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Abstract

Non-negative point-wise priors such as saliency map, defocus field, foreground mask,
object location window, and user given seeds, appear in many fundamental computer vi-
sion problems. These priors come in the form of confidence or probability values, and
they are often incomplete, irregular, and noisy, which eventually makes the labelling task
a challenge. Our goal is to extract image regions that are aligned on the object bound-
aries and also in accordance with the given point-wise priors. To this end, we define a
graph Laplacian spectrum based cost function and embed it into a minimization frame-
work. For a comprehensive understanding, we analyze five alternative formulations, and
demonstrate that the robust function version produces consistently superior results.

1 Introduction
Binary segmentation, e.g. finding an object area in a given image, partitioning a foreground
region in a scene, and detecting an organ surface in a volumetric medical data, is a fundamen-
tal computer vision task. In this paper, we analyze the seminal work in binary segmentation
including graph-cuts [3, 15] , random walk [7], alpha matting [11, 12], and spectral cluster-
ing [14], and present a unifying framework that shows these methods share similarities that
can be modified to synthesize a specific formulation for each of them.

In addition, we describe a novel graph Laplacian spectrum constraint to impose structure
and point-wise constraints on the segmentation task. We present five alternative formula-
tions including projection onto null-space, convex function with `2-norm, convex function
with `1-norm, sparse decomposition, and iterative robust function. We demonstrate that the
robust solution generates superior results for several preferred applications on 2D images.
Our formulation can be extended easily to any graph bipartitioning problems in higher di-
mensional spaces such as clustering vector data.

Let x be the binary segmentation result that we seek. We are given with a structure y that
we want to impose on the segmentation, and a prior x? (or an initial estimate) that guides
the segmentation process, as illustrated in Fig. 1. For this binary segmentation problem, y
can be the original image in vector form, x? be the likelihood weights (or confidence map)
indicating an image pixel belonging to target object, and x be the set of labels we aim to
detect.
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Figure 1: Binary segmentation by Laplacian spectrum constraint. We compute a graph
Laplacian matrix L from graph G for the input structure y to regularize the estimation of
x from x?.

We consider y is represented with a graph G. This structure imposing graph is built by
assigning each point in y as a vertex and connecting these vertices via weighted edges within
a N-connectivity. In other words, each vertex is an image pixel and each edge is the affinity
value of two pixels in a patch N containing N + 1 pixels including the center. Therefore,
G is a highly sparse and almost an N regular graph except on the boundary vertices, which
have less than N neighbors. For a 2D image y of size

√
n×
√

n, G will have n vertices.
Different connectivity and weighting schemes will generate different weighted graphs. The
graph Laplacian L is a positive-semidefinite matrix representation of G. For properties of the
graph Laplacian, please refer to [5].

2 Related Work
Segmentation is one of the extensively studied areas in computer vision. Providing an in-
depth analysis of the existing work is outside the limited scope of this paper. Here, we
provide a summary of a few relevant studies.

Pioneering work [15] treats image segmentation as a graph partitioning problem and pro-
poses a normalized cut criterion measures both the total dissimilarity between the different
groups as well as the total similarity within the groups. Random walk [7] is a seeded seg-
mentation algorithm that determines the probability that a random walker starting at each
unlabeled pixel will first reach one of the prelabeled pixels by solving a closed form equa-
tion using graph Laplacian where weights A(i, j) = exp(−θ(gi−g j)

2), where θ is the global
scaling factor, in contrast to local scalings in [11, 14], and gi is image intensity at pixel i.
A spectral segmentation method with multi-scale graph decomposition is proposed in [4]. It
minimizes the x>Ax/(x>Dgx), where A is the affinity matrix and Dg is a diagonal matrix
(refer to sec. 3 for descriptions).

