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Abstract

In this paper, we address the problem of template matching under affine transforma-
tions with general images. Our approach is to search an approximate affine transforma-
tion over a binary Galois field. The benefit is that we can avoid matching with huge
amount of potential transformations, because they are discretely sampled. However, a
Galois field of affine transformation can still be impractical for exhaustive searching. To
approach the optimum solution efficiently, we introduce a level-wise adaptive sampling
(LAS) method under genetic algorithm framework. In LAS, individuals converge to the
global optimum depending on a level-wise selection and crossover while the population
number is decreased by a population bounding scheme. In the experiment section, we
analyse our method systematically and compare it against the state-of-the-art method on
an evaluation data set. The results show that our method has a higher accuracy perfor-
mance with fewer matching tests.

1 Introduction

In this paper, we consider the problem of template matching under arbitrary 2D affine trans-
formations. Template matching is a classical computer vision problem which aims to find a
global optimum area in the target image (i.e. source image) according to the hint provided
by a rectangular template. In affine template matching, each candidate affine transformation
corresponds to a candidate area in the target image. Each candidate area is a parallelogram
because of the properties of affine transformations. We only use gray scale information of
images as the hint which is quantified by sum of absolute difference (SAD).

Recently, feature-based matching methods like SIFT and its variants are very efficient
to estimate the 2D transformation matrix between template and target image. Only a few
correctly matched key points are required for solving a system of linear equations. With
matching results which contain outliers, we can also use method like RANSAC [4] to esti-
mate the correct transformation matrix. Feature-based methods depend on the assumption
that the key point matching results consist of inliers, there also exist images in which key
points are hard to be detected like blur images, texture-less images, etc. Key points may
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Our method ASIFT SIFT

Figure 1: Our matching result (represented by green parallelogram) completely covers the
ground truth area (represented by red parallelogram) in both cases. Affine-SIFT (ASIFT)
can well handle affine transformation in the case when template has strong features (upper),
while mismatches in the case when template has weak features (lower). Common SIFT can
not handle affine transformation well.

also be mismatched heavily under the influence of noise, illumination changes, etc. A com-
mon template matching method is usually considered to be effective against such special
situations. Figure 1 shows two matching examples respectively when a template has strong
features and weak features.

As we all know, template matching potentially requires a huge number of samples in
order to ensure the global optimum solution can be obtained. Especially for affine template
matching, the number of candidate transformations increases exponentially when more ac-
curate solution is required to be obtained, because scaling, rotation and shear are taken into
account additionally compared with common template matching. Matching with numerous
candidate solutions is ineffective and not practical. In fact, it is possible to estimate only a
small fraction of candidate solutions in order to solve the optimum solution if the following
assumption is made: a template is smooth. Under this assumption, SAD will not change
much around the ground truth area of a target image. This assumption provides chances
for developing more efficient matching methods. At the same time, such methods can not
guarantee the accuracy with highly textured template.

The rest of this paper is structured as follows. In Section 2, we survey template matching
methods with transformations and the efforts that have been done on solving affine tem-
plate matching problem. In Section 3, we introduce our method from two perspectives: 1)
construction of Galois field. 2) level-wise adaptive sampling method over Galois field. In
Section 4, we investigate the effects of tunable parameters and compare our method against
the state-of-the-art method [10]. Finally, we conclude this paper in Section 5.

