
VANDEVENTER ET AL.: 4D COUPLED CONVERSATIONAL MODELS 1

Towards 4D Coupled Models of
Conversational Facial Expression
Interactions
Jason Vandeventer1

VandeventerJM@Cardiff.ac.uk

Lukas Gräser3

Lukas.Graeser@Campus.tu-berlin.de

Magdalena Rychlowska2

Rychlowska@Cardiff.ac.uk

Paul L. Rosin1

RosinPL@Cardiff.ac.uk

David Marshall1

MarshallAD@Cardiff.ac.uk

1 School of Computer Science and
Informatics
Visual Computing Group
Cardiff University
Cardiff, Wales, UK

2 School of Psychology
Cardiff University
Cardiff, Wales, UK

3 School of Electrical Engineering and
Computer Sciences
Berlin Institute of Technology
Berlin, Germany

Abstract

In this paper we introduce a novel approach for building 4D coupled statistical mod-
els of conversational facial expression interactions. To build these coupled models we
use 3D AAMs for feature extraction, 4D polynomial fitting for sequence representation,
and concatenated feature vectors of frontchannel-backchannel interactions (with offset
values) for the coupled model.

Using a coupled model of conversation smile interactions, we predicted each se-
quence’s backchannel signal. In a subsequent experiment, human observers rated pre-
dicted sequences as highly similar to the originals. Our results demonstrate the usefulness
of coupled models as powerful tools to analyse and synthesise key aspects of conversa-
tional interactions, including conversation timings, backchannel responses to frontchan-
nel signals, and the spatial and temporal dynamics of conversational facial expression
interactions.

1 Introduction
Face-to-face conversations are a frequent and important part of social communication. These
conversations, whether with well-known friends or complete strangers, consist of a variety of
verbal and non-verbal signals (e.g. expressions, gestures), which determine the tone, content,
and flow of a conversation [5, 9, 12, 47].

Dyadic, face-to-face conversations involve repeated exchanges between the listener and
the speaker. Input from the listener often serves to control conversational flow [4, 5, 9, 11, 12,
28, 37, 44, 47]. In [47], Yngve coined the term backchannel to describe the signals being sent
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from the listener(s) to the speaker. This feedback can indicate comprehension (e.g. a look
of confusion), provide an assessment (e.g. saying “correct”), control conversational flow, or
even add new content (e.g. sentence completion). Conversely, the term frontchannel is used
to describe the speaker’s behaviour. Obviously, the frontchannel and backchannel roles may
be swapped multiple times during a conversation; this dynamic relationship is what allows
for the conversation’s path to be altered based on expressed and received conversational
expressions.

The importance and ubiquity of dyadic, face-to-face conversations in social interaction
makes understanding the roles of frontchannel and backchannel signals important for a va-
riety of fields, such as psychology, neuroscience, affective computing, etc. Statistical mod-
elling of such interactions is a particularly promising research area because it allows for
quantitative analysis of qualitative data. Modelling each side of a conversation may pro-
vide some information about so-called conversational expressions (e.g. thinking, confu-
sion, agreement), however, to better understand the effect frontchannel and backchannel
expressions have on each other (i.e. content, flow, etc.), coupled statistical models should
be built. With coupled models we can analyse the effects one side of a conversation has
on the other, understand important characteristics of conversational interactions, and better
synthesise conversational expression interactions.

Existing research has used 2D data for modelling conversational aspects [1, 26]. While
2D data is useful for some cases, 3D data offers the advantage of providing intrinsic geome-
try which is invariant to pose and lighting. Moreover, 3D dynamic (4D) data is preferred over
3D static data because it includes temporal information, which is critical for modelling and
synthesising realistic facial expression sequences. No such databases existed of 4D conver-
sations, so our lab created the first 4D (3D video) database of natural, dyadic conversations.
Details of this publicly available database can be found in [43].

By building 4D coupled statistical models of conversational expressions we can analyse
and synthesise key aspects of frontchannel-backchannel interactions, including conversation
timings, backchannel responses to frontchannel signals, and the spatial and temporal dynam-
ics of conversational facial expressions. Such models will allow for advances in many areas,
such as behaviour analysis, perceptual psychology, and digitally animated character facial
expression modelling and synthesis.

