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Abstract

We present a real-time RGB-D object tracker which manages occlusions and scale
changes in a wide variety of scenarios. Its accuracy matches, and in many cases outper-
forms, state-of-the-art algorithms for precision and it far exceeds most in speed. We build
our algorithm on the existing colour-only KCF tracker which uses the ‘kernel trick’ to
extend correlation filters for fast tracking. We fuse colour and depth cues as the tracker’s
features and exploit the depth data to both adjust a given target’s scale and to detect
and manage occlusions in such a way as to maintain real-time performance, exceeding
on average 35fps when benchmarked on two publicly available datasets. We make our
easy-to-extend modularised code available to other researchers.

1 Introduction

Object tracking is one of the fundamental components in many vision based applications and
a very active research area due to challenges such as object appearance changes, illumina-
tion variations, occlusions, shape deformation, and camera motion. While the majority of
tracking algorithms are based on 2D visual cues (hereafter referred to as RGB trackers), the
recent surge in popularity of real-time RGB-D sensors has encouraged research into com-
bining colour and depth data for tracking.
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The results from a few, recent works in RGB-D tracking have demonstrated that state-
of-the-art RGB tracking algorithms can be outperformed by approaches that fuse colour and
depth, for example [6, 16, 18, 19]. Song and Xiao [18], presented one of the first RGB-D
tracking works using off the shelf depth sensors. HOG features computed on both colour
and depth appearance data were linearly combined with the outcome of optical flow and
classified using a Support Vector Machine (SVM) classifier to improve efficiency. Occlusion
was also handled to a considerable extent in [18], based on the assumption that the depth
distribution of the plane closest to the camera contains the tracked object. During occlusion,
optical flow tracked the object occluding the target until the target re-emerged. The overall
approach was computationally expensive at 0.26 fps on average, due to the exhaustive search,
optical flow computations, and elaborate colour and depth segmentation. However, in terms
of precision it outperformed state of the art ‘RGB only’ trackers. In Wang et al. [19], the tar-
get region’s colour histogram and optical flow, was combined with the target’s mean depth,
to track its motion. Their work did not detail how their model was updated, and their results
were reported on sequences not publicly available. The algorithm presented by Garcia et al.
in [6] extended the condensation-based RGB tracker of Klein and Cremers [13] to incorpo-
rate depth data and predict the 3D spatial state of the particles in the condensation algorithm.
Their boosting classifier was built from a pool of grayscale, colour, and depth features, and
in particular, the invariant gradient features of [13] were extended to depth data. A small set
of candidate features were kept in the pool, providing the right balance between computa-
tional efficiency and accuracy. Tracking was adaptive as their classifier was re-trained with
tracked examples. Occlusions were detected when the tracker response was below a certain
threshold. They reported an average processing rate of 30 fps. A recently published RGB-D
tracker is [16], in which a colour and depth based ‘occlusion aware’ particle filter tracking
framework was introduced. A particle represents a region’s bounding box and an occlusion
flag. When this flag’s value exceeds a fixed threshold occlusion is detected and the bounding
box search area is expanded. The authors report an average processing rate of 1 fps.

In this paper, we propose a real-time RGB-D tracker that is based on, and improves upon,
the RGB Kernelised Correlation Filters tracker (KCF) from [9]. The KCF tracker combines
high accuracy and fast processing speeds as demonstrated in [9] and elsewhere, e.g. [20],
where over 150fps processing was reported. We enhance the RGB KCF tracker in three
ways: (i) we fuse colour and depth cues, evaluating a variety of feature combination strate-
gies, (ii) we exploit the target’s depth distribution to identify scale changes and efficiently
model these scale changes in the Fourier domain (iii) we handle occlusions by identifying
sudden changes in the target region’s depth histogram and recovering lost tracks by search-
ing for the unoccluded object in specifically identified key areas. These improvements are
all achieved while maintaining a high frame processing throughput of on average 35fps. The
proposed RGB-D tracker, which we refer to as the Depth Scaling Kernalised Correlations
Filters (DS-KCF) tracker, is compared against state-of-the-art algorithms [6, 16, 18] on pub-
licly available datasets. The proposed tracker is efficient since only a single target model
is kept and updated, outperforming the KCF modification proposed in [15] where multiple
models are continuously updated. The Matlab code is available1 for research purposes and
comparative evaluation.

