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1 Demographic and clinical information of the studied
subjects

In our study, 338 subjects were selected for classifications: 94 of them are with AD, 121 with
MCI and 123 are normal controls (NC). In this technical supplement, we first provide the
details about the demographics and clinical evaluations, i.e., Mini Mental State Examination
(MMSE) and Clinical Dementia Rating (CDR) scores, of the studied subjects at their baseline
visits, as shown in Table 1.

Diagnosis | Number  Gender (M/F) Age[girlne—amnis}d“) MMS[E;[T?::X:}ESdV.) CDF? n(lrirrlf;a;la:tx]sdv.)
EN I A
MCI 121 69/52 7?;;}93]-8 2?;37}3 51-7 [0(?:55}0?)5]
I

Table 1: Demographic and clinical information of the studied subjects at the baseline.
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2 Selected patches for “GM only”’ and “DM only”’ features

In this section, we provide additional visualizations of the selected patches for “GM only”
and “DM only” features, as shown in Fig 1 and Fig 2, respectively.

Similar to the selected patches for “Joint GM & DM” feature, the most discriminative
regions detected by “GM only” and “DM only” features both include hippocampus, parahip-
pocampal gyrus, entorhinal cortex, and amygdala, which are consistent with the findings
reported in [1, 5, 10]. Differently from “Joint GM & DM?”, each single type of feature cap-
tures much more patches; also, the “DM only” feature captures more patches in the outer
cortical area than “GM only” feature.

(AD versus NC)

(MCT versus NC)

Figure 1: The selected patches in “ GM only” feature for AD vs. NC and MCI vs. NC
classifications. The columns from left to right are sagittal, coronal, axial and 3D views.

(AD versus NC)

--

(MCI versus NC)

Figure 2: The selected patches in “DM only” feature for AD vs. NC and MCI vs. NC
classifications. The columns from left to right are sagittal, coronal, axial and 3D views.
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3 Comparisons of ML-TPS with other ML methods on
UCI data

In this section, we present two additional sets of experiments to evaluate the classification
performance of the proposed nonlinear ML-TPS on seven widely used datasets from UCI
machine learning repository. The leftmost column of Table 2 summarizes the details of the
datasets. All datasets have been preprocessed through normalization.

3.1 NN based comparisons on UCI datasets

The vast majority of the existing distance metric learning solutions [2, 3, 4, 6, 7, 8] were
designed and can be applied to improve metric based classification methods, especially the
Nearest Neighbor (NN) classifiers. Thus, in the first set of experiments, we choose kNN
method (k = 1) as the baseline classifier, and compare the improvements made by ML-TPS
against five state-of-the-art metric learning methods: Large Margin Nearest Neighbor clas-
sification (LMNN) method [7], Information-Theoretic Metric Learning (ITML) method [2],
Neighborhood Components Analysis (NCA) method [4], multi metric LMNN (mm-LMNN)
[8] and Parametric Local Metric Learning (PLML) method [6]. The hyper-parameters of
NCA, ITML, LMNN and mm-LMNN are set by following [2, 4, 7, 8] respectively. PLML
has a number of hyper-parameters, so we follow the suggestion of [6]: use a 3-fold CV to
select ap from {0.01 ~ 1000}, and set the other hyper-parameters by its default. In our
ML-TPS model, there are two hyper-parameters: the number of anchor points p and the
weighting factor A. For p, we empirically set it to 30% of the training samples; for A, we
select it through CV from {575 ~ 5%},

Datasets kNN LMNN ITML NCA PLML mm-LMNN ML-TPS
[#Inst./#Feat./#Class]
Iris 9570+231 | 95.06+2.62 | 95.22+2.56 | 94.68+2.35 | 84.22+£4.54 | 93.60+2.68 | 96.49+232
[150/4/3] 4.0) (3.5 3.5 (3.0) (0.0) (1.0) T 6.0)
Wine 9521204 | 97.25+1.80 | 96.90£2.31 | 96.65+2.27 [ 96.61£2.10 | 95.16+2.53 | 97.18£2.05
[178/13/3] (0.5) (5.0) 4.0) (3.5 (3.0) (0.5) e @s)
Breast 9535+1.34 | 95.66+1.39 | 9576130 | 9557+ 1.13 [ 96.180.98 | 96.13+1.13 | 95.97+1.04
[683/10/2] (1.0) 2.0) @.5) (1.5) (5.0) (5.0) S G)
Diabetes 70.58+£2.26 | 70.54+2.52 | 68.81+£2.65 | 68.53+2.71 | 69.04£2.30 | 69.68+2.53 | 71.54+221
[768/8/2] 4.5) 4.5) (1.0) (1.0) (1.5) @25) T 6.0)
Liver 61.20£3.96 | 60.79+3.54 | 60.07+£4.92 | 62.63+4.15 [ 64.74-£3.99 | 59.48+3.93 | 64.00£4.36
[345/6/2] (2.0) (2.0) (1.5) “.0) (5.5) (0.5) T 55)
Sonar 8473345 | 84.12+4.13 | 82.14£5.94 | 85.46+3.51 | 87.42+£4.70 | 84.68+3.94 | 8535+3.82
[208/60/2] (3.0) (2.0) 0.0) 3.5 (6.0) (3.0) R )]
Tonosphere 85.83£2.62 | 88.40+2.54 | 87.45+3.07 | 88.33+2.77 | 91.03+£223 | 91.68+1.13 | 88.39+237
[846/18/4] (0.0) (3.0) (1.0) (3.0) (5.5) (5.5) 0
\ Total Score [ 150 [ 220 [ 135 [ 195 [ 265 [ 180 ] 325 |

Table 2: Mean and standard deviation of classification accuracy results on seven UCI
datasets. The superscripts +— = in ML-TPS column indicate a significant win, loss or no
difference respectively based on the pairwise Student’s t-test with the other six methods. The
number in the parenthesis denotes the score of the respective method for the given dataset.