2 Related Work

2.1 3D/4D and Conversational Databases

While many 3D/4D facial expression databases currently exist [10, 33, 40, 48], none con-
tain natural conversations, and as a result, they lack conversational facial expressions; those
expressions found more commonly in everyday conversation, such as laughing, thinking,
confusion, agreement, etc. While these databases are potentially useful for modelling and
synthesis of prototypical facial expressions, they can not be used for our purposes of creating
coupled models of conversational expressions.

Some conversational databases exist (e.g. [20, 34, 35, 36, 45, 46]), however, they either
do not focus on the face or they are not 4D datasets. Therefore, they are also unsuitable
for our research. It is for these reasons our lab created the first 4D (3D video) database of
natural, dyadic conversations. This database is used for building coupled statistical models
of conversational facial expression interactions.
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2.2 Coupled Models

Many statistical based approaches exist for learning and modelling behaviour. Such models
that “couple” one behaviour model with another are termed “coupled statistical models”.
Coupled statistical models are often used to enhance the information contained in data. Hogg
et al. [26] was one of the first works to build coupled models of facial expressions. Using
tracked data of head shakes and nod movements, a 2D coupled statistical model was built and
used to synthesise a nodding head, which would be displayed when a real (non-synthesised)
head was making a shaking motion. In [16], 2D coupled-view Active Appearance Models
were used to determine the relationship of the frontal-view and profile of the face. Castelan
et al. used 2D frontal photographs to approximate 3D face shape, by coupling intensity and
height information [13]. In [38], Coupled Scaled Gaussian Process Regression (CSGPR)
models are used for head pose normalisation, with the goal of head-pose invariant facial
expression recognition.

All of these approaches couple actions which occur in the same time instance. The
coupled models we build in this paper are sequential in time, as one action influences another.
To our knowledge, no work on 4D coupled models of conversational expressions currently
exists.

3 Building Coupled Models
Conversations are filled with dynamic facial expressions. These expressions can differ
greatly in intensity and length, and their variations encode different, important aspects of
conversational interactions. Since our goal is to build coupled statistical models of con-
versational expression interactions, the sequences will need to be comparable, while still
maintaining their expression characteristics.

Finding an appropriate method of representing sequences of varying lengths and char-
acteristics, as single, comparable entities, is a challenge. Approaches like Dynamic Time
Warping (DTW) work well for signals which share similar characteristics, such as two
smiles made by different people. However, it falls short when those sequences are vastly
different. In conversations, the same type of expression, such as smile, may greatly differ in
their trajectories due to factors such as the individual speaking before/during the expression,
the individual holding what we have termed a “resting smile” (an individual maintaining a
masking smile that remains unchanged for long periods of time), or because the individual
is transitioning from a different expression to a smile. It is for these reasons that many ma-
chine learning approaches also fall short. One solution to this problem is polynomial fitting
of the sequence data. It allows for multiple types and lengths of expression sequences to be
represented as single, comparable entities and is described in Section 3.1.2.

3.1 Methodology

As stated in Section 1, we created a 4D (3D video) database of natural, dyadic conversations.
The conversations were annotated for frontchannel and backchannel conversational expres-
sions by four experienced annotators. A total of 764 frontchannel/backchannel expression
periods were annotated. The scope of this paper does not include the details of this database,
but full details can be found in [43]. These manual annotations provide the segmented data
used for the experiments in Section 4.
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To build an Active Appearance Model (AAM) [17] of conversation sequences, the data
must be inter-subject registered. Sparse correspondence is achieved using a 4D tracking ap-
proach which uses 3D shape and texture. These tracked points are used as control points in a
dense correspondence method. This method uses a Thin Plate Spline (TPS) based algorithm,
with an additional “snapping” step, to modify the geometry of one mesh (reference mesh) so
that it matches that of another mesh (target mesh). The tracking and inter-subject registration
methods were developed in-lab and details for these approaches can be found in [23].

3.1.1 3D AAMs

Frontchannel and backchannel sequences of inter-subject registered data are used to build
a 3D AAM. Each frame of a sequence is projected into the combined AAM model. This
provides us with the bVectors, which are the principal component (PC) weights for the pro-
jected frame (“Original bVectors” in Figure 1). These bVectors specify the shape and texture
features for each projected frame At this point, the sequence consists of bVector values for
each individual frame. In order to represent the sequence as a continuous, length-invariant
entity, polynomial fitting is used.