In Section 2, the main aspects of the KCF tracker are described to align the reader with its
methodology. Then, in Section 3 the proposed DS-KCF tracker is presented. Experimental
evaluation of our new tracker appears in Section 4 and conclusions are outlined in Section 5.

1See http://www.irc-sphere.ac.uk/work-package-2/DS-KCF
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2 The KCF tracker
Henriques et al. [9] proposed the use of the ‘kernel trick’ [17] to extend correlation filters
for very fast RGB tracking. Their so-called KCF tracker has important characteristics, in
particular its ability to combine high accuracy and processing speed. In the comprehensive
RGB tracking benchmarking work in [20], KCF ranked in the top ten while coming in first
as the fastest and obtaining accuracy comparable to other state-of-the-art approaches. These
attributes make KCF a method of choice for those who need a very fast and reliable tracker.
The processing pipeline in the KCF tracker comprises training, detection and retraining at
the new target location. Here, we introduce KCF, focusing on issues relevant to our proposed
extensions. For a detailed description and proofs the reader is referred to [9]. Additionally,
the reader should refer to the works presented in [2, 5, 9, 10] for a comprehensive view of
correlation filters.

KCF exploits the properties of circulant matrices to achieve efficient learning by implic-
itly encoding convolution. Given the circulant matrix C(x), and C(x)y as the convolution of
x and y, then it may be performed in the Fourier domain via element wise multiplication:

C(x)y = F−1(F∗(x)�F(y)), (1)

where ∗ is the complex conjugate, � is the element wise multiplication and F and F−1 are
the Fourier transformation and its inverse. Applying the above ideas to linear regression,
it may be shown that the standard formulation for ridge regression, where X is the design
matrix (XH is the Hermitian transpose), λ is a penalty term and y is the regression target, is
w = (XHX +λ I)−1XT y and may be reformulated as:

F(w) =
F∗(x)�F(y)
F∗(x)�F(x)+λ

, (2)

where the fraction indicates element wise division. The efficiency of KCF is apparent from
(2), as it reduces the computational complexity of the general ridge regression problem
from O(n3) to element-wise operations. To recover the values of w, the DFT complexity
is O(n logn). Similar expressions can be derived also when non-linear regression is used. By
using the kernel trick, the solution w may be stated as w = ∑i αiϕ(xi) where the variables αi
need to be estimated instead of w and ϕ is the function that maps x into the nonlinear fea-
ture space. The kernelised version of ridge regression can be written as: α = (K +λ I)−1 y,
where K is the circulant Kernel matrix, with elements Ki j corresponding to γ(xi,x j) and γ

is the selected kernel function. As in [9], this can be reformulated using similar circulant
matrices concepts such that

α = F−1
(

F(y)
F∗(γxx)+λ

)
, (3)

where γxx is the first row of K. We refer to (3) generally as the training phase of the KCF
tracker. Once α is calculated, the circulant matrix properties can be exploited to measure the
response of the classifier f (z) at various image patches z,

f (z) = F−1 (F∗(γxz)�F(α)) . (4)

This operation is performed in the Fourier domain, employing element wise multiplications
and the DFT. We use the Gaussian kernel as it demonstrated optimal tradeoff between ac-
curacy and computational complexity in [9]. To summarise, the KCF tracker is based on a
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simple processing chain. An image patch is extracted at the estimated target location, and
a precomputed cosine window is applied to the patch to reduce the noise in the Fourier do-
main. The target position is detected by maximising f (z) (as in (4)). The model is trained
using Gaussian shaped regression targets that provide smooth responses. Model update is
introduced by linearly interpolating the new parameters α and x with the current ones. In
[15], KCF was modified to cope with scale change, yet a brute force search for scale was
used - in particular, one model per scale was constantly estimated and updated. Target po-
sition and the current target scale were selected as the one corresponding to the maximum
response value among all the scales.

