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Abstract

This paper presents an original approach for recognizing human activities in video
sequences. A human activity is seen as a temporal sequence of elementary action prob-
abilities. Actions are first generically learned using a robust action recognition method
based on optical flow estimation and a cross-dataset training process. Activities are then
projected as trajectories on the semantic simplex in order to be characterized and dis-
criminated. A new trajectory attribute based on the total curvature Fourier descriptor is
introduced. This attribute takes into account the induced geometry of the simplex man-
ifold. Experiments on labelled datasets of human activities prove the efficiency of the
proposed method for discriminating complex actions.

1 Introduction

1.1 Context

Analyzing and recognizing human actions in videos has received considerable attention for
many years in the computer vision community. Works on this topic are motivated by several
potential applications (video monitoring, automatic video indexing, crowd analysis, human-
machine interaction, etc). The wide variability of human actions makes it difficult to design
generic methods (datasets of sport activities, daily activities, different contexts of action,
etc). Two kinds of approaches for tackling human action recognition can be outlined. The
first approaches tend to consider an action as a set of low-level features extracted from a
group of frames (for instance histograms of spatio-temporal points). This constitutes what
we call an elementary action, such as walking or jumping. The second approaches represent
an order set of semantic attributes, and is called an activity. This is the framework of the
proposed method: human activities are complex actions which are made of an ordered set of
different elementary actions. For instance, high jumping can be decomposed into different
elementary actions over time: walking, running and jumping.
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1.2 Human activities: a brief state of the art

Different approaches have been developed to address human action recognition. Most of
them are based on discriminative supervised models. The goal is to discriminate different
actions performed by one or several subjects using algorithmic methods trained on already
labeled video sequences. To detect and describe relevant features in videos, several discrim-
inative approaches are using a temporal extension of 2D interest point detector. Laptev et al.
[10] were the first to propose the Spatio-Temporal Interest Point detector (STIP) which is a
temporal extension of the Harris-Laplace 2D detector [7]. It is efficient on constrained video
datasets such as KTH Dataset [17]. Dollar et al. [4] provide the cuboïd detector and descrip-
tor adapted for periodic movements in video, or for facial expression recognition. In [24]
Willem et al. extend the 2D detector SURF [1] in the temporal domain to detect saliency
using the determinant of 3D Hessian matrix. Wang et al. in [22] are adding temporal in-
formation by estimating point trajectories, using a dense sampling strategy at regular time
intervals. Trajectories allow to better capture temporal information of motion of interest.
Raptis et al. [14] also use gradient and optical flow information to encode salient point tra-
jectories. Vrigkas et al. [21] represent actions using a Gaussian mixture model by clustering
motion curves computed from optical flow estimation.
Other studies are focused on generative probabilistic models for human activities or complex
actions. Unlike elementary actions, activities require a much longer temporal observation.
They commonly represent human daily behavior, sport actions, human interactions and most
of them can be decomposed into different short elementary actions. Activities have a higher
semantic level compared to elementary actions. Most generative models are based on Latent
Dirichlet Allocation algorithm (LDA) [3] originating from document retrieval. This algo-
rithm brings out underlying document topics. This framework allows the characterization of
any type of data as a proportion of topics which compose it. A complex action is then defined
as a collection of topics. A SVM classifier is generally applied on the collection of topics to
discriminate between activities. Niebles et al. explore topic generation for human activities
in [13] as a non-supervised action learning using a Bag of visual Words. The BoW is built
using features such as the cuboïd descriptor [4]. Tavernard et al. [18] represent videos as
sequential occurrences of visual words obtained from STIP detector. Hierarchical LDA is
thereafter used to take into account the chronological structure of visual words. Wang et
al. [23] have introduced semi-supervised LDA to constrain correspondance between gen-
erated topics and already known action classes. Nevertheless, generative models such as
LDA fail to match already known actions occurring in videos with topics generated in a non-
supervised way. Moreover, it is difficult to semantically analyze discovered topics. In fact,
in the original version of the LDA, there is no possibility to bring an a priori information on
already known actions and to ensure a correspondance between generated topics and present
actions in the video. Methods using a priori information are less efficient than discriminative
methods on classification of elementary actions. Moreover, most of them are using global
descriptors which have shown their limitation for action recognition.
In this paper, we present an original approach for human activities recognition in videos. It
relies on a semantic representation of videos rather than a Bag of visual features approach, al-
lowing better generalization. We characterize activities as temporal sequences of elementary
actions by estimating their probabilities over time. Elementary actions are not discovered as
in generative probabilistic models but learned via a robust action recognition method based
on a discriminative model. These activities are then projected as trajectories on the seman-
tic simplex of elementary actions. These action trajectories are processed and characterized
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using a metric taking into account the geometry of the simplex manifold.

