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Abstract
Shape From Focus (SFF) methods frequently use a single focus measure to obtain

a depth map. Common focus measures are fixed and spatially invariant. In this paper
we present a framework to create an adaptive focus measure based on ensemble of ba-
sis focus operators. Using the proposed framework we derive a new spatially variant
focus measure obtained from linear combination of image derivatives. This approach
effectively generalizes some of the existing measures. A new measure emerged from the
proposed framework includes high order derivatives and presents a highly reliable focus
measure. We rely on the focus curve standard deviation (CSTD) to determine the linear
coefficients in our model. The emerged focus measure copes effectively with texture vari-
ation, strong intensity edges and depth discontinuities. Using CSTD we further suggest
a new approach for aggregation in the focus volume succeeded by reconstruction based
on the focus curve centroid. This different approach of aggregation and reconstruction
yields improved depth maps, respecting shape smoothness and depth discontinuities for
diversity of textured images. We assess the performance of our new approach by exten-
sive experiments with highly realistic synthetic images and real images including two
unique cases captured in the wild. In terms of focus measure, we significantly outper-
form the state-of-the-art, while presenting superior results comparing to two previously
published alternatives.

1 Introduction
Three-dimensional (3D) shape reconstruction is a fundamental problem in machine vision
applications. Among numerous methods Shape From Focus (SFF) presents a dense and
passive optical method for 3D shape recovery using the degree of focus as a cue to estimate
3D shape. In SFF setting, a stack of images is captured while shifting the focus plane along
the optical axis, by moving the camera, the object or changing the optical setting. The shape
is then recovered by finding the plane at which each point in the image appears in focus
(sharply). The SFF technique has been successfully utilized in many applications, such as
micro-biology, PCB inspection, robot control, and even colonoscopy.

The basic step in SFF is to compute a sharpness quality for each pixel in the image stack,
commonly referred to as focus measure. Numerous focus measures have been suggested
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in the past including the popular Gray Level Variance (GLV), Modified Laplacian (ML)
[16] and Tenenbaum-Gradient (TEN) [8] to name a few. More recent focus measures rely
on 3D image space [2] high statistical moments [23] and discrete wavelet analysis [11].
However, image derivatives are still used as a strong cue for sharpness relying on intensity
edges that typically exist in the scene texture map [8, 16]. Commonly, Shape From Focus
(SFF) methods use a single focus measure [2, 8, 16, 23]. Many factors, including window
size, noise level, illumination and shape characteristics affect the performance of a focus
measure. A single focus measure is often unable to account for the diverse types of scenarios
particularly for images captured in unconstrained conditions such as open nature [17, 20].

Focus measure is a local property, commonly evaluated in a small 2D window around
the point of interest. Common focus measures are spatially invariant therefore incapable
to adapt to variations in the texture and 3D shape of the scene. Several studies attempt to
address this problem by changing the window size [1, 15] while most recent works show
that the use of more than one focus measure provides a better 3D shape. These methods
first extract multiple depth maps from separate focus measures. However, each one of the
resulting depth maps typically includes certain errors. In order to obtain a reliable shape,
the extracted depth maps are then merged based on their likelihood to be part of a coherent
3-D surface[7, 9, 10]. Yet, it is often difficult to correct the obtained errors after the depth
extraction and one would better deal with the problem beforehand, in properly modeling the
focus measure. Such approach will further be favorable computationally, since the full re-
construction pipeline is then performed once instead of separately for each focus measure. In
this paper we first suggest a new adaptive focus measure that can directly result in improved
depth maps. The new focus measure is embedded in the linear space spanned by image
derivatives with different orders and directions. We determine the important coefficients in
the linear space by a focus curve characteristic, specifically the curve standard deviation
(CSTD). The proposed method exhibits a focus quality measure that is spatially variant and
adaptive to image content and object shape. While focus measures often use image deriva-
tives as high as second order, our framework allows employing considerably higher order
derivatives found to be very effective. We refer to this new measure as Adaptive High Order
(AHO) focus measure.