3 Proposed DS-KCF tracker
We propose extending the RGB KCF tracker into an RGB-D tracker based on the efficient
combination of colour and depth features, along with more efficient management of scale
changes and occlusions. The improvements we implement provide higher rates of accuracy
while still operating at better than real-time frame rates. The block diagram of the proposed
Depth Scaling Kernelised Correlation Filters tracker is shown in Figure 1. Depth data in
the target region is segmented (Section 3.1) to extract relevant features for the target’s depth
distribution. Modelled as a Gaussian distribution, changes in scale guide the update in the
target’s model (Section 3.2). Region depth distribution enables the detection of possible
occlusions. During an occlusion, the model is not updated and the occluding object is tracked
to guide the target’s search space (Section 3.3). Note that the KCF tracker has been selected
for its unique combination of accuracy and real time performance, however, the proposed
RGB-D extension paradigm can potentially be ported to other RGB trackers.

Figure 1: Block diagram of the proposed DS-KCF tracker.

3.1 Fast Depth Segmentation
The first improvement to the KCF tracker we introduce is to fuse depth information into
its RGB approach. Indeed, the scale change and occlusion handling described later are
also made possible by the proposed two-stage depth segmentation approach: (a) a fast one-
dimensional (1D) implementation of K-means to estimate initial clusters or regions of inter-
est (ROI), followed by, (b) connected component analysis that incorporates spatial features
to refine the ROI. K-means’ computational burden depends on the number of clusters, the
number of points to be clustered and the feature dimensionality. We apply K-means to a
tracked region’s 1D depth histogram, and hence reduce the number of features and the num-
ber of points. A similar approach was proposed for colour image segmentation in [4]. We
initialise the centroids to the local maxima of the equally-spaced depth histogram. Each
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cluster is then assigned to the closest bin and the centroids are updated until convergence.
In the second stage, connected components are analysed in the image plane to distinguish
between objects located within the same depth plane, and to remove clusters corresponding
to small regions. The bin width influences the results of the segmentation. This is selected
adaptively according to the tracked object’s standard deviation (σob j) as well as the noise
model of the depth device [3, 12]. The target region Ωob j corresponds to the cluster with the
minimum mean depth. The cluster’s mean µob j and standard deviation σob j are constantly
updated while the object is tracked.

3.2 Detecting and handling scale changes
As described in Section 2, one way that the KCF tracker achieves faster throughput is by
substituting convolution in the spatial domain with element-wise multiplication in the fre-
quency domain. However, element-wise operations expect the matrices to be of the same
size. Accordingly, we propose to estimate the target object scale sob j by scaling the object’s
template relative to its initial depth dt0

ob j. Our approach utilises two types of scale factors.
The first is a continuous scale factor Sr = dob j/dt0

ob j obtained from the relative depth of the
target. The second is a set of quantised scale factors Sq = {s j,(∀ j = 1 . . .J)}, which en-
ables pre-computing different matrices (the regression targets of the training phase and the
pre-processing cosine windows in Section 2). The current scale is chosen to be the closest
level s j ∈ Sq to Sr. We use Sq to improve computational efficiency and tracker robustness
as the models and coefficients are not constantly re-estimated, and at the same time Sr helps
to refine the tracker’s output as it represents a finer change in scale.

When a change in scale is detected, the model template needs to be updated in the Fourier
domain and we use interpolation and decimation for increases and decreases in scale respec-
tively. This solution is more stable than model reintialisation, especially in case of very
frequent changes of scale. Model resampling overhead is added when the tracker moves to a
different scale level in Sq. Yet, during tracking, the proposed method that only one target’s
model at scale sob j, corresponding to the selected s j, is kept and updated. When scaling
up, interpolation involves zero padding the higher frequency Fourier coefficients to fit the
increased template size, and then adjusting the frequency component amplitude. This is due
to the duality between the spatial and Fourier domains and it can be easily shown in the fol-
lowing example. Let us for simplicity start our analysis in the spatial domain and consider a
1D signal f (n), for which we want to increase the number of samples by a factor M. Inter-
polation inserts M−1 zero samples such that the new set of samples g(nM+m) is equal to
f (n) when m = 0 and zero otherwise. Now, we can analyse the DFT of g(nM+m) as