3.1.2 Polynomial Fitting

Before a polynomial fit is calculated on a sequence of bVector values (for each principal
component), the sequence is first standard score normalised [30] and shifted to the mean.
This is an important step for retaining each sequence’s characteristics, while also ensuring
all of the sequences reside in the same polynomial space. The importance of this becomes
evident when we use the coupled models to predict sequence values.

An nth degree polynomial is fitted to the sequence of bVectors, for a specific PC (“Orig-
inal Fit” in Figure 1). In the resulting polynomial equation, the coefficients make up the
feature vector which is used as input into the coupled model. This feature vector is con-
catenated with the normalisation and shifting values, as well as the number of frames in the
sequence. This information helps for reversing the process when synthesising the sequence.
The feature vectors for each PC are concatenated to produce a single, combined feature
vector, which describes all parts of the expression sequence.

One of the major benefits to this approach is that it allows for the modification of se-
quences, such as changing the length or amplitude of an expression. For instance, to extend
a sequence of i frames, you simply insert i+1 for each equation variable. Assuming the PC
sequence represents expression variations, to amplify facial expressions you simply amplify
the polynomial curve and calculate the new bVector values, as seen in Figure 1 as “70%
Decreased” and “70% Increased”. Projecting the bVectors out of the AAM models allows
for the synthesis of newly modified sequences while, importantly, retaining the expression
characteristics.

The main strength of this approach, however, is that it allows sequences of different
lengths and characteristics to be represented by the same number of values, which is critical
for building our coupled models of conversational interactions.

3.1.3 Coupled Models

For each frontchannel-backchannel interaction, the combined feature vectors for the frontchan-
nel signal, an offset For each frontchannel-backchannel interaction, the combined feature
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Figure 1: Original bVectors with a polyno-
mial fit and two amplitude-modified curves

Sequences

FC
PC 1 PC 1 PC 1 PC 1
PC 2 PC 2 PC 2 PC 2
PC 3 PC 3 PC 3 PC 3

Offset Offset Offset Offset

BC
PC 1 PC 1 PC 1 PC 1
PC 2 PC 2 PC 2 PC 2
PC 3 PC 3 PC 3 PC 3

Table 1: Example of the coupled model’s fea-
ture vectors.

vectors for the frontchannel signal, an offset value for the interaction, and the combined fea-
ture vectors of the backchannel signal are concatenated to produce a coupled feature vector.
The combined feature vectors were calculated according to the process described in Section
3.1.2, and the offset value is the number of frames from the start of the frontchannel expres-
sion to the start of the reacting backchannel expression. The coupled model consists of these
coupled feature vectors and now describes the interactions between a frontchannel signal
and a backchannel signal, as a single feature vector. Table 1 provides a visualisation of the
coupled model. This model can be used for a variety of applications. In this work we use it
to predict backchannel responses to frontchannel signals, using k-Nearest Neighbour (kNN)
imputation [3, 18].

3.1.4 Predicting Frontchannel and Backchannel Signals

kNN imputation is a popular approach, especially when using sparse data sets, for replacing
missing data [3, 15, 24, 42]. This approach replaces missing data with a weighted-mean
of the k-nearest columns, where the weight is inversely proportional to the distance from
those neighbours. In our coupled model, each column is the feature vector for a single
interaction. Given the feature vector values of a frontchannel sequence and using a coupled
model of conversational interactions, kNN imputation can be used to predict the values of
a backchannel feature vector. The same is true for predicting frontchannel feature vector
values. This imputation process is performed on the data for use in Experiments 3 and 4
(Section 4.4).

4 Experiments
The steps described thus far allow us to predict the characteristics of a backchannel signal
using the previously modelled frontchannel-backchannel interactions. To fully evaluate the
effectiveness of our modelling and synthesis approach, we performed three experiments.

In Experiment 1 (Section 4.2) classified frontchannel and backchannel expressions. This
was done to not only show that our in-lab tracking and inter-subject registration approach is
sound, but also to demonstrate that both frontchannel and backchannel signals have intrinsic,
separable properties.

In Experiment 2 (Section 4.3) we built 4D models of backchannel sequences, manipu-
lated their amplitudes, and synthesised the manipulated sequences. These sequences were
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then evaluated by human observers to measure the effect of the modification on perceptions
of realism, both for facial expression and image quality. Results of this experiment show that
the models we built are perceived as realistic and believable, even after being modified.