Seminal methods [11, 12] derive a matting Laplacian matrix from multiple matte equa-
tions. In comparison with random walk and normalized cuts, they adapt a correlation mea-
sure instead of the exponent of color distance, a local scaling (inspired by self tuning clas-
sification [14]) instead of a global scaling, and formulate a least-squares solution with con-
straints from user input. Local scaling leads to better clustering especially when the data
includes multiple scales and the clusters are placed within a cluttered background. [14] also
explores the structure of the eigenvectors to infer automatically the number of groups, in-

Citation
Citation
{Cvetkovic, Rowlinson, and Simic} 2010

Citation
Citation
{Shi and Malik} 2000

Citation
Citation
{Grady} 2006

Citation
Citation
{Levin, Lischinski, and Weiss} 2008{}

Citation
Citation
{Perona and Zelnik-Manor} 2004

Citation
Citation
{Cour, Benezit, and Shi} 2005

Citation
Citation
{Levin, Lischinski, and Weiss} 2008{}

Citation
Citation
{Levin, Ravprotect unhbox voidb@x penalty @M  {}Acha, and Lischinski} 2008{}

Citation
Citation
{Perona and Zelnik-Manor} 2004

Citation
Citation
{Perona and Zelnik-Manor} 2004



LI, PORIKLI: ENFORCING POINT-WISE PRIORS 3

stead of checking jumps in eigenvalue magnitudes. [8] proposes a dark-channel prior to
model the thickness of the haze and apply the matting Laplacian to refine the transmission
map. In the same manner, [9] derives its guided image filtering algorithm from a local linear
model similar to the matting Laplacian [11].

3 Laplacian Spectrum Constraint
To estimate the optimal x from the prior x?, we compute a graph Laplacian matrix L from
G, where G is a graph representation of the input image y. In other words, the Laplacian
matrix L will regularize our under-constrained optimization formulation by laying on the
image structure inherent in y. This enables us to define the binary segmentation problem as
a least-squares constrained optimization

min
x
‖x−x?‖2, s.t. Lx = 0. (1)

We call the above constraint Lx = 0 the Laplacian spectrum constraint. This is a generaliza-
tion of the conventional approaches and does not require a specific numerical solver as the
matting Laplacian.

Suppose a ‘connected component’ represents a subgraph of G in which any two vertices
are connected to each other, yet not connected to any other vertices in the remaining part of
the graph. Under image segmentation context, a connected component corresponds regions
having the same label. We argue that, the multiplicity of λ = 0 as an eigenvalue of L is
equal to the number of connected components in G. This indicates that the spectrum of L
determines the number of connected components in G. In other words, it would separate
perfectly different connected subgraphs.

To see this, let λi be the i-th smallest eigenvalue of L, λ1 ≤ λ2 ≤ ·· · ≤ λn. Then, we have
λ1 = 0 since Le = 0, where e is the above all-1 vector in Rn. This can be directly derived
from the definition of the Laplacian matrix. Suppose the multiplicity of 0 eigenvalue is k,
that is, λ1 = · · · = λk = 0, and 1 ≤ k� n. Obviously, k is the dimension of L’s null-space
null(L) and the k smallest eigenvectors corresponding to these 0 eigenvalues comprise a basis
of this null-space. An arbitrary linear transformation of these k eigenvectors would generate
another basis.

We are interested in a specific basis such that each of these k orthogonal vectors would
have 1 for all the vertices of a component of the graph and 0 for the rest of the vertices,
and the sum of these k vectors is e. This ‘ideal’ basis [12, 14, 17], in essence, gives us the
perfect segmentation of the input image y. However, due to numerical errors and the limited
connectivity of the graph G, one cannot determine k by simply examining the multiplicity of
0 eigenvalue. A more robust way is to search for a significant change in the magnitude of the
eigenvalues starting from λ1. In practice, the numerical stability of estimating k value highly
depends on the noise, the data structure, and the construction of G, and thus L.

The graph Laplacian spectrum constraint enforces a given image structure on the prior
information (in the data fidelity term ‖x−x?‖2). At the same time, its solver as described in
Sec.4 achieves robustness to outliers existing in ordinary applications. With this constraint,
the optimal x should lie in the null-space of L, that is, x should be constant within each con-
nected component of the graph G. In most cases, the objective binary segmentation results,
e.g. foreground and background regions, consist of several disconnected components. Since
the estimated x can be represented by a linear combination of the 0 eigenvectors (or the
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‘ideal’ basis), it is still able to differentiate the foreground components from the background
ones. In this way, we can explicitly avoid computing L’s nullity k and its basis, while still
can use the image structure to regularize the data fidelity term.

