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Segmentation is one of the extensively studied areas in computer vision.
Pioneering work [4] treats image segmentation as a graph partitioning
problem and proposes a normalized cut criterion measures both the total
dissimilarity between the different groups as well as the total similarity
within the groups. Seminal work [3] derives a matting Laplacian matrix
from multiple matte equations. In comparison with random walk [2] and
normalized cuts [4], they adapt a correlation measure instead of the ex-
ponent of color distance, a local scaling instead of a global scaling, and
formulate a least-squares solution with constraints from user input. Local
scaling leads to better clustering especially when the data includes multi-
ple scales and the clusters are placed within a cluttered background.

Non-negative point-wise priors such as saliency map, defocus field,
foreground mask, object location window, and user given seeds, come
in the form of confidence or probability values, and they are often in-
complete, irregular, and noisy, which eventually makes the labelling task
a challenge. In this paper, we aim to to extract image regions that are
aligned on the object boundaries and also in accordance with the given
point-wise priors. To this end, we define a graph Laplacian spectrum
based cost function and embed it into a minimization framework. For a
comprehensive understanding, we analyze five alternative formulations,
and demonstrate that the robust function version produces consistently
superior results.

To estimate the optimal x from the prior x*, we compute a graph
Laplacian matrix L from G, where G is a graph representation of the input
image y. In other words, the Laplacian matrix L will regularize our under-
constrained optimization formulation by laying on the image structure
inherent in y. This enables us to define the binary segmentation problem
as a least-squares constrained optimization

mxin||xfx*||2, s.t. Lx=0. (1)
We call the above constraint Lx = O the Laplacian spectrum constraint.
This is a generalization of the conventional approaches and does not re-
quire a specific numerical solver as the matting Laplacian. This constraint
enforces a given image structure on the prior information (in the data fi-
delity term ||x — x*||?). With this constraint, the optimal x should lie in the
null-space of L, which means x should be constant within each connected
component of the graph G.

Depnding on the norm used for the Laplacian spectrum constraint,
we define 5 alternative objective functions solving the optimal x. Here we
only discuss about Convex Function and Robust Function with ¢, Norm
on Constraint, for the rest 3 formations please refer to our paper.

Instead of solving a constrained optimization problem Eq.(1), we can
transform it into an unconstrained minimization:

min||x —x*|* + B x||? , 6)
with a penalty f3 that enforces the structure in y. Setting the derivative of
the objective function Eq.(2) to 0, we obtain a closed form solution:

x=(BL'L+1)"'x* = Px*, 3)

where / is an identity matrix, and P can be viewed as a modified projection
matrix!.

Since the residual 6 = |x — x*| has many spatially continuous large
outliers and the least square data fidelity term weights each sample with
a quadratic norm, the final estimation of Eq.(2) can be distorted severely.
Depending on its quality, the prior information x* could contain incom-
plete and inaccurate indicators, for instance strong responses across seg-
ment boundaries. This may confuse the segmentation algorithm and cause
mislabeling. A better option is to weight large outliers less and use the
structure information from the Laplacian spectrum constraint to recover

1P does not satisfy the idempotent property of the projection matrix.
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Figure 1: Applications of imposing point-wise constraints to a given prior.
For each example, we show the input image structure y, the confidence
maps (labels) x*, and our results. Segmentation results are obtained by
simply thresholding and the threshold is fixed to 0.1 for all examples.

the x. Therefore, we borrow existing principles from robust statistics [1]
and adapt a robust functional to replace the least square cost as

minp (x —x*) + B[ Lx||* “

where p is the Huber function, which is a parabola in the vicinity of 0 and
increases linearly when 6 is large. Thus, the effects of large outliers can
be eliminated significantly.

When written in matrix form, we use a diagonal weighting matrix
W = diag(w1,...,wy) to represent the Huber weight function. Therefore,
the data fidelity term can be simplified as p(x — x*) = |W (x —x*)||%. As
a result, the problem Eq.(4) can be solved efficiently in an iterative least
square approach. At each iteration, the optimal x is updated as

x=(BL L+W) 'wx*. (5)

To initialize the algorithm, we could set W = I for the first iteration, or
when a confidence measure m* is available for x*, we could directly use
m* to initialize W. For the details of this algorithm and the comparison
with other algorithms, please refer to our paper.
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