In Experiment 3 (Section 4.4.1) and Experiment 4 (Section 4.4.2), we built a 4D coupled
statistical model of smiles reciprocated during conversations. We use these models to predict,
for each sequence, the characteristics of backchannel reactions to frontchannel signals. In
Experiment 3, we classified the predicted frontchannel and backchannel sequences, using
the original sequences as the training data. In Experiment 4, human observers viewed the
original and predicted sequences. Their task was to rate the extent to which a predicted
sequence was similar to the original.

4.1 Conversational Data
In addition to conveying complex and rich information, smiles appear in face-to-face inter-
actions more frequently than other facial expressions [6]. They also constitute important
backchannel signals in face-to-face conversations, similarly to other signals described in the
literature [8, 47]. Consequently, the classification and perception experiments described be-
low focus on smiles during naturalistic conversations.

Using the manually annotated dataset described in Section 3.1, interactions consisting
of a frontchannel (FC) smile expression with a corresponding backchannel (BC) smile ex-
pression (occurring within 2 seconds of the FC smile), were selected. This resulted in 22
conversation interactions (44 sequences), which were tracked and registered using the pro-
cess described in Section 3.1.

4.2 Experiment 1 - Classification
In this experiment we attempted to differentiate frontchannel from backchannel smile se-
quences, using 3D AAMs for feature extraction, polynomial fitting for 4D sequence repre-
sentation, and Support Vector Machines (SVMs) for classifying the 4D sequences. For each
subject, Subtarget, a 3D AAM was built using all sequence frames from every other subject,
Subothers. 95% of the eigenenergy was kept. For each sequence, bVectors (feature vectors)
were calculated by projecting every frame into the AAM.

An nth degree polynomial fit was performed on each sequence of bVectors. This ap-
proach allowed for a 4D representation of 3D discrete data. A grid search was performed to
empirically find an appropriate polynomial degree and number of principal components to
use for fitting, for each Subtarget AAM model.

The polynomial coefficients were used as input into a Support Vector Machine (SVM)
classifier, libSVM [14], where Subothers sequences comprised the training set, and Subtarget
sequences comprised the testing set. A ν-SVM with a Gaussian RBF kernel was used, and a
grid search was performed for parameter optimisation, as suggested in [27, 41].

As stated above, these steps were performed for each subject, so as to provide a fully-
generalised approach to classification. That is, this is a subject-independent, cross-validation
approach.

4.2.1 Results and Analysis

For classification accuracy, Area Under the ROC Curve (AUC) was chosen as the perfor-
mance metric because it has been shown to be more reliable and contain more preferable
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properties than raw classification accuracy, as described in [2, 7, 32]. The average accuracy
for all four subjects was 97.54%.

Experiment 1 was able to validate two main points. First, frontchannel and backchannel
signals contain characteristics which allow them to be differentiated; this was most likely
the vertical movement of the mouth of the speaker (frontchannel signal). Second, the posi-
tive results support the use of our in-lab tracking and inter-subject registration methods, as
any tracking or registration issues would have resulted in warped shape and texture and led
to poorer classification results. It was extremely important to confirm the quality of these
approaches before undertaking the modelling and synthesis steps described in Section 4.3.

4.3 Experiment 2 - Model Modification
Experiment 2 focused on the realism of synthesised backchannel sequences, for both fa-
cial expression and rendered sequence image quality. 3D AAMs were built for every smile
sequence (95% eigenenergy kept). By building an AAM for each expression sequence, we
remove the identity variations that occur in multi-subject AAMs, and increase the probability
that the top PC values will represent variations in expression. The fitting process described
in Section 3.1.2 was performed using a 14th degree polynomial for three principal compo-
nents. These three PCs represented, on average, 85% of the remaining model energy. After
observing the output from various combinations of PCs, we chose to use the top three PCs
because they provided the best balance between the number of PCs used and capturing the
data and variability required for our experiments. That is, by reducing the number of PCs we
are able to reduce processing time, while still retaining the quality and variation of data we
require for our work. For this approach, since each sequence is completely independent, no
normalisation or shifting step is performed. In addition to the independent nature, and since
the goal is the creation of realistic stimuli, over-fitting is not a concern.

