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Abstract

Automatic Action Unit (AU) intensity estimation is a key problem in facial expres-
sion analysis. But limited research attention has been paid to the inherent class im-
balance, which usually leads to suboptimal performance. To handle the imbalance, we
propose (1) a novel multiclass under-sampling method and (2) its use in an ensemble.
We compare our approach with state of the art sampling methods used for AU inten-
sity estimation. Multiple datasets and widely varying performance measures are used
in the literature, making direct comparison difficult. To address these shortcomings, we
compare different performance measures for AU intensity estimation and evaluate our
proposed approach on three publicly available datasets, with a comparison to state of the
art methods along with a cross dataset evaluation.

1 Introduction

Facial expression is a central part of non-verbal communication. It reveals information on
the affective state of an observed person, which can be used in e.g. pain assessment [28],
drowsy driver detection, marketing or human-robot interfaces [25].

The Facial Action Coding System (FACS) [6] is a widely used method for describing and
analyzing facial expressions. Based on muscles, it specifies a set of facial movement building
blocks that are called action units (AUs). A trained FACS coder decomposes a potentially
complex facial expression into the occurring AUs (e.g. see AU 12 and 25 in Fig. 1). Most
AUs cannot only be coded regarding their occurrence or absence, but also regarding their
intensity. The current version of FACS defines five ordinal intensities, which are usually
denoted by the letters A (trace) to E (maximum). In the following we denote these intensities
with the numbers 1 to 5, and further add 0 to denote the absence of the respective action unit.
Facial expression intensity is linked to the intensity of emotional experiences and essential
to analyze the facial dynamics, which e.g. is relevant to assess the authenticity of facial
expressions (see [7] for more examples).

Databases Currently there are a few databases that include AU intensity labels according
to the FACS 5-point intensity scale. The most relevant regarding the number of coded frames
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Figure 1: Intensity estimation on test set for AU 12 (lip corner pulling) and 25 (lip parting)
shown for a sequence of frames from subject 10 (DISFA dataset). Our proposed approach,
the MIDRUS SVR ensemble (red), is compared with balanced sampling SVR used by [7]
(green), imbalanced sampling SVR used by [9, 22] (blue), and ground truth (black).

[ Dataset [ Type Subjects AUs Frames [ -(0) A(I) B2 C3) D@ E( ]
Bosphorus [21] images / posed 105 33 2,902 | 90.5% 1.6% 33% 24% 15% 0.6%
DISFA [16] video / spontaneous 27 12 130,814 | 87.4% 4.5% 35% 32% 1.0% 0.3%
UNBC-McMaster [15] | video / spontaneous 25 10 48398 |957% 14% 14% 1.0% 05% 0.1%

Table 1: Databases. Number of subjects, AUs, and frames with intensity coding. Distribution
of intensities (mean across AUs). Absence is dominant.

and AUs are summarized in Table 1: the Bosphorus database [21], the DISFA database [16],
and the UNBC-McMaster database [15]. They differ in the number of subjects, frames,
coded AUs, the availability of temporal context, the expression elicitation method, the vari-
ability of head poses, and other aspects. Another resource is the recently published BP4D-
Spontaneous database [31], but it only comes with intensities for few AUs (5 AUs since
FERA 2015 [26]).

An inherent challenge with all AU intensity databases is the imbalance between classes.
The lack of a certain facial action is more frequent than its occurrence. If we consider the
mean intensity distribution across AUs (see Table 1), about 90% of the samples account
for the absence class (intensity zero). The remaining 10% of occurrences split up into five
intensities; several classes account for less than 1% of the samples. Most of the AUs occur
even less frequently than in this average distribution.

Related Work Standard machine learning methods are often biased towards the majority
class, which leads to high misclassification for the minority class [14]. Common solutions
can be categorized into three major groups: (1) sampling, (2) cost-sensitive learning, and
(3) ensemble techniques. Sampling methods modify the training data to balance the classes;
they allow the use of arbitrary classifiers. A common approach is random under-sampling, a
method that randomly selects a subset of samples from the majority class to balance the train-
ing data. Cost-sensitive learning adjusts the penalties of false positives and false negatives in
the learning algorithm. Ensemble techniques train and combine multiple classifiers using (a)
sampling strategies or (b) cost-sensitive learning methods. Studies have shown that sampling
methods and ensemble strategies outperform cost-sensitive learning because defining an op-
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timal cost-matrix is often the bottleneck [14]. SMOTE [4] is a widely used state of the art
minority over-sampling technique, but it is impracticable for large datasets because training
time significantly increases. EasyEnsemble [13] is a under-sampling based ensemble method
and has been shown to compete with SMOTE in several evaluations [13, 14, 24]. Most of the
methods for handling imbalance are designed for binary classification; a multi-class problem
is usually reduced to multiple binary problems.

