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Feature selection methods are efficient in modern computer vision appli-
cations to reduce the computational cost and the chance of over-fitting.
Recently, a novel selectable factor extraction (SFE[3]) framework is pro-
posed to simultaneously perform feature selection and extraction, and is
theoretically and practically proved to be effective for high-dimensional
data. Although it is advantageous in several aspects, SFE is only designed
for either supervised or unsupervised learning, and is not suitable when
there are limited labeled samples and a large number of unlabeled sam-
ples. To tackle this problem, we propose a novel manifold regularized
SFE (MRSFE) framework for semi-supervised image classification.

We use a low rank penalized regression model to explore the label
information. A low rank matrix of the regression coefficients, together
with the `2,1 or `2,0 norm penalty is learned for joint feature selection
and extraction. In addition, all the labeled and unlabeled samples are
utilized in MRSFE to construct the data adjacency graph to approximate
the underlying data manifold, which the data distribution is assumed to be
supported on. The graph Laplacian is then incorporated as a regularization
term to smooth the coefficients matrix. In this way, the local structures of
the whole dataset are preserved, and the data distribution is well exploited.

To derive our model, we begin with the reduced rank regression (RRR)
model[1]:

min
B
‖YL−XLB‖2

F , s.t. rank(B)≤ r. (1)

where B = [b1,b2, · · · ,bd ]
T ∈ Rd×c is the representation matrix, XL ∈

Rl×d is the design matrix of the labeled samples, l is the number of the
labeled samples and d is the number of the features, YL ∈ Rl×c is the re-
sponse matrix where c is the number of the classes, i.e., Yi j = 1 if and
only if the ith sample belongs to the jth class.

Although successful in practice, the plain RRR has however certain
drawbacks — the model (1) typically involves all input features of X . To
this end, we implement feature selection for RRR,

min
B
‖YL−XLB‖2

F +α‖B‖2,1, s.t. rank(B)≤ r. (2)

where ‖B‖2,1 =∑
d
i=1

√
∑

c
j=1 B2

i j , which promotes row sparsity of B. Note
that we select features from XL according to the non-zero rows of the rep-
resentation matrix B, i.e., if the i-th row of B is non-zero, we conclude that
the ith feature of XL(i-th column) is significant. We call (2) the selectable
factor extraction (SFE) method.

In many applications where we have only a small number of labeled
samples, the representation matrix B learned from model (2) is often unre-
liable. We use the manifold regularization (MR[2]) to help learn the man-
ifold structure of large number of unlabeled samples. Combining model
(2) with MR, we have the following optimization problem:

min
B
‖YL−XLB‖2

F +α‖B‖2,1 +β tr(BT XT
LU LXLU B),s.t. rank(B)≤ r. (3)

where L is the Laplacian matrix, XLU is the data matrix containing both
the labeled and unlabeled samples.

To deal with the row sparsity and the rank constraint on B, we write
B = SV T , where S ∈ Rd×r and V ∈ Rc×r is an orthogonal matrix.Thus
model (3) is equivalent to

min
S,V T V=Ir

‖YL−XLSV T ‖2
F +α‖S‖2,1 +β tr(V ST XT

LU LXLU SV T ). (4)

The full-rank factorization of B enables us to tackle the sparsity regular-
ization and the low-rank constraint separately. In other words, S selects
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Figure 1: Prediction accuracy vs. the number of selected features (left)
using linear SVM (right) using nonlinear SVM

significant features from XL, while the orthogonal matrix V determines
the subspace after dimension reduction. So we can implement feature
selection and extraction simultaneously.

Considering the `1 penalty cannot handle the collinearity and may
lead to inconsistent and biased estimation([4]), similar to `2,1, we advo-
cate to use non-convex constraint such as `2,0 instead of widely-used `2,1
penalty for S in (4)

min
S,V T V=Ir

‖YL−XLSV T ‖2
F +β tr(V ST XT

LU LXLU SV T ),s.t. ‖S‖2,0 ≤ qs (5)

where qs is a parameter to control the number of selected features. Us-
ing the constraint form instead of the penalty is intuitive, because we
can directly control the number of features we need. Although the `2,0
penalty is nonconvex and hard to optimization in classical methods, it is
doable in our algorithm. Once S is obtained from (4) or (5), we can se-
lect the significant features according to top-k index of the row-norms in
descending order or nonzero rows of S. We call both of the models (4)
and (5) manifold-regularized semi-supervised selectable factor extraction
method(MRSFE).

We use alternating optimization method to solve model (4) and (5),
an efficient and easy-to-implement algorithm is designed to find the solu-
tions. Our algorithm only consists of SVD decomposition of small-scale
W , together with some thresholding operations which are at low cost. We
evaluate the effectiveness of our MRSFE by applying it to a challenge
web image dataset, NUS-WIDE-OBJECT. Experiments on a this dataset
demonstrate the superiority of the proposed method.
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