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One of the key behaviours found in biological place cells (BPCs) is a
rate-coding effect: a neuron’s rate of firing decreases with distance from
some landmark location. We used visual information from wearable and
hand-held cameras in order to reproduce this rate-coding effect in artifi-
cial place cells (APCs). The accuracy of localisation using these APCs
was evaluated using different visual descriptors and different place cell
widths. Simple localisation using APCs was feasible by noting which
APC yielded the maximum response. We also propose using joint position
coding using a number of automatically defined APCs. Using both these
approaches, we were able to demonstrate good self-localisation from very
small images taken in indoor settings. Average localisation performance
is favourable when compared with ground-truth and LSD-SLAM; even
without the use of a motion model, errors using a single device were as
low as 2 m for some journeys and corridors.
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Figure 1: The concept of artificial place cells (APCs) for navigation. APC
behaviour is produced by comparing FEVs from a series of frames to
those at several landmark locations.

Given a series of video frames extracted from footage recorded dur-
ing indoor navigation, we made use of the visual path concept [2, 3],
to perform matching between locations of a physical environment be-
ing traversed and a database of views captured with two different de-
vices, and at different moments in time. The similarity scores obtained
from appearance-based comparison methods, applied between sequences
of frames of a journey and these virtual landmarks, exhibit a behaviour
(Fig. 1(a)) that is similar to those recorded in mammalian place cells.

We compared the accuracy of several patch-level descriptors for this
purpose [3]. Patch descriptors were L2 normalized, vector quantised and
then frames were encoded into a 400-element Frame-Encoding Vector
(FEV). For the comparison with a state-of-the-art SLAM method, we
chose Engel’s LSD-SLAM [1].

In order to model place cell behaviour, we need to map pairs of frames
onto a scalar value that is analogous to a firing rate. One way to mimic
the behaviour of BPCs within APCs is to introduce a kernel function that
maps a pair of FEVs onto a positive scalar value. The following mapping
between two vectors va and vb maps the two FEVs onto a scalar value
that takes a maximum when the two vectors are identical:

κχ2(va,vb) =
400

∑
j=1

va( j) · vb( j)
va( j)+ vb( j)

(1)

To model the response of a place cell to an image stimulus with
respect to some reference location, `i, the result of the κχ2 function is
thresholded. The FEV, vri , is first constructed when the camera is at po-
sition `i from one or more reference journeys and calculating a supra-
threshold response to some frame v` acquired at location `. As ` is varied,
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Figure 2: Overview of the training pipeline. The diagram of the neu-
ral network is merely illustrative, and does not represent the real GRNN
architecture used.

κχ2(v`,vri) changes accordingly. Thresholds, Ti, relative to each response
curve, are used to create a set of supra-thresholded response curves, ri(`):

ri(`) =U(κχ2(v`,vri)−Ti) ·κχ2(v`,vri) (2)

where U(·) represents the unit step function. Curves acquired by averag-
ing responses from several journeys with respect to the same APC loca-
tion may be referred to as an APC tuning curve.

Given a series of APC responses to visual cues of a person’s location
along some journey, there are two obvious ways of estimating location,
`. The first is simply to use the APC which displays maximum activation
(firing rate) as a rough indicator of where the person is. The second tech-
nique achieves more accurate localisation of a camera from its captured
visual data by using the joint distribution p(r|`), of APC responses, r to
infer location ` relative to some designated ground truth. We use a single
index, i, to refer to the response, ri, of a unique place cell. Given several
active cells that are a subset of all place cells in a location, sub-APC lo-
calisation is possible using APC responses from previous journeys using
empirical Bayes’ techniques. For example, if three cells are active, the
chain rule can be used to obtain successively refined estimates of `:

p(`|r) ∝ p(r3,r4,r5|`)p(`)

∝ p(r3|r4,r5, `)× p(r4|r5, `)× p(r5|`)× p(`) (3)

so that the responses of spatially close APCs can be used to infer sub-APC
position. If the width of an APC is set to around 2 m, localisation of the
order of tens of centimetres is plausible.

A Generalized Regression Neural Network (GRNN) was used to pro-
vide sub-APC position estimates, obviating the need to construct ad-hoc
empirical estimators. This regression network consists of two-layers, and
uses radial-basis functions. The responses from 16 place cells were input
to the network, and ground truth of location within a section of corridor –
up to 4 m long – used to train it as a regressor. In all experiments, dictio-
nary generation was performed independently of the APC responses used
in training the regression network.

In conclusion, this work demonstrates that computational models of
place cells can provide effective estimates of camera location without re-
lying on tracking or geometric models of the local environment. Such
techniques, although simple, have achieved errors that range from tens of
cm to few metres, matching and certainly complementing the more so-
phisticated position inference approaches used in computer vision.
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