Jeni et al. [10] studied the influences of highly imbalanced data on performance measures
for action unit recognition (binary classification). Action unit intensity estimation however
uses different performance measures not covered in their paper. To the best of our knowl-
edge, no previous work in facial action intensity estimation addresses the imbalance prob-
lem adequately, as most works focus on features and machine learning techniques. Girard et
al. [7] use random under-sampling to roughly balance the training set without further analy-
sis. Sandbach et al. [20] reduce imbalance by under-sampling the absence class; they chose
to take five times more AU absence samples than the sum of all other classes, but also with-
out further analysis. Rudovic et al. [19] and Yang et al. [30] pre-segment the database and
group several intensities to reduce imbalance, which we discuss in Sec. 3.2. Other authors
[1, 22] exclude the absence-class (0) during the intensity estimation, which balances the data
but assumes a perfect AU detection before intensity estimation. Many works seem to ignore
the imbalance problem and either train with all available data [9, 11, 17] or use sampling
methods that keep the imbalance [16, 18].

For classification, Support Vector Machines (SVM) [7, 16, 18] and probabilistic graphi-
cal models [17, 19, 20, 30] are often used. Regression models provide a continuous estima-
tion, whereas Support Vector Regression (SVR) [7, 9, 20, 22] has shown good performance.
Other authors employ Relevance Vector Regression [11] and Logistic Regression [1]. Often
used features include landmarks and geometric features, [1, 11, 18, 19, 30], Gabor-filters
[7, 16, 17, 22], and local binary pattern histograms (LBP) [11, 16, 20].

All mentioned works approach the challenging task of action unit intensity estimation.
For a more general literature review on facial expression recognition, see [25, 27].

Contributions We propose a novel under-sampling method (MIDRUS, see Sec. 2.1), apply
it in an ensemble (Sec. 2.2), and discuss the use of a proper performance measure for AU
intensity estimation (Sec. 3.1). The parameters of our proposed method are analyzed in
Sec. 4.1. We report the performance of our fully automatic, person-independent approach
along with a state of the art comparison (Sec. 4.2) and a cross dataset evaluation (Sec. 4.3).

2 Handling Imbalance During Training

In this Section we propose two new methods to handle imbalance problems: (1) a novel
under-sampling method that reduces imbalance and (2) an ensemble method that uses the
proposed sampling. Both methods can be applied directly for multiclass problems. Further,
they can be combined with various classification and regression techniques.

2.1 Multiclass Imbalance Damping Random Under-Sampling

On the one hand strong imbalance decreases performance on the minority class(es), and on
the other hand under-sampling may drop relevant information about the majority class(es).
We propose to choose a compromise. Instead of removing the imbalance or ignoring it,
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Figure 2: Multiclass Imbalance Damping Random Under-Sampling (MIDRUS) examples.
(a) With 0 < v < 1, MIDRUS damps imbalance, which improves performance (see Fig. 3).
(b) With o = 1 (maximum damping) it is equivalent to random under-sampling that balances
the two most frequent classes. (c) With o = 0 (no damping) it is equivalent to stratified
sampling and keeps the imbalance. The number of samples to select is adjusted by 3.

we reduce it with a method that we call Multiclass Imbalance Damping Random Under-
Sampling (MIDRUS). It is an algorithm with two steps: (1) calculating the number of sam-
ples to select from each class, and (2) randomly under-sample the classes without repetition
according to the counts calculated in step (1).

