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Automatic object recognition has witnessed a huge improvement in
recent years due to the successful application of convolutional neural net-
works (CNN). This boost in performance can be explained by the replace-
ment of heuristic parts in the previous feature representation approaches
by a methodology [2, 3] based on learning the features straight from the
data. The learned feature representation, which is tailored to the given
learning scenario, generally outperforms heuristic approaches provided
the training data is big enough. When learned over a significant sample
variety, this representation captures regularities across samples of a class
that help distinguish it from all the other classes.

In an alternative setup, the object recognition problem can be posed
as one in which objects in real images are identified by treating them as
imperfect and corrupted copies of prototypical concepts. This assump-
tion provides an additional premise that the different samples of a class
are not only similar to each other but also resemble a unique prototype.
These prototypical concepts are in many cases not available, for example
there does not exist a chair that contains only the essence of chair and
nothing else. However, there are many scenarios where such prototypical
instances do exist. An example of this is traffic sign recognition, in which
each traffic sign class has its canonical template.

In the present work, we focus on adding this prototypical prior infor-
mation into convolutional neural networks, as illustrated in Figure 1. The
underlying idea is that the high-level representation learned by a CNN
should be comparable to the information extracted from the prototypes.
An interpretation of this is that layer-by-layer the CNN is able to learn
a representation that is invariant to real world factors such as light varia-
tion, view point distortion, as described in [1], so that the representation
obtained at the end of the network is invariant to all factors appearing in
real images, and thus comparable to the prototype.

Prototypical information is introduced by wedging a layer before the
output layer, fully connected to the C output neurons using the fixed
weights φ(pc) ∈ Rk for all c ∈ {1, . . . ,C}. The new layer and its con-
nections are shown in blue (dark for grayscale) in Figure 1. Thus, the
k×C weight matrix for the last fully connected layer fL is defined as a set
of k× 1 vectors φ(pc) one for each c ∈ {1, . . . ,C}. In Figure 1, we use
φ1(pc),φ2(pc), . . . ,φk(pc) to represent the elements of the k-dimensional
vector φ(pc).

The modified network can now be described using the following for-
mula:

ŷ = argmax
c∈{1,...,C}

s( fL ( fL−1 (. . .( f1 (x)) . . .)))c = argmax
c∈{1,...,C}

〈φ(pc),ψ(x)〉,

(1)
where ψ(.) and φ(.) represent the projections of input images and output
labels into the joint feature space, respectively. An interpretation of this
approach is that the learnable part of the network, ψ : Rd → Rk : ψ =
fL−1 ◦ . . .◦ f1, learns a non-linear mapping from the original images to a
k-dimensional latent space, which in this case is defined by the prototypes.

Thus, the traditional CNN pipeline is augmented to map both the in-
put and prototypes to a common feature space with the end goal of mini-
mizing the final recognition error. The use of a joint embedding space, as
shown in Figure 2 lends the proposed model an interesting possibility of
applying it to recognize new classes not present at the training stage. This
aligns the approach within the areas of zero and one-shot learning.

Conclusively, this paper makes the following contributions - (a) de-
velopment of a CNN that is able to use prototypical information to guide
its learning process, (b) its application to classification tasks presenting
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Figure 1: Network architecture with the introduction of prototypical pri-
ors. In the current experiments, k-dimensional HoG features extracted
over the prototypical templates are used to define the common embed-
ding space.

a boost in overall performance, (c) establishment of a new benchmark in
logo recognition (on Belga logo dataset), and (d) the seamless application
of the proposed model in zero-shot learning scenarios, given the prototyp-
ical information of new classes at run time.
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Figure 2: A joint embedding space defined by the prototypes

As observed on two different datasets of traffic signs and brand logos,
results of the proposed approach are highly promising. Incorporating the
given prototypes improves the classification performance. With regard
to zero-shot learning, our model shows better results than a state-of-the-
art competitor [4] and we show that it can be more flexibly trained for
the required trade-off between seen and unseen class performance at test
time.
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