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In this paper, we address the problem of template matching under affine
transformations with general images. Our approach is to search an ap-
proximate affine transformation over a binary Galois field. The benefit
is that we can avoid matching with huge amount of potential transfor-
mations, because they are discretely sampled. However, a Galois field
of affine transformation can still be impractical for exhaustive searching.
To approach the optimum solution efficiently, we introduce a level-wise
adaptive sampling (LAS) method under genetic algorithm framework. In
LAS, individuals converge to the global optimum according to a level-
wise selection and crossover while the population number is decreased
by a population bounding scheme. Specifically, our paper is to infer an
approximate affine transformation T̂ from a given candidate set. In the
best case, T̂ equals to transformation T . T is the closest transformation to
ground truth T ′ among all the candidate transformations. An natural way
to estimate T̂ is to minimize SAD. Formally, our purpose can be denoted
as:

T̂ = argmin
T∈F26n

S(I1, I2,T ). (1)

According to [1], a general affine transformation matrix can be decom-
posed into T = TrR2SR1, where R1 represents matrix operation of 1st
rotation, S is scale operation in x-axis and y-axis, R2 is 2nd rotation, Tr
is translation operation in x-axis and y-axis. Transformations over each
decomposed DF can be modeled by a Galois field F2n , n is a positive
integer denoting the length of binary code and 2n is the field’s size. Ele-
ments in F2n are expressed as binary codes. For clarity, we assume n of
each decomposed DF is the same. Each DF’s range is then divided into
2n discrete segments. T ∈ F26n denotes a general affine transformation in
6 DFs. Acceptable margin of error can then be guaranteed on this Ga-
lois field. To quantify the error between two transformations T1 and T2,
following formula is defined:

E(T1,T2) = |S(I1, I2,T1)−S(I1, I2,T2)|. (2)

Level-wise Adaptive Sampling (LAS): LAS aims to achieve a satisfac-
tory error rate instead of testing the complete F2n . From the perspective
of GA, our problem can be defined as a minimization problem of SAD. In
crossover operation of GA, two coded individuals swap certain portions
with each other. It is a good method to span search space around a sample
point in multiple directions. However, in order to optimize T̂ in such a
broad search space, two major problems should be faced: 1) how to es-
cape from local optimum. 2) how to control the optimization response
time.

It has been argued in [2] that in order to prevent GA from falling into
local optimum, genetic variety should be preserved somehow. Although
mutation operation can surely increase the genetic variety randomly, it
can also destroy individuals which are potentially to be close to T̂ . In a
broad search space, the probability to create a “suitable” diversity is very
low and mutation can contrarily slow down the speed of convergence. It
is worth noting that in our problem, a large enough number of randomly
initialized population keeps sufficient genetic variety for converging to T̂ .
During the evolution, selection operation such as roulette wheel selection
is likely to select individuals which hold larger fitness for crossover op-
eration. With the combination of selection and crossover, genetic variety
decreases and the whole population converges to an optimum solution.
However, if an individual happened to hold small SAD (e.g. a candidate
area is flat) in the early stage of evolution, the whole population will eas-
ily fall into a local optimum especially when the search space is very
broad. To preserve genetic variety, we select individuals from each SAD
level uniformly. Each SAD level is a discrete interval which is occu-
pied by a part of individuals. With maximum SAD in m th generation
defined as Sm

max, minimum SAD in m th generation defined as Sm
min and

the number of SAD level defined as σ , we can define i th SAD level as
[Sm

min +(i− 1)(Sm
max− Sm

min)/σ ,Sm
min + i(Sm

max− Sm
min)/σ ]. Each individ-

ual which is assigned to i th SAD level should have a fitness within this
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Figure 1: Heat map of matching frequency. This figure shows the fre-
quency that each pixel has been used for calculating SAD. With the de-
crease of population number, the total matching frequency reduces while
a more accurate candidate area can be localized.
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Figure 2: Comparative results with 500 images. (a) Overlap rate error of
each test image. (b) Number of matching tests of each test image.

range. Individuals of next generation are then randomly selected from
each SAD level. The number of individuals selected from each SAD level
is the same. With the increase of σ , distribution of SAD in m+1 genera-
tion approximates to uniform distribution. Figure 1 shows an example of
matching iteration.

Fitness uniform selection scheme (FUSS) is proposed in [2], which
selects a fitness value uniformly at first and then randomly select the near-
est individual. The difference is, LAS can control the degree of uniform
approximation by σ , which can directly affect the convergence speed.
FUSS will take a longer time to converge, because the individuals with
high fitness in FUSS make up only a small percentage of overall individ-
uals.
Experiments: We randomly generate a ground truth affine transformation
matrix for each test image, and make sure that the four corers of parallel-
ogram generated by according matrix are all in the image. Pixels in the
parallelogram are then warped to generate the square template. In our
experiment, each template has a size of 100× 100 pixels. We compare
our method [3] against the state-of-the-art method on an evaluation data
set and the results are shown in Figure 2. For more detailed discussion,
please read our paper. The benchmark used and our result data can be
downloaded from the following URL.
http://cvhost.scv.cis.iwate-u.ac.jp/research/proj
ects/affine_matching.html
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