Given that we have M classes i = 1,...,M and n; is the absolute frequency of class i in
the dataset, then the number of samples n7 to select from class i is calculated as follows.

nrk)

n; = [s-(n) "%, with s = ,
)it = p

1

ey
@)

n; = min{n;,n; }.
In (1), a € [0,1] is the imbalance damping parameter. It controls to which extend the im-
balance is reduced, i.e. @ = 1 aims at total balancing of classes, & = 0 keeps the imbalance,
and an « in between reduces it to a certain degree. With & > 0, the term (1;)! = calculates
new and more balanced class ratios. Next, these are scaled by a common factor s, which
controls the total number of samples to be selected. It firstly depends on two parameters:
ke {2,..,M} and B € (0,1]. Further, the definition of s uses a sorting function f(k) return-
ing the k’th most frequent class. Then J is the sampling fraction of the k’th most frequent
class. Usually, k and 3 are easy to select. We recommend to set k to the number of majority
classes plus one, i.e. in the following we set k = 2, as in the problem domain of facial action
unit intensity estimation there is only one majority class (absence a of facial action). The
parameter § should usually be set to one to avoid that minority class samples are discarded.
But you may choose 8 < 1 due to different reasons, e.g. to reduce the training time or to
increase the variance of models in an ensemble (see Sec. 2.1).

Fig. 2 illustrates MIDRUS with three examples. Sub-figure (a) shows a typical use-
case with o = 0.5; the imbalance is damped by taking the square root of sample counts
and scaling the results in a way that 75% of the second most frequent class’s samples are
selected (B = 0.75). Two special cases are illustrated in (b) and (c), respectively. With o = 1
and = 1, MIDRUS balances with the second most frequent class, which is a quite typical
approach in the state of the art. With @ = 0, it is equivalent to stratified random sampling. In
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Prediction MSE! MSEj MAEY PCC. PCC, ICCGB,l; ICC(1,1). ICC(1,1); FI¥
[9, 11, 20] [20] [19, 30] [9, 11, 20, 22] [20] [16, 17,18, 19, 30] 71 7 [19,30]
o perfect 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
x perfect + noise 0.5 = 0.251 0.182  0.266 0.846 0.882 0.880 0.835 0.867 0.645
o perfect + noise 0.9  0.812  0.492 0.546 0.664 0.743 0.733 0.611 0.683 0.406
0.5 - perfect 0.176  0.119  1.000 1.000 0976 0.875 0.780 0.865  0.287
*#0.5 - perfect + 1.25 1.406 0.933  0.667 1.000  0.976 0.875 0.008 0277  0.245
0.2 - perfect 0.452 0.448 2.000 1.000 0.841 0.411 0.339 0.362 0.159
aperfect, 0 — 1 0.874 0.874 | 0.167 0.955 0.955 0.880 0.325 0.325 0.682
O always 0 0.706  0.706 2.500 undef  undef 0.000 -0.053 -0.053  0.155
* always 2.5 5.623 8.106  1.500 undef  undef 0.000 -0.797 -0.855  0.010
random 8.548 8548 1.956 -0.003  -0.003 -0.002 -0.412 -0.412  0.081

Table 2: Comparison of performance measures with artificial predictions.

this case, (1) simplifies to n;” = [s-n;], which keeps the class ratios and the imbalance. This
is very similar to random sampling, which is often used to reduce the training time.

2.2 MIDRUS Ensemble

As mentioned earlier, it is state of the art to use ensemble methods with sampling strategies
to handle imbalance. We propose to combine the MIDRUS method with an ensemble to
further improve predictive performance. We use bagging (bootstrap aggregation) [2] and
apply MIDRUS T times to independently select 7 subsamples of the training set. We then
train 7" prediction models, each with one of the T selected training subsets.

For aggregation of the model outputs we train a fusion model. But instead of the features
vector, this fusion model gets its 7-dimensional input vector from the T outputs of the pre-
viously trained ensemble models. To train the fusion model, we subsample the training set
with MIDRUS again (with the same parameters), and feed the 7 models with the samples.

Due to the benefit of continuous output we use Support Vector Regression (SVR) models,
but the MIDRUS ensemble can also be trained with other models, including classification
models. In general, bagging benefits from a large variance in the trained ensemble models.
Selecting B < 1 can be reasonable, as it increases the variance between models, also in the
less frequent classes.