2 Related Works
In this section, we mainly survey previous works on template matching involving geometric
transformations. Despite the feature-based matching methods like SIFT [12], ASIFT [14],
direct methods also have been widely studied. A common direct template method only in-
volves the translation in x-axis and y-axis, thus the degree of freedom (DOF) is simply two.
However, many applications require methods to be robust with varied transformations.
Rotation and translation: Same with common template matching, target area in target im-
age is still rectangular. The difference is, it is rotated and repositioned by translation. The
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DOF in this situation is three. Choi and Kim [2] proposed a method combining the projection
method and Zernike moments in two stages. Candidates with low cost feature extracted are
selected at first stage, and rotation invariant matching is performed at second stage. Fredriks-
son et al. [5] used string matching technique to deal with rotation.
Rotation, translation and scaling: In this situation, scaling is additionally involved in the
matching problem, thus the DOF grows to five. The number of candidate areas becomes
large and it is no longer practical for exhaustive searching. To accelerate matching proce-
dure, Kim et al. [9] applied cascaded filters to exclude areas which have low probability to
be selected as the final result. Akashi et al. [1] treated template matching as an optimization
problem under genetic algorithm (GA) framework and applied their method into real-time
eye detection by inheriting previous frame’s matching result to the next. GA can evolution-
arily select “promising” candidate areas to evaluate, thus can avoid exhaustive searching.
Affine transformation: Despite basic Euclidean transformations, shear and scaling are in-
volved additionally. The DOF then grows to six. To the best of our knowledge, few direct
methods have been proposed under this situation compared with aforementioned two situa-
tions as a result of the broad search space. In [10], the state-of-the-art work is proposed which
matches template in a very sparse way under the smooth assumption. In this paper, a discrete
sampling net is constructed depending on an accuracy parameter, after that, a branch-and-
bound scheme is employed to search an approximate solution over the net. The basic idea of
this paper is to rule out a large portion of “unpromising” candidate transformations and fo-
cus on estimating the ones which are close to the ground truth. However, branch-and-bound
scheme is still exhaustive to a certain extent, because the number of candidate transforma-
tions need to be estimated grows rapidly with the increase of expected accuracy. Insufficient
samplings will lead to a totally different result. On the other hand, our method constructs
a Galois field instead of a sampling net, and employs adaptive sampling to approach the
ground truth from the perspective of optimization algorithm. Additionally, [13] provides a
comprehensive comparison of affine covariant region detectors.

3 Methodology

3.1 Problem Description

Two grayscale images I1 and I2 are given as the input with each pixel’s gray value normalized
to [0, 1]. I1 is defined as a template image with size of n1×n1. I2 is defined as a target image
with size of n2×n2. For clarity, we assume I1 and I2 are square images. An arbitrary pixel
in I1 and its mapped pixel are denoted as p1 and p2 respectively. We have

p2 = T (p1). (1)

T is a 3×3 matrix which denotes affine transformation between p1 and p2. In the following
formula, kkk includes operations such as rotation, scaling, and shear. ttt includes translation
operations:

T =

[
kkk ttt

000> 1

]
. (2)

SAD is used to measure the similarity between I1 and a candidate area in I2 which is gen-
erated by a candidate transformation T . Normalized gray scale difference between each p1
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transformation range step amount step size
rotation [0, 2π] 2n π

2n−1

translation [−n2, n2] 2n n2
2n−1

scale [ n1
n2 , n2

n1 ] 2n n2
2−n2

1
n1n22n

Table 1: Value ranges of parameters for constructing a Galois field of affine transformation.

and corresponding p2 is summed, which can be written as:

S(I1, I2,T ) =
∑

p1∈I1
|I1(p1)− I2(p2)|m

n2
1

, m =

{
0 p2 /∈ I2
1 p2 ∈ I2

. (3)

The purpose of our paper is to estimate an approximate affine transformation T̂ from a given
candidate set. In the best case, T̂ equals to transformation T . T is the closest transformation
to ground truth T ′ among all the candidate transformations. A natural way to estimate T̂ is
to minimize SAD. Formally, our purpose can be denoted as:

T̂ = argmin
T∈F26n

S(I1, I2,T ). (4)

The construction of candidate set will be introduced in the Section 3.2. From Equation 4,
we can still not ensure that T̂ is close enough to T ′, because SAD is related with not only
transformation but also the variation of a template. Variation ν of a template can be defined
as the sum of maximal difference between each p1 and its eight neighbors N8(p1). Formally,

ν = ∑
p1∈I1

max
q∈N8(p1)

|I1(p1)− I1(q)|. (5)

Large variation means that a template is not smooth. In this case, SAD values of two candi-
date transformations can differ a lot even the transformations are very close. Detail explana-
tion will be discussed in the next section.

3.2 Galois Field of Affine Transformation
Matching with complete continuous affine transformation set which contains infinite candi-
dates can be impractical. To simplify this problem, we build a discrete searching space in
terms of binary Galois field. The smallest Galois field F2 can be extended to arbitrary fileds
F2n as long as we allow definition of bitwise operations on strings of bits [11]. F2n has been
widely applied in coding theory. In our research, it performs as a sampling grid.