To better compare the classification performance, we run the experiment 100 times with
different random 3-fold splits of each dataset, two for training and one for testing. Further-
more, we conduct a pairwise Student’s f-test with a p-value 0.05 among the seven methods
for each dataset. Then, a simple ranking scheme [6] is used to evaluate the relative per-
formance of those methods: a method A will be assigned 1 point if it has a statistically
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significantly better accuracy than another method B, 0.5 points if it has no significant differ-
ence, and 0 point if it is significantly worse than B. The experimental results by averaging
over the 100 runs along with the ranking scores are reported in Table 2.

From Table 2, we can see that ML-TPS outperforms all the other six methods in a statis-
tical significant manner, with a total score of 32.5 points. Out of the total 42 pair-wise com-
parisons, ML-TPS has 26 statistical wins in total. Furthermore, ML-TPS has significantly
improved the performance of the baseline kNN classifier on six out of all seven datasets, and
performed equally well on the seventh (“Sonar”).

3.2 SVM based comparisons on UCI datasets

Recently, Xu, Weinberger and Chapelle [9] pointed out that metric learning methods can be
used as the preprocessing step to transform the feature space for, or combined with SVMs
to improve SVMs’ performance. In the second set of experiments, we choose the Gaussian
kernel SVM (kSVM) as the baseline method, compare the improvements made by ML-TPS
against LMNN [7], ITML [2], and NCA[4], as the preprocessing feature transformation step
for kSSVM. Note that the multi-metric learning methods are not easily generalized to SVM,
so we didn’t consider the two multi-metric learning methods PLML and mm-LMNN here.

For kSVM, we tune the two hyper-parameters C and ¢ via 3-fold inner cross validation
(CV) respectively from {2715 ~ 215}, The hyper-parameters of NCA, ITML, LMNN are
set in the same way as in the NN based experiments. We also adopt the same experimental
setting and statistical ranking schema as in the NN based classification, and report the results
in Table 3.

Datasets kSVM LMNN ITML NCA ML-TPS
[#Inst./#Feat./#Class]

Tris 96.02+2.29 | 96.69+2.32 | 95.75+£2.82 | 96.00+2.31 | 96.80+2.48
[150/4/3] (1.0 (3.5) (1.0) (1.0 t=++ (3.5)
Wine 97.54+1.58 | 97.63+1.86 | 97.68£1.43 | 97.04+2.11 | 97.85+1.89
[178/13/3] (2.0 (2.5) 2.5) (0.5) ===1 (2.5)
Breast 96.67+1.00 | 97.00£1.01 | 96.48+1.10 | 96.14+1.02 | 97.254+0.99
[683/10/2] (1.5) (3.5) (1.5) (0.0) =+t @3.5)
Diabetes 77.17+2.06 | 76.92+2.08 | 76.79+£2.30 | 76.00£2.21 | 77.14+2.06
[768/8/2] 2.5) 2.5) (2.5) (0.0 ===+ (2.5)
Liver 72.48+3.30 | 71.95+3.37 | 70.84£3.26 | 68.96+4.30 | 71.56+3.56
[345/6/2] (3.0) (3.0) (1.5) (0.0 ===*(2.5)
Sonar 86.07£3.68 | 82.68+4.74 | 80.56£7.33 | 83.46+4.23 | 88.28+3.91
[208/60/2] (3.0 (1.5) 0.0 (1.5) T+ 4.0)
Tonosphere 94.44+1.83 | 92.23+2.81 | 97.37+3.10 | 93.79+2.01 | 95.25+1.72
[846/18 /4] (2.0) (0.0 (4.0 (1.0) =+ (3.0)

\ Total Score [ 15.0 [ 16.5 [ 13.0 [ 4.0 [ 21.5 |

Table 3: Mean and standard deviation of SVMs based classification accuracy results on seven
UCT datasets. The settings and notations of the comparison scores are identical to those in
Table 1.

From Table 3, we can see that ML-TPS outperforms all the other four methods in a statis-
tical significant manner, with a total score of 21.5 points. Out of the total 28 pair-wise com-
parisons, ML-TPS has 16 statistical wins in total. Furthermore, it is obvious that adding the
proposed ML-TPS as the preprocessing step has significantly improved the performance of
kSVM, with better classification accuracies on four out of all seven datasets (“Iris”, “Breast”,
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“Sonar”, and “Tonosphere”), and doing comparably well on the other three datasets. Con-
sidering the already state-of-the-art performance of k<SVM (ranking the 3rd among all the
five methods), this improvement made by ML-TPS is very significant, while the other three
metric learning methods (LMNN, ITML, NCA) even degrade the performance of <SVM on
some datasets (“Liver”,"“Sonar”, or “Ilonosphere”).
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