3 Handling Imbalance During Testing

3.1 Performance Measures

Performance measures differ in their suitability for imbalanced learning problems. E.g. the
widely used accuracy measure can be very misleading for strongly imbalanced problems [5].
In the context of facial action unit intensity recognition, several other measures have been
used so far: the Intraclass Correlation Coefficient (ICC) [7, 16, 17, 18, 19, 30], the Pearson
Correlation Coefficient (PCC) [9, 11, 20, 22], the Mean Squared Error (MSE) [9, 11, 20],
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the macro-averaged Mean Absolute Error (MAEM) [19, 30], and the macro-averaged F-1
measure (F1¥) [19, 30]. Further, several variants of the measures are used. First, the question
is whether the measure is applied to a continuous output score, which we denote with a
subscript ¢, or whether it is applied to a discrete or discretized output, which we denote
with subscript d. Several measures also differ in averaging across the multiple classes. We
denote macro-averaging (which weights the classes equally) with superscript M, and micro-
averaging measures (which are dominated by the more frequent classes) with superscript (.
Further, two variants of ICC are used: ICC(1,1) and ICC(3,1) (see [23] for an explanation).

To compare the measures we conduct an experiment with artificial data, which is summa-
rized in Table 2. The ground truth labels of 130k samples are selected according to the mean
distribution across AUs in the DISFA dataset (see Table 1). We assume several artificially
generated sets of predicitions that are listed in Table 2 and illustrated in the plots above. The
mentioned noise is normally distributed with t =0, 6 = 0.5, and ¢ = 0.9, respectively. The
random prediction is uniformly distributed between 0 and 5.

First, we want to emphasize that the variants often differ significantly, depending on
whether they are calculated from continuous or discrete scores. E.g. consider differences
between MSE; and MSE/;, between PCC, and PCCy, and between ICC(1,1), and ICC(1,1),.
Some authors even mix these measures when comparing methods. After our experiments we
advice against this practice, and recommend to always use the discrete variant for several
reasons: (1) the ground truth is also discrete, so there is no benefit from using the continuous
variants, (2) it is possible to discretize continuous model outputs, but not in reverse, (3) using
always the same variant will improve comparability.

All considered measures have good characteristics regarding noise and worsen the per-
formance with increasing noise (see o, =, ®). However, the measures differ a lot for under-
estimation (see +, *, ©), which is a very common phenomenon in AU intensity estimation,
especially with regression models. The most misleading measure is PCC, as it is invariant
to these linear transformations of the prediction. Although there is a huge qualitative dif-
ference between perfect prediction o and linear transformations (+, *, and ), PCC yields the
same performance. We conclude that PCC is not suitable to evaluate AU intensity estimation
performance. MSEH is also biased towards under-estimation models (+ and ¢), but to a lesser
extend. ICC(3,1) is invariant to constant offsets in prediction (see + and *), which is less rel-
evant in practice. MAEM is low for predictions at (x) or near (+) the mean. The suitability of
measures also depends on the importance of the classes. In general, we think that all classes
are similarly important, but in practice the majority class usually plays a more important role
for a system than the rarely occurring class. Consider a system that can correctly predict all
intensities, but completely fails to predict the AU absence (class 0) all the time (+). MAEM,
FIM,1CC(3,1), and PCC still provide high performances.

Further, the performance level of a trivial classifier (o, *, random) is not self-evident for
MSE, MAE and F1. However, authors can avoid this problem by reporting the best trivial
performance level along with their results.

Finally, we recommend to use ICC(1,1)4, ICC(3,1),4, or F1¥. However, our experiments
show that quantitative results can be misleading. We suggest that authors should report
(at least some) results with confusion matrices that summarize the qualitative prediction
performance across the whole dataset. See supplemental material for more details.
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3.2 Other Pitfalls

There are other pitfalls in action unit intensity estimation that are not exclusively related to
imbalance, but cause misleading results. These even occur in papers presented in high im-
pact journals and good conferences. E.g. Rudovic et al. [19] and Yang et al. [30] pre-segment
the database and group several intensities to reduce imbalance. However, the provided in-
formation on the pre-segementation is insufficient to reproduce the experiments. Further,
they only include this pre-segmented subset in their test sets, which inhibits comparability.
Ideally, this should be avoided by either using the whole database for testing, or at least by
providing enough details to make the experiments reproducible.

Another wide-spread pitfall is to apply supervised learning methods before cross vali-
dation, i.e. to use labels of test samples in “pre-processing” steps such as feature selection,
dimension reduction, or parameter selection. E.g. Mavadati ef al. [16] use supervised man-
ifold learning to reduce the dimensionality prior to cross-validation, which leads to results
with a significant positive bias (see Hastie et al. [8]) and prevents any rational comparison.

Another issue that complicates comparisons is that some authors evaluate their models
with subject overlap between training and test sets [1, 7]. This should be avoided.