2 Recognition of elementary actions

2.1 A method based on optical flow estimation
To recognize elementary actions, we use an approach developed in our previous works [2]
where video sequences are characterized by critical points of the optical flow and by their
temporal trajectories. These features are computed at different spatio-temporal scales, using
a dyadic subdivision of the sequence. Features are extracted and correspond to different
frequency scales (fast and slow movements, respectively at high and small scales - illustrated
on Figure 1).

Figure 1: Example of movements captured at different frequency scales. Red trajectories correspond to high
frequency movements (fast). Blue trajectories correspond to low frequency movements (slow). Green trajectories
correspond to an intermediate frequency scale.

Critical points are locally described by spatial gradients and motion orientation descrip-
tors [11] (namely the HOG and HOF descriptors). Multi-scale trajectories are thereafter fre-
quentially described using Fourier transform coefficients, which ensures robust invariance to
geometric transformations. These three characteristics (shape, orientation of movement and
frequency) have proven to be complementary and relevant for elementary actions recogni-
tion.

2.2 Cross-dataset learning
In order to characterize an activity as an ordered sequence of elementary actions, a robust
and generic representation of the elementary action has to be extracted. Here, we have
selected the KTH dataset [17], the Weizmann dataset [6], the UCF-11 dataset [12]
and the UCF-50 dataset [15] to represent different aspects of human actions. KTH and
Weizmann are datasets containing videos with acquisition constraints. Subjects in those
videos are performing elementary actions (jumping, waving, walking, running, boxing, etc)
in a canonical way. In UCF-11 and UCF-50, elementary actions are captured in real situations
and contexts. These latter bring visual variabilities and movements which are not specific to
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the action of interest. Generic and constrained datasets are complementary for representing
elementary actions at different frequencies of movement. We combine videos from both
types of datasets to perform a cross-dataset learning in order to provide a robust and generic
description of elementary actions.

Four elementary actions from common activities are thereafter considered: Jump, Run,
Walk, and Handwave. In the cross-dataset learning process, we have made the choice of
using 1/3 of generic videos (UCF-11, UCF-50) and 2/3 of constrained videos (KTH and
Weizmann datasets). Table 1 shows results obtained after a Leave-One-Out cross-validation
test when the classifier is trained on this mixture dataset. The global recognition rate is
96.87%. Confusion appears between semantically related classes. We have used an Ad-
aboost late fusion scheme [8] to combine each feature descriptor.

Actions jump walk run wave

jump 90.62 0 9.37 0

walk 0 100 0 0

run 0 3.12 96.87 0

wave 0 0 0 100

Table 1: Confusion matrix of the mixture dataset learning

The recognition rate per descriptor and Adaboost weight are shown in Table 2. The
HOG descriptor computed weight is the lowest among these three descriptors, as expected
with a hybrid dataset. Efros et al. have indeed shown that most of common datasets have an
important visual bias [19].

Descriptors FCD HOF HOG

Rec. rate 94.53% 95.31% 53.12%

Adaboost weight 2.91 1.82 0.42

Table 2: Recognition per descriptor and weight obtained by Adaboost late fusion.

Mixing videos from different datasets increases the visual variability in the scene and
weaken gradient information whereas information related to motion remains quite stable.

3 Representation of complex actions by a sequence of
elementary actions

3.1 Probability of elementary actions

In our method, a complex action is viewed as a sequence of elementary action proportions.
To evaluate the temporal evolution of these proportions, the decision boundaries of the clas-
sifier are transformed into probabilities [5].

Elementary action probabilities are then computed over time using a sliding window
along the video sequence. The goal is to characterize a frame t by its elementary action
probabilities in a [t−N; t +N] window. It is assumed that elementary actions are commonly
performed on a short time period. Schindler et al. [16] have indeed shown that few im-
ages are needed to achieve good recognition rates on elementary action datasets. Figure 2
illustrates the decomposition on a video from the Weizmann dataset.
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(a) (b)
Figure 2: (a) Jack and (b) Basket-ball actions with their representation as a sequence of elemen-
tary action probabilities.

The Jack action (Fig. 2.a) is composed of Jump and Handwave elementary actions. The
graph represents the evolution of elementary action probabilities over time. Red curve is
for Handwave action, blue curve for Jump action. The periodicity and alternation between
the two elementary actions is well noticeable on the graph. The other figure represents a
Basket-ball action (Fig. 2.b), where the green bar indicates the "handwaving" instant
of the shoot, which corresponds to a high proportion of the Handwave elementary action.
The blue bar emphasizes the "jump" instant of the shoot, where Jump elementary action
probability is high. These examples illustrate the ability of the action recognition method to
provide a meaningful representation of generic actions using a mixture dataset.

3.2 Characterizing the absence of action

When elementary action probabilities are estimated, values depend on the most relevant ac-
tions among those that have been learned. When there is no movement in the sequence, it
is necessary to adapt the classifier. To do so, the amount of potential movements present in
the sliding window is estimated using the optical flow. Each frame of the sequence is subdi-
vided in vertical and horizontal blocks and the mean power of the optical flow is computed.
Finally, each frame t of the sequence is characterized by a coefficient coe fstanding(t) ∈ [0,1], pro-
portional to the optical flow mean power and reflecting the degree of motion occurring in this
frame. Probabilities estimated from the classifier are then normalized. An artificially gener-
ated action class is introduced, named the "Standing class". This class allows to inject in
the classifier the presence or absence of movement in the sequence at time t.