4 Alternative Objective Functions
Depending on the norm, several objective functions can be defined. After explaining alter-
natives, we present a robust formulation.

4.1 Projection onto Null-space
Estimating an optimal x for the constrained optimization problem Eq.(1) can be considered
as a search for a vector in the null-space of L which has the closest distance to the prior
x?. Let v1, . . . ,vk ∈ Rn be the k eigenvectors of L corresponding to 0 eigenvalue, and let
W = Span(v1, . . . ,vk) be the k-dimensional subspace of Rn spanned by these eigenvectors.
W is the null-space of L, null(L) = W . Let V = [v1, . . . ,vk], the optimal solution can be
estimated as

x = ProjW (x?) = Qx? , (2)

where Q is the projection matrix for the subspace W , and Q =V (V>V )−1V> =VV>.
The assumption here is that the nullity k of L can be determined accurately, which is not

always true. Another problem is that this approach approximates x using ProjW (x?), while
a solution that is a linear combination of x? and ProjW (x?) is more favorable due to noise,
limited connectivity of graph G, and computational load. As shown in Fig.2, null-space
projection may generates artifacts in the estimated x.

4.2 Convex Function with `2 Norm on Constraint
Instead of solving a constrained optimization problem Eq.(1), we can transform it into an
unconstrained minimization:

min
x
‖x−x?‖2 +β‖Lx‖2 , (3)

with a penalty β that enforces the structure in y.
Setting the derivative of the objective function Eq.(3) to 0, we have

x = (βL>L+ I)−1x? = Px? , (4)

where I is an identity matrix, and P can be viewed as a modified projection matrix1.
We draw the connection between P and the previous Q. Since L is a real symmetric ma-

trix, we can diagonalize it as L = V ΛV>, where V is an orthogonal matrix V = [v1, . . . ,vn]
(note that V contains n eigenvectors), and Λ is a diagonal matrix constructed from the eigen-
values of L as Λ = diag(λ1, . . . ,λn). Therefore, P could be rewritten as:

P =V (βΛ
2 + I)−1V> =

n

∑
i=1

1
1+βλ 2

i
viv>i = Q+

n

∑
i=k+1

1
1+βλ 2

i
viv>i (5)

1P does not satisfy the idempotent property of the projection matrix.
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input y weak prior x? x: null(L) x: `2 x: `1 x: Dα x: robust
Figure 2: Comparison of our proposed solutions. Estimated likelihood weights x indicating
an image pixel belonging to target object using the given prior x?. For the top two rows,
the prior is binary. For the bottom two rows the prior is a real number in [0,1]. In all
cases, we use the same Laplacian L computed from y to solve the introduced optimization
minx ‖x− x?‖2,s.t.Lx= 0. As visible, the robust function generates the most accurate results
since it can remove the negative effects of large outliers when the prior is outside the correct
object areas. The `1 and sparse decomposition (Dα) have relatively inferior performance
since it uses a limited number of eigenvectors.

Eq.(5) indicates that the solution of the penalized least squares problem Eq.(3) is the weighted
sum of the projection of x? on each subspace viv>i . Also, P adds influence of non-zero eigen-
vectors into the final estimate based on their corresponding eigenvalues and penalty term β .
If β → ∞, P = Q, thus Eq.(3) becomes the constrained least square problem Eq.(1).

4.3 Convex Function with `1 Norm on Constraint
Instead of enforcing the Laplacian spectrum constraint in the `2 norm, we can use the `1
norm to decrease the influence of the large outliers in the noisy prior. In this case, β is not
required to approach to ∞ in order to solve the original constrained minimization.