4 Experiments

Automatic Recognition System We conduct our experiments with a person-independent,
fully automatic recognition system that consists of the following pipeline: (1) The face and
facial landmarks are detected and tracked with OpenCV and IntraFace [29]. (2) The facial
landmarks are registered with a mean face by applying an affine transform and minimiz-
ing the mean squared error. We register the texture with the same affine transform into a
200 x 200 pixel image with a between-eye distance of about 100 pixel (see Fig. 1 for some
examples). (3) We use the aligned landmark coordinates (98 dim.) and concatenated uni-
form local binary pattern histogram features (5,900 dim.) extracted from the patches of a
regular 10x 10 grid. We use these features due to good performance, fast extraction, and
manageable dimensionality. The features are standardized (z-transform) to ensure similar
numeric ranges. (4) We apply one of several machine learning methods. Most experiments
use support vector regression (SVR) with a linear kernel (C = 1 and € = 0.1) as implemented
in LIBSVM [3], either directly or as the base model in an ensemble (see Sec. 2.2). We prefer
regression methods as they provide continuous output, which has more potential for ana-
lyzing dynamics and detecting micro-expressions. For comparison, we also conduct some
experiments with EasyEnsemble [12], one of the state-of-the-art methods for imbalanced
classification problems. It combines AdaBoost ensembles with bagging and use the C4.5
decision tree as the base classifier. We use the parameters proposed by the authors with their
published implementation and apply the one-vs-rest multiclass strategy with maximum de-
cision score fusion. To keep the experiments feasible regarding training time, we train with
a maximum of 2,500 samples per model, which are randomly selected if necessary. Due to
training time it was also not possible to optimize parameters for each of the trained models,
but we conducted several preliminary experiments to select the parameters.

Experimental Procedure We evaluate the predictive performances through 10-fold cross
validation, in which we ensure that there is no subject overlap between training and test set.
Each sample of the respective dataset is used for testing in exactly one fold. For modeling
we select AUs that were shown by at least 25% of the subjects in the particular dataset. This
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Figure 3: Cross-validated performances on Bosphorus dataset (mean of 26 AUs). MIDRUS
with (a) single SVR, (b) SVR ensemble with fixed 7', and (c) SVR ensemble with fixed «.

way, in the Bosphorus database we model 26 out of 33 AUs; in the DIFSA and UNBC-
McMaster databases all AUs are modeled. For some samples, the fully automatic landmark
detection failed. We exclude these samples from our experiments (Bosphorus 0.1%, UNBC-
McMaster 0.1%, and DISFA 0.3% of the samples). For most of the experiments, we report
the ICC(3,1),; measure, as it most widely used. See the supplemental material for the results
with other measures.

4.1 MIDRUS Parameters

We analyze the influence of the tuning parameters &, 3, and T by varying them on the
Bosphorus Database. First, we consider a single SVR that is trained with a training set
sampled with MIDRUS. We fix f = 1 and vary «. Fig. 3a plots the performance in the
three measures that we found to be most useful in Sec. 3.1. As evident in the plot, neither
using all samples (a = 0, imbalanced), nor balancing the majority class with the second most
frequent class (o = 1, ‘balanced’) yields optimal performance. Higher performance can be
gained with the proposed idea of damping (0 < @ < 1). The optimal & depends on the
measure and the data; so it is a typical tuning parameter that should be optimized for each
given application during cross-validation. For some qualitative results, see supplemental
material.

In a second experiment we trained an ensemble of 7 = 10 SVR models, each with a
training set that was independently sampled using MIDRUS. Fig. 3b shows the results of
varying a and 3. Regarding a, the results are similar to Fig. 3a, which confirms the use-
fulness of imbalance damping. Further, the plot shows that it is reasonable to chose § < 1
with an ensemble. Dropping some of the minority class’ samples for the individual ensemble
models increases variability between them. This way, B < 1 can improve performance while
reducing training time. In a third experiment we fix & = 0.5 and vary T and 3 (see Fig. 3c).
If we compare the single SVR (7" = 0) with the SVR Ensembles (7" > 1), the performance
benefit of the ensemble is apparent. With 7 > 4 and > 0.75 the performance does not
changes significantly on this dataset. A lower 3 or T results in lower performance, because
more training samples remain unused.
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Dataset | Bosphorus | DISFA UNBC
Measure | ICC(3,1)4 ICC@3,1)a PCC. Testing: ICC(3,1)4
Mavadati [17] [0235 Bosphorus DISFA UNBC
Kaltwang [11] 0.306
EasyEnsemble |[0.340] [0.362 | [0.301 o Bosphorus 0.603" 0.401 0.201
0553 |[0346]  |[0.286 g DISFA 0515  0.439° 0220
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[ imbalanced [ ‘balanced’ [] proposed: MIDRUS Obtained by 10-fold cross validation.
(a) (b)