G(k) =
1√
MN

N−1

∑
n=0

M−1

∑
m=0

g(nM+m)exp(− j2πk(nM+m)/MN)

=
1√
MN

N−1

∑
n=0

g(nM)exp(− j2πk(nM)/MN)

=
1√
MN

N−1

∑
n=0

f (n)exp(− j2πk(nM)/MN) =
F(k)√

M
.

(5)

Equation (5) shows how the Fourier coefficients G(k) of the upsampled signal g can be cal-
culated starting from the coefficients F(k) of the original signal, for the scaling factor M. Im-
portantly in DS-KCF, the zero Fourier coefficients are substituted by the corresponding ones
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from the new patch. In the case of target size reduction, decimation retains the lower portion
of the coefficients and discards those of the highest frequencies. In fact, while increasing the
spatial sampling in the image, the frequencies spanned by the DFT are reduced [7].

To gain an intuition for the efficacy of this approach, consider upsampling and downsam-
pling an image in the Fourier domain. When upsampling, higher resolution spatial features
are interpolated - avoiding a pixelation in the upsampled image. Conversely, when down-
sampling, the coefficients representing lower frequencies are retained as the image is now at
a coarser resolution. In both cases, previous models’ information can be partially preserved
and used to build a robust tracker.

3.3 Detecting and handling occlusions
We model the tracked object’s depth distribution as a single Gaussian, and identify candi-
date occluding objects as the regions not belonging to this model. The work proposed in
[18] is based on similar concepts as depth cue is used to discriminate the tracked object
from an occluded one. However, our approach differs from [18] as it has been optimized
to exploit and keep the advantages of KCF tracking core. In particular, we introduce local
search for target candidates (see (7) and (8)) by considering depth continuity between the
occluded target and the candidates. Furthermore, the occluding regions are segmented with
fast depth segmentation (see Section 3.1) and occluding objects are tracked with RGB KCF.
With this approach, we obtain a processing rate 300 times greater than that achieved in [18]
(see Section 4). Again noting µob j as the mean depth of the tracked object Tob j and σob j
as its standard deviation, then given a segmented region Ωob j and its corresponding patch z,
occlusion is detected if (

Φ
(
Ωob j

)
> λocc

)
∧
(

f̂ (z)max < λr1

)
, (6)

where Φ(Ωob j) is the fraction of pixels belonging to Ωob j up to two standard deviations
from the object’s mean. We have determined empirically that an occlusion should be de-
tected when almost a third of Ωob j is occupied by the occluding object Tocc, i.e. λocc = 35%.
The second term in (6) reduces false detections of occlusion in the case of objects moving
fast towards the camera. In these situations the overlap condition can be satisfied due to a
fast shift in the object’s depth distribution. However, the maximum response of our tracker,
f̂ (z)max, would still be high, with f̂ (z)max obtained by weighting f (z) in (4) with a sigmoidal
function that takes into account distance between the depth data and µob j to guarantee conti-
nuity on depth. The value of λr1 was also determined empirically as λr1 = 0.4. When (6) is
true, the occluding object Tocc is tracked. Note, only a portion of Tocc is contained in Ωob j.
To obtain the entire occluding object and the depth values of µocc and σocc, the connected
component is extracted from the depth frame.

During occlusion, a search region Ωi
Tsearch

at frame i is defined, and its response is com-
puted to detect the re-appearance of the target Tob j. In fact, the target object will re-emerge
with high probability in those image areas gradually uncovered by Tocc. We identify the
region where target candidates are searched as

Ω
i
Tsearch

= Ω
i−1
Tocc
∪Ω

i−1
Tbc
∪Ω

i
Tocc , (7)

where Ω
i−1
Tbc

is the region previously occupied by the best target candidate Tbc (Figure 2). For
tracking Tocc, the accuracy of the baseline KCF tracker is sufficient for our purposes as our
goal is to only have a rough estimate of ΩTocc .
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Figure 2: Occlusion search region: Ωi
Tsearch

(blue line), Ωi
Tocc

(yellow line), Ωi
Tob j

(red line) .