The objective can be rewritten as

min
x

µ

2
‖x−x?‖2 +‖Lx‖1 (6)

and solved using the Augmented Lagrangian methods, more specifically, alternating direc-
tion algorithms [16] in the following iterative framework:

at+1← argminx,aLA(xt ,a,ct),

xt+1← argminx,aLA(x,at+1,ct),

ct+1← ct −β (at+1−Lxt+1),

(7)

where a is an auxiliary vector, β is a penalty parameter, and LA(x,a,ct) is the augmented
Lagrangian function of Eq.(6) defined as

LA(x,a,c),
µ

2
‖x−x?‖2 +‖a‖1− c>(a−Lx)+

β

2
‖a−Lx‖2 , (8)
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where c is the Lagrangian parameter vector (slightly abusing the standard Lagrangian no-
tation) that has the same length as a and x. For each suboptimization, we can solve them
directly by

at+1 = sgn(Lxt +
1
β

ct)◦max
{
‖Lxt +

1
β

ct‖− 1
β
,0
}

(9)

and (
L>L+

µ

β
I
)

xt+1 = L>(at+1− 1
β

ct)+
µ

β
x?, (10)

where ◦ and sgn represent the point-wise product and the signum function, respectively.
Even though `1 norm is effective when the error is in the form of the impulsive noise, the

regularization error in our case is often continuous and has large values in arbitrary regions
of the image (as visible in Fig.2).

4.4 Sparse Decomposition
Another approach to apply the Laplacian spectrum constraint is to analyze its error map, i.e.,
xerr = Lx. An optimal solution of Eq.(1) would have the property that most items of xerr
would have 0 value and only a few have large errors, which means we can rewrite Eq.(1) in
terms of error sparsity as

min
α
‖x?−Dα‖2 +β‖α‖1, (11)

where α = Lx and the decomposition dictionary D is defined as D = L+ since x = L+α

and L+ is the pseudoinverse of L. In this case, we have to compute the explicit inverse of
the Laplacian matrix L>L, which is numerically inaccurate and computationally impractical
since L is a large sparse matrix, in order to use the conventional solvers such as Orthogonal
Matching Pursuit, LASSO, Elastic-Net, etc. Another problem is that L+ is no longer a sparse
matrix, which requires an extremely large memory space for processing and storage.

Instead of computing L+ as the decomposition dictionary D, we can construct it directly
from the Laplacian spectrum constraint. Recall that, in the ideal case, the optimal x can be
represented by a linear combination of L’s 0 eigenvectors, that is, x = ∑

k
i=1 αivi, where vi is

the eigenvector corresponding to the i-th smallest eigenvalue vi of L.
This property can be easily extended to x = Dα in matrix form, where D =

[
v1, · · · ,vk′

]
,

k′ � k. As long as k′ is much larger than k, we would have a sparse vector α and Eq.(11)
can be efficiently solved through the SPAMS toolbox.

In our experiments, we set k′ = 100 for a better tradeoff between α sparsity and com-
putation efficiency. The equation x = Dα indicates that the final estimate x is actually an
approximated projection of x? on the null-space of L since we limit the number of nonzero
values in α and vm (m > k) may also contribute to the final estimate x. Compared with the
approach, which directly projects x? onto L’s null-space, this approach is more robust and
can solve the problem Eq.(1) without explicitly computing the nullity k of L.

4.5 Robust Function
Since the residual δ = |x− x?| has many spatially continuous large outliers and the least
square data fidelity term weights each sample with a quadratic norm, the final estimation of
Eq.(3) can be distorted severely. Depending on its quality, the prior information x? could
contain incomplete and inaccurate indicators, for instance strong responses across segment
boundaries. This may confuse the segmentation algorithm and cause mislabeling.
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Algorithm 1: Robust Graph Laplacian Spectrum
Input: L ∈Rn×n, x? ∈Rn, β

Output: x ∈Rn

W = I, t = 1;
while t < itermax & ‖W (x−x?)‖2 < errmax do

xt = (βL>L+W )−1Wx?;
update W according to Eq.(13);
t = t +1;

return optimal xt

A better option is to weight large outliers less and use the structure information from
the Laplacian spectrum constraint to recover the x. Therefore, we borrow existing principles
from robust statistics [2] and adapt a robust functional to replace the least square cost as

min
x

ρ(x−x?)+β‖Lx‖2 , (12)

where ρ is a robust function that could be the Huber function [10], Cauchy, `1, or other
M-estimators. We choose to use the Huber function since it is a parabola in the vicinity of 0
and increases linearly when δ is large. Thus, the effects of large outliers can be eliminated
significantly. Here, we define the weight function w = [w1, . . . ,wn]