Figure 4: (a) Comparison of methods. Mean cross validated performances of 26 AUs
(Bosphorus dataset [21]), 12 AUs (DISFA [16]), resp. 10 AUs (UNBC-McMaster [15]). (b)
Mean cross-dataset performance of the seven common AUs (SVR Ensemble with o = 0.5).

4.2 Comparison of Methods

In Fig. 4a we compare several methods on three databases. On the Bosphorus dataset,
EasyEnsemble is clearly outperformed by our proposed SVR Ensemble. MIDRUS (o = 0.5,
B = 1) improves performance compared to using the originally imbalanced data (equivalent
to a = 0) and to balancing it with the second most frequent class (‘balanced’, equivalent to
a = 1). On the DISFA database all ensemble methods outperform the person-independent
modeling results reported by Mavadati and Mahoor [17]. MIDRUS (a = 0.5) also per-
forms best on DISFA, but the advantage over EasyEnsemble is lower than for Bosphorus.
DISFA contains spontaneous expressions with more low intensity AU occurrences, which
might be easier to detect with non-linear classifiers like EasyEnsemble than with the lin-
ear SVR ensemble. On the UNBC-McMaster dataset we compare to Kaltwang ez al. [11]
(Relevance Vector Regression on imbalanced data), but do not observe clear benefits of the
ensemble methods. This is probably caused by differences in the early stages of the recog-
nition pipeline. Kaltwang uses the manually labeled landmarks provided with the database
and align the faces with piece-wise affine transform for each triangle of the face mesh. In
contrast, we use a fully automatic landmark detector and a much simpler alignment (one
affine transform for the whole image), which is less suited for out-of-plane head poses that
occur frequently in UNBC-McMaster. A better face alignment would probably improve the
results obtained with ensemble methods. Nevertheless, for the tuned parameters (o = 0.9
and § = 1), MIDRUS still slightly outperforms the results of Kaltwang. See supplemental
material for more details.

4.3 Cross-Database Performance

To evaluate generalization performance beyond the scope of a database, we consider the
seven AUs coded across all three databases (AU 4, 6, 9, 12, 20, 25, and 26). For these AUs,
MIDRUS SVR Ensembles (o« = 0.5 and 3 = 1) are trained on each dataset and tested with
both other datasets. The results are reported in Fig. 4b (together with the cross-validation
results of the previous section).

Independent of the training set, performance is the best for testing with Bosphorus. This
is plausible, as Bosphorus is a non-spontaneous dataset, i.e. high intensities (exaggerated
expressions) occur more often, which are easier to classify. Nevertheless, training with
Bosphorus still yields quite good results on the spontaneous datasets. If we train with DISFA,
performances increase on the spontaneous datasets, probably due to more low intensity sam-
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ples and occurrence of out-of-plane head poses. Out-of-plane poses are very common in
UNBC-McMaster, which may be a reason for the lower performance (especially due to our
unsuited face registration). Training on UNBC leads to models that are more appropriate for
out-of-plane head poses, which are less common in DISFA and do not occur in Bosphorus;
so those models perform poorly on these datasets.

5 Conclusion

Both, too strong data imbalance and too rigorous under-sampling lead to suboptimal perfor-
mance. We propose MIDRUS, a method that reduces imbalance to achieve a compromise,
and propose to apply it within an ensemble. For AU intensity estimation, experiments on
three databases shows the superior performance of our method compared to state-of-the-art
approaches. In contrast to most ensemble methods, our MIDRUS ensemble directly suits
multiclass problems and can be used with various classification and regression models. To
our best knowledge, it is the first method that re-balances the class distribution with such flex-
ibility. It allows the integration of over-sampling (e.g. sampling with repetition or SMOTE
[4]), which we will address in future works along with comparisons to other datasets (out-
side the facial expression domain). We will also work on more advanced face registration
methods.
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