Shape from focus pipeline includes further steps. Computation of the focus measure per-
pixel in the image stack, yields the focus volume (also known as data space). Then typically
noise and systematic errors are filtered out from the focus volume by aggregation, prior to
depth extraction. Linear filtering (e.g. convolution with a uniform kernel) is well known to
blur depth discontinuities. Other methods therefore utilize non-linear filtering in the focus
volume by adaptively varying the kernel size and weights e.g. anisotropic filtering [2, 9].
Finding the cue for window kernel adjustment is then the key problem. In this paper we
further make use of the CSTD value to present a new adaptive filtering, that respects texture
variations, intensity edges and depth discontinuities.

Finally, the reconstruction (depth extraction) can be performed by Winner Takes All,
namely setting the depth values at each point according to the maximum focus level. Often
a fitting function is used, modeling the focus peak by Gaussian [16], Lorentzian [14], or
a polynomial [19] to reject outliers during reconstruction. However, these methods disre-
gard the smoothness constraint between neighboring points in the spatial domain whereas
the assumption of ideal optical model can further cause systematic errors. Shape can also
be extracted by fitting a surface in the focus volume known as Focus Image Surface (FIS)
[5, 13, 19]. In the FIS approach an optimization problem is solved where the resulting sur-
face is forced to pass through the focus measure peaks while preserving shape smoothness.
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Figure 1: The importance of derivative direction and order. A toy example of a flat equifocal
surface with subtle texture and strong intensity edge at the center. The texture map with
a sample defocused image are shown left. Two focus curves are computed at the red dot,
from the x (horizontal) and y (vertical) first derivatives. The derivatives up to order four for
x are shown right for the green dot. Note that only the first order y and the fourth order x
derivatives yield the correct localization of the maximum focus measure.

Yet, surface approximation methods hardly cope with sharp depth discontinuities due to the
smoothness constraint. In this study, we use the focus curve centroid for depth extraction
(after aggregation), an approach widely used for localization in microscopic imaging [21].
The focus curve centroid introduces a non-parametric cue for depth estimation, insensitive
to outliers in the focus curve.

Experiments with synthetic and real images show the effectiveness of our new focus
measure and SFF model in dealing with sharp depth discontinuities and fine structures. The
suggested focus measure outperforms the state-of-the-art focus quality measures qualita-
tively and quantitatively. We further compare our SFF model to two previously published
methods performing the whole pipeline of focus measure+aggregation+reconstruction and
show superior results.

2 Focus Measure
Consider an image stack Iz(x,y), consisting of Z images, each of size X ×Y captured by an
imaging system with a shallow depth of field. In the spatial domain, the focus volume is
computed locally as φ : (X ×Y )× Z 7→ R assigning a focus measure to each point in the
image stack. The focus curve is the set of all focus measures associated to a certain point in
the spatial domain (x0 ∈ X ,y0 ∈ Y ) and presents a curve in the focus volume determined by
φ(x0,y0,z). Let us now define a linear space with the basis functions as the image derivatives,
in different orders and directions:

φi j ≈ |
∂ iI
∂xi

j
| (1)

where i ∈ [1,2, . . . ,n] and j ∈ [1,2, . . . ,m] index the the derivative order and the discrete di-
rections respectively (not to be confused with pixel location). For the standard image grid
we use m = 4 directional derivatives enumerating 1,2 as standard orthogonal x,y and 3,4 as
diagonal directions. The ≈ sign indicates the numerical approximation of the term calcu-
lated by central difference scheme [6]. Note that in this framework the celebrated Modified
Laplacian (ML) focus measure is obtained as a particular case of φ21 +φ22. This choice of
basis focus measures is not arbitrary as the order and the directions of the derivatives play
an important role in local adjustment of the focus measure. A toy example shown in Figure
1 demonstrates the importance of derivative order and directional operation. This example
contains an equifocal surface with a subtle random noise texture and a strong horizontal gray
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Figure 2: The effect of derivative direction at depth discontinuity. Two focus curves for a
point near a depth discontinuity are depicted. Only the derivative along the depth edge (y)
yields the desired focus curve.