According to [6], a general affine transformation matrix can be decomposed into T =
TrR2SR1, where R1 represents matrix operation of first rotation, S is scale operation in x-
axis and y-axis, R2 is second rotation, Tr is translation operation in x-axis and y-axis. By
this decomposition, we will have six DOFs given a certain affine transform. To construct a
Galois field of affine, we summarize the range of each DOF in Table 1.

Transformations over each decomposed DOF can be modeled by a Galois field F2n , n is
a positive integer denoting the length of binary codes and 2n is the field’s size. Elements in
F2n are represented as binary codes. For clarity, we assume n of each decomposed DOF is
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the same. Each DOF’s range is then divided into 2n discrete segments. T ∈ F26n denotes a
general affine transformation in six DOFs. Acceptable margin of error can then be guaran-
teed on this Galois field. The maximum error of rotation is within [−π/2n−1,π/2n−1], the
maximum error of translation is within [−n2/2n−1,n2/2n−1], the maximum error of scaling
is within [(−n2

2−n2
1)/(n1n22n),(n2

2−n2
1)/(n1n22n)].

To quantify the error between two transformations, following formula is defined:

E(T1,T2) = |S(I1, I2,T1)−S(I1, I2,T2)|. (6)

It has been proved in [10] (Theorem 3.1) that the upper limit of E(T ,T ′) is associated with
three factors in a discrete set of affine: step amount, variation of template, and template size.
For Galois filed of affine, we can rewrite:

E(T ,T ′)≤ O
(

ν

26n×n1

)
(7)

With loose upper limitation, which may be caused by small n1, small n, or large ν , there
exists possibility that E(T̂ ,T ′)< E(T ,T ′). Note that T is the closest transformation to T ′ in
the Galois field, not the transformation which can minimize E(T,T ′). In such situation,
it is impossible to estimate the right affine transformation by minimizing SAD and will
not be taken into account in this paper. In order to avoid such conditions, n1 is limited
in the experiments, because the influence of ν is inevitable and n should be reasonably small
considering the time and space complexity.

An appropriate choice of n is required in order to limit the maximum error to an ac-
ceptable range. However, size of Galois field grows exponentially with the increase of n.
Typically, when n = 8, the total size of entire Galois field can be nearly 2.8× 1014. Con-
sidering a personal computer can not afford such a large amount of calculation, we will
introduce our sampling method over F26n in the next section.

Matching example Generation #0 Generation #2

Generation #4 Generation #6 Generation #8

Figure 2: Heat map of matching frequency. This figure shows the frequency that each pixel
has been used for calculating SAD. With the decrease of population number, the total match-
ing frequency reduces while a more accurate candidate area can be localized.
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Figure 3: Illustration of SAD’s distribution in each generation P. Selection, bounding
scheme and crossover on the individuals make the distribution move to left gradually, which
is the procedure of estimating T̂ .

3.3 Level-wise Adaptive Sampling (LAS)

In this section, we will introduce LAS which aims to achieve a satisfactory error rate instead
of testing the complete F26n . Our method is based on genetic algorithm (GA) [7]. From the
perspective of GA, our problem can be defined as a minimization problem of SAD. However,
in order to optimize T̂ in such a broad search space, two major issues should be faced: 1)
how to escape from local optimum. 2) how to control the optimization response time.
Preserving genetic variety: It has been argued in [8] that in order to prevent GA from falling
into local optimum, genetic variety should be preserved somehow. Although mutation oper-
ation can surely increase the genetic variety randomly, it can also destroy individuals which
are potentially to be close to T̂ . In a broad search space, the probability to create a “suitable”
diversity is very low and a high mutation rate can contrarily slow down the speed of conver-
gence. It is worth noting that in our problem, a large enough number of randomly initialized
population keeps sufficient genetic variety for converging to T̂ . During the evolution, selec-
tion operation such as roulette wheel selection is likely to select individuals which hold larger
fitness for crossover operation. With the combination of selection and crossover, genetic va-
riety decreases and the whole population converges to an optimum solution. However, if an
individual happened to hold small SAD (e.g. a flat candidate area) in the early stage of evo-
lution, the whole population will easily fall into a local optimum especially when the search
space is very broad. To preserve genetic variety, we select individuals from each SAD level
uniformly. Each SAD level is a discrete interval which is occupied by a part of individuals.
With maximum SAD in m th generation defined as Sm

max, minimum SAD in m th generation
defined as Sm

min and the number of SAD level defined as σ , we can define i th SAD level as
[Sm

min +(i− 1)(Sm
max− Sm

min)/σ ,Sm
min + i(Sm

max− Sm
min)/σ ]. Each individual which is assigned

to i th SAD level should have a fitness within this range. Individuals of next generation are
then randomly selected from each SAD level. The number of individuals selected from each
SAD level is the same. With the increase of σ , distribution of SAD in m+ 1 generation
approximates to uniform distribution.