As well, it is true that oscillations tend to occur at the edges of a polynomial curve
for high-order polynomials (Runge’s phenomenon [39]), and a piecewise polynomial fitting
approach (such as the use of B-Splines [19]) might be better for fitting these sequences.
To produce the expected visual output there is more benefit to using a single polynomial
function for fitting, rather than multiple sections of polynomial functions. For instance,
amplifying each polynomial section of a piecewise polynomial-fitted smile sequence will
not result in an overall amplified sequence, but rather disjointed amplified parts (which will
not have the appearance of a normal, but more intense, smile). Each backchannel sequence’s
polynomial fit was modified using four amplitude values: 70% decreased, 30% decreased,
30% increased, and 70% increased. From these new polynomial curves, bVector values for
each PC were calculated for each modification type, as described in Section 3.1.2 and shown
in Figure 1. The original amplitude sequence was produced using the original polynomial
coefficients and acted as a ground-truth of sorts. Figure 2 shows examples of the same peak
frame for each modified sequence. The frontchannel sequence uses its original polynomial
fitted values. It is worth noting that while the amplitude of the backchannel smile expressions
were modified, the expression dynamics of the individual were preserved (Figure 2).

These videos of frontchannel-backchannel smile interactions were used in a subsequent
experiment, in which 28 participants (17 male and 11 female) viewed the video sequences
and evaluated the realism of the backchannel sequence( both for expression and for image
quality), using a 4-point Likert-type scale ranging from (1) Not at all realistic to (4) Highly
realistic. Before starting the task, participants were shown examples of realistic and unreal-
istic backchannel sequences. These example sequences were not included in the sequences
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(a) 70% Decreased (b) 30% Decreased (c) Original (d) 30% Increased (e) 70% Increased

Figure 2: The peak expression frame for each modified sequence (same frame number).

evaluated by the participants during the task. Each sequence evaluated showed the original
frontchannel sequence and one of the five amplitude-modified sequences, with the interac-
tion offset preserved. Each participant thus rated 5 versions of 11 sequences – the original
and the four modified versions – for a total of 1540 trials (55 trials per person). The in-
teractions were shown to participants in a random order, using the efficient and unbiased
Durstenfeld-Knuth shuffling algorithm [21, 29].

4.3.1 Results and Analysis

Four trials from three participants were discarded from the analysis due to web-based input
errors which resulted in missing data. Both expression realism and image quality ratings
were significantly affected by the manipulation of amplitude, F(4,108) = 24.69, p < .001
and F(4,108) = 26.04, p < .001, respectively. Perceived realism of facial expressions dis-
played in the original videos, in the videos using lower levels of amplitude, and in the videos
using the 130% amplitude level was significantly higher than the scale midpoint (2.5, all
t ′s> 3.5, p′s< .01, Bonferroni corrected). These versions were therefore perceived as highly
realistic. The high-amplitude (170%) level, however, was perceived as less realistic and not
significantly higher than the scale midpoint (t(27) = −1.19, p > .1). Table 3(a) shows the
average rating and standard deviation for expression realism, for each modification level. An
identical pattern was observed for the ratings of image quality (Table 3(b)).

Modification Avg. Rating S.D.
30% 2.95 .62
70% 3.14 .49

100% 3.00 .43
130% 2.83 .41
170% 2.40 .43

(a) Expression Realism Ratings

Modification Avg. Rating S.D.
30% 2.98 .53
70% 3.04 .44
100% 2.99 .45
130% 2.84 .44
170% 2.43 .52

(b) Image Quality Ratings

Figure 3: Experiment 2 Results

Figure 4 shows the values plotted for each modification level, for expression realism
ratings and image quality ratings. The red line in the figure represents the rating scale’s
mid-point. Thus, any values above this line represent stimuli that were perceived as realistic.
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Figure 4: Experiment 2 Results

The observed decline in perceived realism of smiles as the amplitude/velocity increased
is consistent with previous research linking short smile onset and offset with decreased per-
ceptions of genuineness [22, 25, 31].

Having shown that we can model, modify, and synthesise realistic expression sequences
separately, we move on to joining them in a coupled statistical model, used for predicting
backchannel expressions given frontchannel stimuli.