level gradient at the center. The first order x-derivative exhibits a triple mode curve (see
Fig. 1) caused by the gray level edge, smeared gradually due to defocus. As the gradient is
diffused horizontally (see the defocused image in Figure 1), two peaks appear in the focus
curve, corresponding to the near and far defocused images. The weak peak at the center is
due to the subtle texture as it reaches the best focus. Furthermore, Figure 1 shows that among
several image derivatives only the vertical first order and the horizontal fourth order are reli-
able focus curves. This simple demo reveals the weakness of popular focus measures such as
the TEN [8] (sum of absolute first order derivatives). Averaging the erroneous x component
in TEN with the correct y term is likely to shift the focus curve peak from its correct local-
ization. In addition to the directional image derivatives our model further embeds high order
derivatives (up to 10th) [6]. The benefit of such derivatives is in the narrow well-behaved
focus curves that they exhibit. One may argue the accuracy of high order derivatives in a
sampled data associated with amplification of high frequency noise. Yet, assuming sufficient
sampling rate (spatial resolution) the defocus acts as a low pass filter, diminishing the high
frequency noise. It should be mentioned that our interest in the focus curve is limited to a
local neighborhood around the focus curve peak. A correct curve pattern near the peak is
therefore sufficient for a reliable focus curve rather than absolute accuracy. Moreover, the
linear combination of image derivatives allows a degree of freedom. Erroneous focus curves
that may emerge from high order derivatives are suppressed in our framework by attenuation
of their associated weights (cf. section 2.1).

Next, we demonstrate in Figure 2 a typical case of depth discontinuity. A toy example is
again shown consisting of a step surface with two distinct depth levels and uniform texture.
Figure 2 shows two focus curves for a point in the vicinity of the depth step edge. Note how
the focus measure based on derivative across the step (x) fails to detect the correct depth level.
On the other hand, the derivative along the edge yields the desired focus curve unimodal with
correct localization of the maximum.

The above simplified tests show that in the vicinity of intensity edges and depth dis-
continuities there are mainly two types of derivative curves. The first type is a symmetric,
unimodal and narrow curve, characterized by a low curve standard deviation (CSTD) while
the second type exhibits a multimodal or wide peak curve with high CSTD. The common
derivative based focus measures therefore sum reliable components characterized by low
CSTD with multimodal or insignificant peak curves associated with high CSTD. This pa-
per suggests a focus measure based on a combination of image derivatives represented by a
vector in a linear space described by:

ψ(x,y,z) =
n

∑
i=1

m

∑
j=1

αi j(x,y) φ̂i j(x,y,z) (2)
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where, αi j denote the coefficients and can be viewed as confidence measures. In order to
set all focus curves into the same scale, we normalize each curve by its maximum level and
denote it by φ̂ . We call the emerged operator ψ as the Adaptive High Order (AHO) focus
measure. This framework further allows different choices of the basis functions, namely a
different ensemble of focus measures. The combination of different focus operators offers
the benefit that a failure of a particular operator locally, can be compensated by other reliable
terms.

2.1 Confidence Measure
In this section we present our model for setting the coefficients (weights) in (2) for the basis
focus operators. To this end, we employ the CSTD 1 computed by:

σi j(x,y) =
1√
Ni j

[∫
Z̄
(z−µi j)

2
φ̂i j(x,y,z)dz

] 1
2

(3)

where µi j(x,y) is the centroid of the focus curve φ̂i j and N denotes the normalization factor,
Ni j =

∫
φ̂i j(x,y,z)dz. The integration domain Z̄ corresponds to the range where focus values

are over half of the maximum level. This restriction of the domain prevents the bias due
to the focus curve long tail. Favoring narrow peaked curves (i.e. lower CSTD) leads to a
monotonically decreasing weighting scheme with respect to CSTD. We use a Lorentzian
function for this relation:

αi j(x,y) =

[
1+
(

σi j(x,y)
ρ

)2
]−1

, (4)

where ρ determines the rate of decay. Substituting the resulting weights from (4) in (2)
yields the new AHO focus measure. Note that the this focus measure is spatially variant.