Fitness uniform selection scheme (FUSS) is proposed in [8], which selects a fitness value
uniformly at first and then randomly select the nearest individual. The difference is, LAS can
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Algorithm 1 Level-wise Adaptive Sampling.
Input: Normalized template and target image, I1, I2.
Input: Population number δ of initial generation.
Input: Population bounding parameter λ .
Input: Population number c of last generation.
Output: Estimated transformation T̂ .

1: P0 = {T0, ...,Tδ}
2: m = 0
3: while |P2m|> c do
4: Sample learning set L ∈ P2m

5: L′ = {Ti|∃Ti ∈ L s.t. S(I1, I2,Ti)< 0.1×α +β}, tuning α and β s.t. |L′|/|L| ≈ λ

6: P2m+1 = {Ti|Ti ∈ P2m,S(I1, I2,Ti)< 0.1×α +β ,S(I1, I2,Ti)∼U(S2m
min,S

2m
max)}

7: P2m+2 = crossover(P2m+1)
8: m = m+1
9: end while

10: return T̂ ∈ P2m+2 s.t. S(I1, I2, T̂ ) = S2m+2
min

control the degree of uniform approximation by σ , which can directly affect the convergence
speed. FUSS will take a longer time to converge, because the individuals with high fitness
in FUSS make up only a small percentage of overall individuals.

Bounding population number: Evaluating a large number of population at initial gen-
eration is very important to avoid falling into local optimum. However, evaluating entire
generations with same population number is time consuming and not practical. To acceler-
ate the evolution procedure, we wish to rule out the candidate individuals which hold high
SAD score. Instead of determining a fixed threshold, we learn a threshold at each generation
which can rule out a certain fraction (λ percent) of individuals. Learning procedure is to
tune two constants α and β such that S(I1, I2,T ) < 0.1×α +β holds for λ percent of the
individuals. To make the algorithm find the approximate threshold more effectively, α varies
as an integer and β varies as a float number. Figure 2 illustrates the matching frequency of
each pixel in each generation. With the decrease of population number, matching frequency
around each local optimum reduces, and finally the area with respect to global optimum
transformation is approached. Considering the bounding scheme, the number of matching

tests that LAS requires can be represented as
m
∑

i=0
δλ i, where δλ m > c. δ is the population

number of initial generation. c is a small constant which denotes the population number of
the last generation. The time complexity can then be ensured as long as the parameters are
predetermined.
Approximation of SAD: Each matching test with respect to a single transformation has a
time complexity of O(n2

1). To speed up each matching test, we wish to inspect only a small
fraction of pixels instead of the entire pixels in template. We sample pixels at an equal inter-
val on both width and height of template by a parameter ε to reduce the time complexity to
O(n2

1/ε2). The Equation 3 can then be rewrote as following if the number of sampling pixels
is enough.

S(I1, I2,T )≈ S(I′1, I2,T ), |I′1|= n2
1/ε

2. (8)

According to Chernoff bound, the number of sampling pixels should be log(1/η)n2
1/ε2 if we
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(b) Effect of λ on SAD
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(c) Comparing with ground truth SAD

Our method
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Figure 4: Parameter analysis on evaluation data set. (a) Effect of δ . Other parameters are:
ε = 3 and λ = 0.7. (b) Effect of λ . Other parameters are: ε = 3 and δ = 96. (c) Comparing
tuned parameters with ground truth. Tuned parameters are: ε = 3, δ = 116, and λ = 0.7.

wish |S(I1, I2,T )−S(I′1, I2,T )|< ε/n1 holds with probability 1−η . In our setting, η = 1/e.
This also has been pointed out in [10].