For each cluster with depth mean µn and position cn in the image plane, we compute
the maximum value of the normalised response f̂ (z)n. The best target candidate Tbc then
corresponds to the one with maximum response f̂ (z)n. Target tracking is resumed when(

overlap
(
ΩTocc ,ΩTbc

)
< λocc

)
∨
(

f̂ (z)n > λr2

)
, (8)

where the value of λr2 has been empirically determined as 0.2. The computational require-
ments of DS-KCF are not significantly affected during occlusion as the search space enables
computing the response only in specific key areas.

4 Experimental Results
We evaluate our method using two publicly available RGB-D tracking datasets both recorded
with Microsoft Kinect v1. The first, the Princeton Dataset [18], contains 5 validation and 95
test sequences2. This dataset presents complex background clutter and intermittent occlu-
sions. The second, the BoBoT-D Benchmark [6], is made up of 5 sequences with object
rotations, occlusions and changes of scale. We compare our proposed tracker to the RGB-D
trackers in [6, 16, 18], which have outperformed other RGB trackers such as [1, 8, 11, 14].
We shall refer to these as the Adapt3D[6], Prin-Track [18] and OAPF [16] trackers. Prin-
Track [18] was assessed by considering three different feature sets, depth only (D), colour
only (RGB) and their combination (RGB-D). Other RGB-D trackers, for example [19], do
not report results on available datasets or make their code available for comparison. All our
experiments were performed using Matlab on a workstation with an Intel I7-3770S CPU
3.1GHz processor and 8Gb RAM.
Comparison on the Princeton Dataset [18] - For this dataset we report Precision and Suc-
cess plots [20]. Precision plots are obtained by computing the percentage of frames for
which the location error is below a certain threshold, from which we select the percentage
value corresponding to the threshold equal to 20 pixels (P20), as proposed in [20]. Success
plots measure the bounding box overlap between the tracked object and the groundtruth, and
provide the percentage of successful frames where the overlap is larger than a threshold as it
is varied from 0 to 1. For these, we report the area-under-curve (AUC). We also provide the
computational performance of the methods in terms of processed frames per second (fps).

2We synchronise and re-align their RGB and depth images as their validation set groundtruth has been estimated
on only their RGB frames.
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In [9], the authors of KCF proposed the use of HoG features, hence we compare DS-KCF
against KCF based on not just colour HoG features, but an extended set, i.e. {hog_colour,
hog_depth, hog_linear, hog_max, hog_concat}, where hog_linear linearly combines the responses
from hog_colour and hog_depth, hog_max uses the maximum response between hog_colour and
hog_depth, and hog_concat concatenates colour and depth features to obtain a single feature.
Figure 3 and Table 1 show that the proposed DS-KCF tracker outperforms the baseline KCF
leading to better results both in terms of AUC and P20 measures, whatever the feature set.
In the worst and best case scenarios DS-KCF runs on average at 40 and 60fps respectively,
which is better than real-time.

To study the impact of DS-KCF’s proposed scale analysis, let’s consider the performance
on sequences ‘child_no1’ and ‘zcup_move_1’ where scale changes are prominent and there
is no occlusion. As shown in Table 1, when using the same feature (hog_colour) for both KCF
and DS-KCF, the latter leads to better success rate (AUC) and an equivalent precision (P20).
Further experiments on the quantisation effect in the scale factor are available in the sup-
plementary material. An example of severe occlusion that occurs in the complex bear_front
sequence is a good demonstration of the superiority of the DS-KCF tracker against all other
methods, and in particular KCF itself when using DS-KCF with the hog_depth feature (with
AUC of 81.9%). Figure 4 shows example scale and ooclusion comparisons.

