight

between the input features and the i-th neuron, and f (·) is chosen to be the
sigmoid function. The final representation is fed into a soft-max classifier
to predict the kinship of two persons.
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