4.4 Experiments 3 & 4 - Predicting Expressions
Experiment 3 and Experiment 4 focused on evaluating our coupled statistical modelling ap-
proach, specifically the similarity of original and predicted backchannel smile expressions.
We built an AAM which contained all sequence frames for every subject (95% eigenenergy
kept). The fitting process described in Section 3.1.2 was performed using a 7th degree poly-
nomial for three principal components, which represented 77.63% of the remaining model
energy. After observing the output from various combinations of PCs, we chose to use the
top three PCs because they provided the best balance between the number of PCs used and
capturing the data and variability required for our experiments. That is, by reducing the
number of PCs we are able to reduce processing time, while still retaining the quality and
variation of data we require for our work. The polynomial degree chosen was empirically
determined, so as to avoid over-fitting. The coupled model was built according to the steps
described in Section 3.1.3, and the imputation step was performed for the polynomial coef-
ficients using an empirically determined k value of 15 for kNN. The shift and normalisation
values (discussed in Section 3.1.2) were not removed as part of the imputation step. In the
future we would like to be able to impute all parts (polynomial coefficients, shifting, and
normalisation values) of the sequence feature vectors, however, more data is needed for pre-
dicting accurate enough shifting and normalisation values for re-synthesis purposes. These
values are useful for better matching the appearance of the identity of the subjects.

For these experiments we used the data from our 4D conversational database. Clearly,
for these interactions there is no missing data. Therefore, to predict a sequence’s PCs, the
data to be predicted is removed before imputation. That is, the implementation is such that
the data is imputed on a PC-by-PC basis (i.e. PC 1, then PC 2, then PC 3, until all PC
values have been imputed). The original data that has been removed acts as a ground truth
and is used to help evaluate how well we predicted the values. The ground truth is used in
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the classification experiment (Section 4.4.1) as the training set, and is used to synthesise the
original backchannel sequences for the human perceptual study (Section 4.4.2).

4.4.1 Experiment 3 - Classifying Predicted Sequences

To analytically evaluate our coupled model approach we classified frontchannel and backchan-
nel predicted sequences. The methodology was identical to the one we used in Experiment 1
(Section 4.2). The training set was comprised of 22 frontchannel and 22 backchannel original
sequences (i.e. polynomial coefficients used for building the coupled model). The testing set
was comprised of 22 frontchannel and 22 backchannel predicted sequences. The optimal ν-
SVM parameters were: Cost =−10, ν = 0.95455. Classification accuracy (Raw and AUC)
was 95.45%. The two incorrectly classified sequences were false-positives (i.e. predicted as
frontchannel when actually backchannel sequences).

4.4.2 Experiment 4 - Perceptual Experiment

The imputed/predicted backchannel sequences were synthesised by projecting the new bVec-
tor values out of the AAM. The frontchannel sequences and the original backchannel se-
quences were synthesised using the original polynomial fit values. Participants (see Section
4.3) were instructed to rate the extent to which they perceived the imputed backchannel
expressions as similar to the original expressions. They used a 4-point Likert-type scale
ranging from (1) Very Dissimilar to (4) Very Similar. Each participant rated 11 sequences
for a total of 308 trials. One trial was discarded from the analysis due to web-based input
errors which resulted in missing data. We also discarded one trial for which the participant
spent only 1.34 seconds (1.667 seconds being the length of the shortest backchannel video
to rate), for a final sample of 306 trials. Similarity ratings, averaged within participants,
were significantly higher than the scale midpoint (2.5), M = 2.90, SD = 0.31, t(27) = 7.00,
p < .001, suggesting that participants consistently perceived the imputed videos as similar
to the original versions.

5 Conclusion

In this paper we introduced a novel approach for building 4D coupled statistical models of
conversational facial expressions. Using 3D AAMs for feature extraction, 4D polynomial fit-
ting for sequence representation, and combined feature vectors of frontchannel-backchannel
interactions, we built a 4D coupled model of smile expressions from conversational interac-
tions. This model served to predict and synthesise backchannel expression sequences, which
were used in a perceptual experiment. The results of this experiment support the use of the
proposed methods. While this approach to building coupled models of conversational ex-
pression interactions is clearly promising, more evaluations are needed. This includes using
different frontchannel-backchannel expression types, adding more subjects to the models,
and conducting experiments which evaluate different attributes of the interactions. The ap-
proach described in this paper allows for the creation of realistic, modifiable stimuli that
would not otherwise be possible. Therefore, future work will focus on utilising these coupled
models to analyse and synthesise a larger variety of conversational expression interactions.
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