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The most common approach to keypoint localization is to learn a set of
keypoints detectors to model appearance and an associated spatial model [3,
4, 5, 9] to capture their spatial relations. Individual keypoint detectors typ-
ically model local appearance and thus rely on expressive spatial models
to capture long range dependencies. Alternatively, the keypoint detec-
tors could condition their predictions on larger spatial support and jointly
predict several keypoints [2], then the need for expressive spatial models
could be eliminated, leading to simpler models.

For effective fine-grained category detection, the keypoint localiza-
tion methods must have high accuracy, low false positive rates, and low
false negative rates. Missed or poorly localized predictions make it im-
possible to extract the relevant features for the task at hand. If a key-
point is falsely determined to be present within a region, it is hard to
guarantee that it will appear at a reasonable location. In the case of lo-
calizing keypoint-defined regions of an image, such as head or torso of
a bird, a single outlier in the keypoint predictions can significantly dis-
tort the predicted area. This specific case is noteworthy, as several of the
current best-performing methods on the CUB 200-2011 birds dataset [8]
rely on deep-network based features extracted from localized part regions
[1, 3, 4, 9].

In this work, we tackle the problem of learning a keypoint localiza-
tion model that relies on larger spatial support to jointly localize several
keypoints and predict their respective visibilities. Leveraging recent de-
velopments in Convolutional Neural Networks (CNNs), we introduce a
framework that outperforms the state-of-the-art on the CUB dataset. Fur-
ther, while CNN-based methods suffer from a loss of image resolution
due to the fixed-sized inputs of the networks, we introduce a simple sam-
pling with outlier rejection scheme that allows us to work around the issue
without the need to train cascades of coarse-to-fine localization networks
[6, 7]. Finally, we test our predicted keypoints on the fine-grained recog-
nition task. Our keypoint predictions are able to significantly boost the
performance of current top-performing methods on the CUB dataset.

We design our model to simultaneously predict keypoint locations
and their visibilities for a given image patch. Given N keypoints of in-
terest, we train a network to output an N dimensional vector v̂ and a 2N
dimensional vector l̂ corresponding to the visibility and location estimates
of each of the keypoints ki, i ∈ {1,N}, respectively. The corresponding
groundtruth targets during training are v and l. We define v to consist of
indicator variables vi ∈ {0,1} such that vi = 1 if keypoint ki is visible in
the given Edge Box image before padding is performed, and 0 otherwise.
The groundtruth location vector l is of length 2N and consists of pairs
(lxi , lyi) which are the normalized (x̃, ỹ) coordinates of keypoint ki with
respect to the un-padded Edge Box image. Output predicted from the
network, v̂i ∈ [0,1], acts as a measure of confidence of keypoint visibility.

To share the information across categories, our model is trained in a
category agnostic manner. At test time, we efficiently sample each image
with Edge Boxes, make predictions from each Edge Box, and reach a
consensus by thresholding for visibility and reporting the medoid. Our
method is illustrated in Fig. 1.

Results We evaluate our prediction model on the Caltech-UCSD Birds
dataset [8]. This dataset contains 200 bird categories with 15 keypoint lo-
cation and visibility labels for each of the total of 11788 images. We first
evaluate our keypoint localization and visibility predictions against other
top-performing methods and demonstrate state-of-the-art resutls in both
keypoint localization and visibility. Next, we demonstrate their effective-
ness in the fine-grained categorization task by using the predicted key-
points to align head and torso regions, then extracting finetuned AlexNet
features from the localized regions to classify with a linear SVM. While
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Figure 1: The pipeline of our keypoint localization process: Given an input image,
we extract multiple Edge Boxes. Using each edge box, we make predictions for
the location of each of the 15 keypoints, along with their visibility confidences. We
then find the best predicted location by performing confidence thresholding and
finding the medoid. The process is illustrated for the right eye keypoint (Black
edge boxes without associated dots make predictions with confidences below the
set threshold, and green is an outlier with a high confidence score).

this essentially re-creates the classification step of Zhang et al. [9], sub-
stituting in our better localized parts improves their accuracy by over 4%
when ground truth bounding boxes are not provided.
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