3 Aggregation
Once the focus volume in (2) is computed, we perform an aggregation in order to remove the
residual inconsistencies in the focus volume, prior to depth extraction. A common concept
behind the aggregation is averaging over a patch around the point of interest with 2D or
3D kernels. While 2D kernels disregard the relation between neighboring depth values, 3D
kernels in the focus volume tend to smear the depth edges. However the z-axis provides
additional information regarding the similarity of depth levels between two nearby points.
While common similarity measures allow neighboring points to have close depth values
(focus peak localization), we define a new similarity measure based on the CSTD. In this
aggregation scheme, reliable curves, characterized by small discrepancy from a reference
CSTD, are effectively averaged. The weighting in the aggregation window is then subjected
to following scheme:

ω(x,y) =

[
1+
(

σ(x,y)− σ̄

ρ

)2
]−1

, (5)

1In many physical applications this term is referred to Full Width Half Maximum
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where we use the same parameter ρ as in (4). The new reference σ̄ is set to the median CSTD
emerged from all the focus curves in the stack and corresponds to the texture of the scene
and the imaging optics. Adding this parameter improves the noise tolerance since noise
patterns such as salt and pepper often exhibit low CSTD, mimicking the desired focus curve
and deteriorating the aggregation outcome. Note that although σ̄ is constant the weighting
is space-variant due to the variation of CSTD (σ ) per-pixel. We aggregate the focus measure
separately for each image in the stack, denoting the the aggregated measure after t iteration
by ψ̃t (ψ̃0 ≡ ψ). The aggregated measure is then given by

ψ̃t(x,y,z) = ∑
(x′,y′)∈W (x,y)

ω̂(x′,y′) ψ̃t−1(x′,y′,z), ∀z ∈ Z (6)

where W (x,y) denotes the window domain and ω̂ stands for the normalized weights given in
(5). This approach resembles the successful non-local means in denoising [4], and is insensi-
tive to the window size. In the proposed scheme, aggregation windows located near a depth
discontinuity will initially average two shifted focus curves (ideally Gaussians), creating
a multimodal curve with high CSTD. The iterative aggregation then suppresses averaging
between distinct depth levels as the corresponding points associated with high CSTD are
assigned lower weights in later iterations.

4 Reconstruction
A naive approach for extracting the depth map d(x,y) from the focus volume is ‘Winner
Takes All’ (WTA):

d(x,y) = argmax
z

ψ̃(x,y,z), (7)

where the depth values are assigned according to maximum focus level [18] [11]. Previ-
ous methods have suggested fitting at the focus peak using various approximations such as
Gaussian [16]. However a preset fitting model may become invalid after the aggregation,
as the average of two non-identical Gaussians is not a Gaussian any more. The focus curve
sharpness plays an important role in reliability of depth estimation, since relatively flat peaks
are highly sensitive for localization of the maximum. In fact the focus curve width depends
not only on the texture strength but also the imaging optics. A non-parametric cue for depth
estimation is the focus curve centroid also robust to outliers that commonly appear in com-
putation of the focus curves:

d(x,y) =
1
M

∫
Z̃

z ψ̃(x,y,z)dz (8)

where M =
∫

Z̃ ψ̃(x,y,z)dz is a normalization factor and Z̃ denotes the region of the normal-
ized focus curve (in the range [0,1]) above a threshold ψ̃ > τψ . Finally, a flowchart outlining
the algorithm steps is provided in Fig. 3.