Figure 3: Average precision plot (left) and average success plot (right) for Princeton
Dataset [18].

Table 1: Trackers’ performance on Princeton Dataset [18]. All measures are in percentages,
except for the frames per second (fps) columns. OAPF results are reproduced from [16].

Sequences
‘bear_front’ ‘child_no1’ ‘zcup_move_1’ ‘face_occ5’ ‘new_ex_occ4’ Average

AUC P20 fps AUC P20 fps AUC P20 fps AUC P20 fps AUC P20 fps AUC P20 fps
KCF [9] 18.6 19.8 117 66.3 96.8 55 72.5 100.0 164 79.7 93.1 88 46.1 56.8 92 56.6 73.3 103
DS-KCF hog_colour 73.6 82.4 64 83.2 93.7 33 82.3 100.0 105 69.9 80.7 38 78.1 90.2 61 77.4 89.4 60
DS-KCF hog_depth 81.9 91.3 54 69.0 91.3 34 78.8 100.0 111 82.2 95.1 51 53.5 58.5 33 73.1 87.2 57
DS-KCF hog_concat 75.7 85.3 42 76.5 92.1 19 81.5 100.0 81 85.5 98.6 22 78.3 95.1 38 79.5 94.2 40
DS-KCF hog_max 72.1 81.3 45 83.1 92.1 20 82.3 100.0 74 79.4 92.2 37 78.1 90.2 40 79.0 91.2 43
DS-KCF hog_linear 67.7 74.2 35 82.6 92.1 20 82.5 100.0 75 85.0 98.6 26 10.5 9.1 67 65.6 74.8 45
Prin-Track(RGB-D) [18] 78.9 96.2 0.08 71.4 96.8 0.14 78.3 100.0 0.19 70.1 96.8 0.17 71.9 90.2 0.10 74.1 96.0 0.14
Prin-Track(RGB) [18] 80.6 94.9 0.09 71.8 96.8 0.19 78.9 100.0 0.24 68.1 98.2 0.15 68.7 90.2 0.12 73.6 96.0 0.16
Prin-Track(D) [18] 69.9 81.6 0.09 15.9 21.4 0.18 73.7 100.0 0.24 54.1 81.0 0.24 72.6 92.7 0.12 57.2 75.3 0.18
OAPF [16] 78.9 - 0.60 77.2 - 1.20 72.7 - 1.00 79.2 - 1.30 74.6 - 0.50 76.5 - 0.90

The results for our DS-KCF tracker show that hog_concat is the most optimum feature on
average with AUC of 79.5% and P20 of 94.2%, but clearly its inherent makeup means it is
the slowest of our features - and yet at 40fps, it is still real-time. DS-KCF also outperforms
the other two RGB-D trackers tested on this dataset, Prin-Track [18] (RGB, or D, or RGB-
D) and OAPF [16]. Furthermore, the average processing rate in the Prin-Track (RGB-D) is
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0.14fps and 0.9fps for the OAPF tracker in striking contrast to 40fps for DS-KCF. Qualitative
examples of the trackers performance, for the sequences ‘child_no1’ and ‘face_occ5’, are
shown in Figure 4 (c) and (e). Note how DS-KCF obtains a more accurate bounding box
(red) producing a bigger overlap with the groundtruth (green). The ‘face_occ5’ example
in 4(f) is particularly important as it clearly illustrates how the proposed solution is able to
produce better tracking after occlusion.

On the Princeton Dataset test sequences, DS-KCF has ranked 3rd amongst 20 different
state-of-the-art RGB and RGB-D trackers3.

(a) (b) (c)

(d) (e) (f)

Figure 4: DS-KCF (red box) v. KCF (yellow box). Occlusion handling: (a) before occlusion,
and (d) after occlusion. Change of scale: (b) initial target, and (e) target after change of scale.
DS-KCF (red) v. Prin-Track(RGBD) (yellow) v. groundtruth (green) on (c) ‘child_no1’, and
(f) ‘face_occ5’.