> at each pixel associated
with the Huber function as

wi =

{
1 if δi < ε

ε/δi if δi ≥ ε
. (13)

When written in matrix form, we use a diagonal weighting matrix W = diag(w1, . . . ,wn) to
represent the Huber weight function. Therefore, the data fidelity term can be simplified as
ρ(x−x?) = ‖W (x−x?)‖2. As a result, the problem Eq.(12) can be solved efficiently in an
iterative least square approach. At each iteration, the optimal x is updated as

x = (βL>L+W )−1Wx? . (14)

The details of our algorithm are shown in Alg.1. To initialize the algorithm, we could set
W = I for the first iteration, or when a confidence measure m? is available for x?, we could
directly use m? to initialize W . Note that, if we fix W to be I, then Eq.(14) is exactly the
same as Eq.(4).

5 Seeded Segmentation & Larger Windows
Various forms of the graph Laplacian matrix have been adopted for different applications
such as image segmentation by normalized cuts [15], image segmentation by random walks
[7], data classification [14], and matte estimation [11]. In Eq.(13), if we set wi = 0 for
δi ≥ ε , then the solution Eq.(14) becomes similar to the close-form matting [11] and the
random walks segmentation [7]. Defining the term Wx? in Eq.(14) as an updated observation
x?new←Wx? and setting wi = 0 means that the updated prior x?i,new corresponding to wi = 0
does not contribute to the least square estimation of x (note that x?new = [x?1, . . . ,x

?
n]new). Thus,
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y and x? GC RW 3×3 RW 5×5 AM 3×3 AM 5×5 Proposed

Figure 3: Infocus segmentation results of graph-cuts (GC), random walk (RW), alpha mat-
ting (AM), and Laplacian spectrum constraint with robust function. x? is our input in-focus
confidence. Note that doubling the window size for RW and AM does not necessarily gener-
ate better results. Top row shows the confidence maps (likelihood of being in-focus). Bottom
row shows the segmented focused regions. Our map is more consistent with the underlying
image structure and visibly superior to both same and double-window size versions of the
random walk and alpha matting methods.

the algorithm recovers xi based on the local structure information through L. The assignment
wi = 1 indicates these updated priors x?i,new will serve as seed points. This will propagate the
corresponding values into the unknown regions according to the Laplacian matrix.

The difference between the presented robust approach and the aforementioned seeded
segmentation methods is the use of L>L instead of L. Firstly, L>L is no longer a Laplacian
matrix at all. Under the orthogonal projection context, L>L shares the same eigenvectors
as L except that its eigenvalues are the squared ones of L. As discussed in the Sec.4.2
Eq.(5), our approach favors the projection bases associated with small eigenvalues given the
same penalty parameter β . In other words, the large eigenvectors in our algorithm have less
influence on the final estimation results. Therefore, our algorithm tends to generate more
accurate results since the small eigenvectors are of more importance to enforce the structure
onto the final result x.

Note that, doubling support window for L generate different constraints from the robust
functional norm L>L. Thus, using a larger window with the x>Lx cost will not produce same
effect of the x>L>Lx cost. This can also be seen in Fig. 3. Suppose we are given a simple
1D chain graph x1↔ x2↔ x3↔ x4. The x>Lx cost is (x1−x2)

2 +(x2−x3)
2 +(x3−x4)

2 . The
cost implied by doubling the support window for x>Lx is the sum the first order derivatives:
(x1− x2)

2 +(x1− x3)
2 +(x2− x3)

2 +(x2− x4)
2 +(x3− x4)

2 . However, for x>L>Lx, we have
(x1− x2)

2 +(−x1 +2x2− x3)
2 +(−x2 +2x3− x4)

2 +(x3− x4)
2 , which imposes both first (on the

boundary) and second order derivatives in addition to having a doubling support window
effect. The fundamental difference between the robust functional norm L>L and Laplacian
matrix with doubling support window lies at the different order of derivatives. In addition,
L>L assumes linear smoothness, that is, xi = (xi−1 + xi+1)/2.
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y and x? Graph-Cuts Random Walk Alpha Matting Proposed

Figure 4: Saliency segmentation results of graph-cuts, random walk, alpha matting, and
Laplacian spectrum constraint wit robust function. Top row shows the confidence maps
(likelihood of being more salient). Bottom row shows the segmented regions.