The entire procedure of LAS is described in Algorithm 1. All the transformations T are
represented as binary Gray codes in Galois field. LAS runs in multiple generations, with
each generation i generates a population Pi. In initial population P0, individuals are sam-
pled randomly from F2n . Figure 3 illustrates the relation between SAD and the number of
corresponding individuals throughout the convergence process. With the generation num-
ber grows, the overall distribution translates from right to left as a result of selection and
crossover. The amplitude decreases as a result of the population bounding scheme. Note that
S2m+1

min equals to S2m+2
min and S2m+1

max equals to S2m+2
max , because the level-wise selection will not

generate new solutions.

4 Experiments
To evaluate our algorithm, we use images from the famous SUN database [15], which has
been used in evaluating many vision problems. We select 500 images as tests from category
“waiting room” to “zoo”. We randomly generate a ground truth affine transformation matrix
for each test image, and make sure that the four corners of parallelogram generated by corre-
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Figure 5: Comparative results with 500 images. Gray colour represents the overlapping.
Parameters are set as: δ = 116,ε = 3,λ = 0.7. (a) Overlap rate error on each test image. (b)
Number of matching tests on each test image.

sponding matrix are all in the image. Pixels in the parallelogram are then warped to generate
the square template. In our experiment, each template has a size of 100×100 pixels and the
origin of each transformation is the origin of each target image.
Effect of parameters: We observe the change of SAD while changing the parameter δ and
λ . Figure 4(a) shows that larger δ can improve the performance of SAD on the images which
are not matched well using smaller δ . For the matching results which are close enough to
the ground truth, it is hard to improve the performance by increasing δ . Figure 4(b) shows
that small λ will only achieve rough results, because the algorithm converges too fast before
a global optimum is localized. It is worth pointing out that even the ground truth transforma-
tions can have SAD larger than 0, because interpolation operations (bilinear interpolation)
are involved during the creation of templates (warping). From Figure 4(c), we can find out
that our result can well fit the SAD of ground truth in most cases.
Comparative results: We compare our algorithm with the sate-of-the-art method FAsT-
Match [10]. We use the overlap error to compare the accuracy which is defined as 1−
(area(T̂ )∩ area(T ′))/(area(T̂ )∪ area(T ′)) by PASCAL measure [3]. We use number of
matching tests to compare the efficiency which does not depend on type of programming
languages and hard devices. In order to ensure the comparative results to be fair and accu-
rate, the experiment is carried out under the following conditions: 1) No preprocessing like
Gaussian blur. Although smoothing images will surely improve the accuracy, it will also
bring complexities when analysing the results. 2) Set the approximation method of SAD as
the same, number of sub-sampled pixels should be n2

1/ε2. 3) Set the number of matching
tests as the same. It is difficult to control the number of matching tests of FAsT-Match, be-
cause it is dynamically determined. We only set its upper limit to avoid memory overflow.
4) To keep the simplicity of algorithm, restarting an algorithm or other similar tricks for
improving the accuracy are not allowed. From Figure 5(a), we can see that with respect to
different images, our method has a significant reduction on overlap error. From Figure 5(b),
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Figure 6: Examples of successful matching. Red parallelogram represents the ground truth,
green parallelogram represents the matching result.

we can see that our method is more stable in algorithm’s complexity. By changing the crite-
rion of overlap error, we report accuracy in Table 2. We present examples of our matching
results in Figure 6.

method error < 50% error < 10% error < 5% average matching tests
FAsT-Match 92.2% 48.4% 11.8% 8.6×106

Our method 97.4% 91.0% 68.0% 6.7×106

Table 2: Accuracy of different overlap error criterion and average number of matching tests.

5 Conclusion and limitations
In this paper, we presented a method to solve affine template matching problem in Galois
field. For efficiency, we proposed level-wise adaptive sampling (LAS) method under genetic
algorithm framework to estimate only a small fraction of candidate transformations. Exper-
iments have shown that our algorithm is more accurate and faster than the state-of-the-art
affine template matching method. The drawbacks of our algorithm can be concluded as:
1) The smooth assumption limits the application of our algorithm. For template with large
variation, we have to increase δ . 2) Since GA brings about heuristics, there is no absolute
assurance that our algorithm can find the global optimum by the limited matching tests. As
the future work, we plan to extend our algorithm to projective template matching problem.
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