5 Experimental Evaluation
Our test bed is composed of three sets of highly realistic synthetic images created by Au-
todesk Maya ray tracer and three sets of real images. In the synthetic stacks (consisting 40-90
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Figure 3: The Processing Flow Chart.

images), the texture maps were first created by Autodesk Maya, then the images were defo-
cused according to the true shape. For defocus we used a Gaussian kernel in the ‘Cloth’ and
‘Synth-Cone’ and a hexagonal aperture blur, simulated by Adobe Photoshop in the checker-
board ‘Cube’. The synthetic sets were designed to capture particular challenges in SFF such
as texture variation, strong image edges, depth discontinuities as well as non-standard de-
focus kernel. Our first real data set is composed of a stack of 95 images captured by a
microscope [5]. Additionally, there are two newly introduced real data sets consisting of
34 images of an Antlion 2 and only 6 images of a Spider 2 captured in the wild, by a SLR
camera. For more details on the imaging system of these two sets the reader is referred to
[3].

In our experiments we use the derivative orders up to n = 10, considering m = 4 discrete
directions. We fix the the threshold parameter in (8) to be τψ = 0.9 for the synthetic images
and τψ = 0.7 for the real sets. The decay factor in equations (4) and (5) was set to ρ = 6. In
the aggregation stage we used 15×15 window size along 15 iterations. We separately assess
the performance of the new focus measure and the complete SFF model in order to analyze
the individual contributions.

5.1 Focus measure
In order to evaluate the performance of our focus measure we present a comparative analysis
with the state-of-the-art focus measures as reported in [17]. The resulting depth maps are
shown in Fig. 4. To allow a fair comparison, all depth maps were extracted in the same
manner by Winner Takes All, without further processing (e.g. aggregation or fitting). The
results show the significant improvement obtained by our AHO focus measure, well coping
with different textures as well as intensity and depth edges. The ‘Cloth’ and the ‘Synth-Cone’
examples demonstrate our capability to handle high texture variations, reliably recovering the
smooth depth map. The ‘Middlebury-Cone’ case presents the effectiveness of the new focus
measure to handle depth discontinuities. The AHO results outperform the compared methods
also in the semi-realistic ‘Cube’ test, where the checkerboard pattern exhibits a combination
of high intensity edges and textureless patterns in addition to strong depth discontinuities
at the object outline. Finally, our depth map for the ‘Real-Cone’ test with non-uniform
illumination [15] is again the best outcome.

We further conduct a quantitative comparison in terms of depth map RMSE (Root Mean
Square Error) and report the results in Table 1. Notably the AHO achieves results that are
more than twice as accurate as the best focus measures in the literature. This high accuracy
is partly due to the unprecedented usage of very high order derivatives in our focus measure.

2 Images are courtesy of Ilia Lutsker
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GLV SML [16] WAV [22] Ours

Figure 4: Comparison of focus measures. Color coded depth maps (from near red to far
blue) extracted by applying WTA over different focus measures. From top to bottom:
‘Cloth’,‘Synth-Cone’,‘Middlebury-Cones’,‘Cube’ and ‘Real-Cone’. Note the significant im-
provement obtained using the proposed focus measure.

Object TEN [8] GLV ML [16] WAV [22] AHO
Cloth 2.22 2.6 1.42 1.78 0.76
Synthetic-Cone 7.75 7.05 3.73 1.05 0.33
Middlebury-Cones 3.58 3.42 1.56 2.49 1.17
Cube 7.02 5.18 3.63 1.67 0.76
Average 5.14 4.56 2.59 1.75 0.76

Table 1: Comparison of focus measure operators in terms of depth map RMSE, with respect
to our AHO approach. Best results are in bold.