Results with BoBoT-D [6] - For this dataset we report the trackers’ performance (see Table
2) considering the mean overlap (Ov. in Table 2) between tracker output and groundtruth
across each sequence and by considering the Hit measure (percentage of frame where the
overlap is greater than 33%) as proposed in [6]. Again we demonstrate that (in this data set
too) DS-KCF provides the better results when the feature hog_concat is used, providing the
optimum balance between accuracy and real-time performance.

KCF is the fastest method at 141fps but it leads to less accurate results on average (over-
lap 32.5%, hit 47.7%) when compared with the best DS-KCF configuration (overlap 53.6%,
hit 76.2%) at 30fps. The results obtained with DS-KCF with the feature set hog_concat show
that for sequences ‘Milk’ and ‘Person’ it outperforms the state-of-the-art trackers Prin-Track
and Adapt3D. On the other hand, for the ‘Tank’ sequence the performance of DS-KCF drops,
mainly due to the variable shape and appearance of the tracked tank across the sequence (see
Figure 5) when the small object can affect the quality of the depth segmentation. The mea-
sures for the ‘Ball’ sequence are very poor for both KCF and DS-KCF due to the speed of
the ball and fast motion of the camera. Overall, the results for the BoBot-D dataset show that
on average the proposed DS-KCF tracker performs second best to the Adapt3D tracker [6],
but is ahead of all the other trackers.

3Ranks available at http://vision.princeton.edu/projects/2013/tracking/eval.php
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Table 2: Average results for RGB-D trackers on the BoBot-D dataset. The best results in
each column are in bold and the best DS-KCF results with hog_concat is highlighted.

BoBot-D dataset Sequences
‘Milk’ ‘Ball’ ‘Tank’ ‘Person’ ‘Box’ Average

Ov. Hit Ov. Hit Ov. Hit Ov. Hit Ov. Hit Ov. Hit fps
KCF [9] 58.1 82.2 2.0 2.4 13.1 10.8 31.4 43.0 57.9 100.0 32.5 47.7 141
DS-KCF hog_colour 74.4 100.0 9.1 10.3 26.4 42.1 64.8 98.3 63.9 100.0 47.7 70.1 61
DS-KCF hog_depth 45.5 60.9 16.6 23.0 15.2 18.9 81.3 98.5 66.2 100.0 45.0 60.3 64
DS-KCF hog_concat 76.6 100.0 7.9 10.3 43.9 72.5 73.4 98.0 66.1 100.0 53.6 76.2 30
DS-KCF hog_max 43.7 61.5 9.1 10.3 17.2 23.4 62.7 95.4 19.9 21.9 30.5 42.5 39
DS-KCF hog_linear 45.4 61.4 9.4 10.6 17.1 18.9 68.9 98.4 19.8 21.9 32.1 42.2 56
Prin-Track(RGB-D) [18] 64.5 83.5 27.1 39.3 7.6 8.3 66.9 94.1 66.9 100.0 46.6 65.0 0.16
Prin-Track(RGB) [18] 41.9 52.5 9.5 12.7 11.1 15.3 67.0 86.5 58.4 98.1 37.6 53.0 0.20
Prin-Track(D) [18] 48.2 64.8 26.9 36.9 10.6 11.8 65.6 93.8 65.2 98.9 43.3 61.2 0.27
Adapt3D [6] 73.5 96.8 69.8 96.9 55.3 94.1 70.7 95.3 73.1 99.8 68.5 96.6 30.60

Figure 5: DS-KCF (red box) and groundtruth (green box) for the ‘Tank’ sequence.

5 Conclusions
We presented the DS-KCF tracker and demonstrated its performance against state-of-the-
art RGB-D object trackers. DS-KCF provides a viable solution that combines precision
with real-time performance, while improving on scale and occlusion handling. The method
is either comparable or outperforms other trackers on two publicly available datasets for
rigid and some deformable object categories. Possible future directions are multiple object
tracking and handling highly deformable objects. We are making our code available to other
researchers to encourage future use, comparison, and improvements.
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