GC [3] RW [7] AM [11] Robust Lx
Sheep: 0.94 0.81 0.93 0.97
Girl: 0.81 0.63 0.79 0.95
Boat: 0.89 0.71 0.85 0.95
Farm: 0.63 0.61 0.89 0.96
Flower: 0.73 0.80 0.88 0.87
Depth: 0.84 0.56 0.95 0.99

Table 1: F-measure scores. GC: graph-cuts, RW: random walk, AM: alpha matting.

6 Experimental Analysis

The Laplacian spectrum constraint Lx = 0 is applicable to any segmentation problem that
comes with a (weak or rigid) prior. To illustrate possible usages, we apply our novel objective
functions to 1) refine noisy and incomplete foreground masks in change detection [1], 2)
segment object boundaries using noisy saliency results [6], 3) segment infocus regions[13],
and 4) segment objects detected by a classifier.

For the most objective evaluations, we compare our segmentation results with the best
results of graph-cuts [3], random walk [7], and alpha matting [11] after a fine-tuning of each
of these algorithms. As visible in Fig.3 and 4, graph-cuts fails along the sheep body since
the defocus prior x? has a strong response across the object boundaries. Note that, graph-
cuts generates a binary confidence. Random walk confidence map is not correct as it cut
through the grass failing to impose the image structure, in this case color similarity. Alpha
matting confidence map has noise and inaccurate granular details, e.g. in the mid-field it
contains parallel texture. Note that increasing from window size from 3×3 to 5×5 for other
methods does not necessarily generate better results, or results similar to our method.

When we compare our different solvers, performances from the less accurate to the best
are sparse, null-space, `1, `2, and robust function. Sparse decomposition (both LASSO
and OMP versions) has unstable performance. This is mainly due to the use of limited
number of eigenvectors in the dictionary x = Dα . As a result, it is almost impossible to
get clean backgrounds. Null-space projection formulation also uses a linear combination of
eigenvectors to represent the final solution, yet it uses more eigenvectors. We determined
the k by find significant jump in the eigenvalue values starting from the smallest one. This
value is not very critical as eigenvectors associated with eigenvalues larger than λk do not
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Foreground mask refinement. (Prior is binary.)

Saliency based segmentation. (Prior is of continuous numbers.)

Infocus region segmentation. (Prior is of continuous numbers.)

Human segmentation in 3D depth data. (Prior consists of binary labeled ellipsoid regions given by a classifier.)

y x? Graph-Cuts Random Walk Alpha Matting Robust function
Figure 5: Several applications of imposing point-wise constraints to a given prior. For each
example, we only show the confidence maps (labels). Segmentation results are obtained by
simply thresholding. The threshold is fixed to 0.1 for all our results, while other methods re-
quire fine-tuned thresholds for each individual image. Another problem about the estimated
alpha matting confidence maps is that they are noisy along object boundaries (and sometimes
inside the object region).

contribute to the final solution that much. The projection of x? on each eigenvector space
v>i vi(i > k) could have small effects. We observed that k = 50 is a reasonable choice. As
we discussed before, `2 favors the affine combination of the projection on V and the original
x?, which could generate a smaller data fidelity term error by slightly violating the Laplacian
spectrum constraint because it deviates from the projection space. The motivation of using
robust function in the data fidelity term is to remove the effects of outliers.

Table 1 presents the F-measure scores of segmentation results for graph-cuts, random
walk, alpha matting, and our robust function formulation on several images. F-measure is
defined as 2 Pr·Re

Pr+Re where Pr is the precision T P/(T P+FP) and Re is the recall T P/(T P+
FN) ratios. T P, FP, FN are true positives, false negatives, and false negatives. As shown,
our proposed method consistently gives high scores, and most cases the best results.

7 Conclusion

We have presented a novel formulation to impose image structure on a given prior map.
We showed that a robust formulation of this constraint generates superior results in binary
segmentation. We will extend our work to multi-label segmentation as a future direction.
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