Figure 5 shows the effect of the highest derivative order considered in the model (n in (1)) on
the depth map accuracy. As observed the accuracy is improved as higher order derivatives are
added to the model. In the ‘Cube’ test case for instance, dominated by checkerboard texture,
the improvement continues up to the 10th order. In cases where high order derivatives are
not beneficial, they are likely to be attenuated by the weighting scheme in our framework.

5.2 Shape from Focus

In this section we present the performance of our complete pipeline for shape reconstruc-
tion using the proposed focus measure, aggregation and reconstruction. Due to lack of a
benchmark in SFF and unavailable code for existing methods, we compare our results to
two recently published methods that we implemented and optimized: the SFF approach in
[2] based on Bilateral filtering of the focus volume and the Anisotropic focus aggregation
of [12]. As the ‘Antlion’ and ‘Spider’ image stacks are captured outdoor without precise
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Figure 5: The effect of the highest derivative derivative order considered on the accuracy.
The plots correspond to our four synthetic data sets with available ground-truth.

lab equipment we first register the image stack prior to SFF computation. Due to limited
range of z samples we remove the background from the resulting depth maps by creating a
mask from image segmentation. Figure 6 shows the recovered depth maps compared to the
outcome of the two previous methods of [2] and [12]. Apparently our results are the closest
to the ground truth. While in the ‘Cloth’ and ‘Antlion’ test cases, the AHO based SFF and
the Anisotropic approach show comparable results, in the other four examples our approach
outperforms both methods. Close observation shows our capability to recover a smooth
surface such as the ‘Cloth’, preserving sharp depth discontinuities at ‘Cloth’ and ‘Cube’
boundaries and coping with the challenging textures such as the stripes on the ‘Synth-Cone’
or the checkerboard on the ‘Cube’. Note the total failure of the Anisotropic approach in the
‘Cube’ case caused by propagation of errors from the strong edges toward the textureless
regions, in the diffusion process. In the Antlion case (fifth column from left) the Bilateral
method yields an inferior result while the Anisotropic approach totally fails in the Spider
case due the small number of image samples in the stack (only 6 images). A close view
on the ‘Spider’ depth map (forth column-first row) reveals the shortcomings of the Bilateral
result presenting a piecewise-constant depth map and a false edge on the flower petal, where
our approach provides a reliable piecewise-smooth surface.

We also perform a quantitative comparison for the synthetic tests based on depth map
RMSE, reporting the results in Table 2. The proposed method presents superior results for

Object Bilateral [2] Anisotropic [12] AHO+Aggreg+Recons
Cloth 0.67 0.35 0.41
Synth-Cone 0.5 1.79 0.27
Middlebury-Cones 0.84 0.65 0.64
Cube 0.6 3.63 0.28
Average 0.66 1.6 0.4

Table 2: RMSE comparison using the Bilateral filtering method of [2] and the Anisotropic
approach of [12]. Best results are in bold.

all the test cases comparing the Bilateral [2] method. The Anisotropic approach [12] however
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Figure 6: Comparison with previous methods. Color coded depth maps ranging from close
(red) to far (blue). Note that except the Antlion case performing similarly to Anisotrpic
approach the proposed method shows the most reliable results. Zoom in for better visibility.

shows a lower RMSE only in the ‘Cloth’ test, characterized by a smooth shape. Our method
further exhibits the lowest average RMSE.

6 Summary
We introduce a new framework for Shape from Focus based on the three known stages of
initial focus measure estimation, focus volume aggregation and depth extraction. Our focus
measure is composed of an ensemble of image derivatives in various orders and directions.
The suggested multi-directional and high order derivatives along with a novel weighting
function yields an adaptive focus quality measure that copes with the challenges in SFF such
as high intensity edges, texture variation and depth discontinuities. A comparative evaluation
shows that the new focus measure significantly outperforms the state-of-the-art. Consider-
ing the SFF pipeline we present superior results over two previously published methods.
Another aspect of our method involves parallel computing. As the basis focus measures can
be computed independently, the suggested scheme is ready for parallel computing.
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