The new a posteriori probability vector is then:

Probestimates(t) = [(1− coe fstanding(t))(λ1(t), ...,λk(t), ...,λL(t)), coe fstanding(t)]

with λk(t) the probability of the elementary action at time t.

Figure 3 shows an example of improvement obtained using the Standing class (a related
video is also available online in the supplementary materials). When no action is present in
the sequence, probabilities are close to 0, except for the new standing class. The charac-
terization of the absence of movement provides a richer description and a more relevant
representation of the elementary actions over time.
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Figure 3: When a subject is standing before starting to run, the classifier gives chaotic results because of the
absence of movement (top right figure). On the bottom right figure, the use of the Standing class (magenta
curve) provides a better representation of the elementary actions occurring in the sequence.

4 Action semantic trajectories

4.1 Trajectory in the semantic space
Once a frame is characterized by its elementary action probabilities, its feature vector lies in
a simplex PL defined such as:
PL = {π ∈ RL+1|

L+1
∑

i=1
πi = 1,π > 0} , PL being a submanifold of RL+1.

Figure 4 shows the global scheme for projecting activities in PL.

Figure 4: Global scheme for characterizing activities in the semantic simplex.

Activities are then represented as trajectories on the semantic simplex PL.
The transformation:

F :
{
PL→ S+L
π = (π1, ...,πL+1)→ θ = (2

√
π1, ...,2

√
πL+1)

with:
S+L = {θ ∈ RL+1|

L+1
∑

i=1
θ 2

i = 2,θ > 0},

is a diffeomorphism of PL into S+L . The L-simplex PL is endowed with the Fisher information
metric and the positive L-hypersphere S+L is endowed with the standard Euclidean metric on
its surface [9].
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Since F is an isometry, it emplies that geodesic distances in PL can be computed as shortest
curves on S+L .
The geodesic distance between two points (πk1,πk2) of PL is the great circle arc linking
(F(πk1),F(πk2)) on S+L such as:
dS+

L
(F(πk1),F(πk2)) = dS+

L
(θk1,θk2) = 2cos−1(θk1θ>k2/4)

4.2 Characterization of semantic trajectories through total curvature
Fourier descriptor

Trajectories are characterized by their shapes on the manifold. By using the diffeomorphism
F , trajectories lie on the hypersphere S+L , and cartesian coordinates in RL+1, are converted
into spherical coordinates. They are defined by one radial coordinate r (in our case r = 2)
and L angular coordinates φ1,φ2, ...,φL ∈ [0,2π]. The goal is to describe in the frequency
domain the angular evolution over time of the shape on the half-positive hypersphere.
Fourier coefficients enable to obtain a robust shape descriptor. In the frequency domain, most
of the shape information are included in the first lowest frequencies. One obtains a robust
and global representation of trajectories by discarding high frequencies which correspond
to less relevant information or noise. Considering only angular variations of the spherical
coordinates ensures that any processing in the frequency domain will keep the resulting
trajectory on S+L (thus the sum of associated probabilities equals to 1).

Activity trajectories are open shapes in S+L . Reconstruction of shapes from low-frequency
Fourier coefficients does not necessarily coincide with the end-points of the original shape.
When removing high frequencies, it has a tendency to become a closed shape and to oscillate
near end-points. To avoid this problem, the method of [20] for open curves is adapted. It
corresponds to the Fourier transform performed on a cumulative angular curvature function.
It preserves end-point positions of the original shape when it is reconstructed from only low
frequencies of its Fourier descriptor (see Figure 5).

Figure 5: Top row: trajectory smoothing on S+L . Left : original trajectory. Center: simplified reconstructed
trajectory using standard Fourier descriptor. Right: simplified reconstructed trajectory using total curvature Fourier
descriptor. Start-point and end-points keep the same position when using the total curvature function. Bottom row
shows the reconstructed trajectory using a decreasing number of Fourier coefficients.

To characterize these trajectories, we concatenate the Fourier transform coefficients of
the cumulative angular curvature of each trajectory angular coordinates. Because of the
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geometry of the hypersphere, the resulting descriptor is not invariant to translations, scales
and rotations: such invariance would not be here a desirable property. In fact, the position
on the simplex depends on the actions performed during the activity. Two different activities
which have trajectories with the same shape but do not share necessarily the same elementary
actions. They will be on two different positions on S+L (see Figure 6).

Figure 6: Trajectories having the same shape but different positions in the simplex. First trajectory (top row) goes
from Wave action to Run action. Second trajectory (bottom row) goes from Wave action to Jump action. Because
of the concatenation of angular coordinates φ , the two resulting descriptors are different.

5 Experiments
In order to test the discriminative performance of the proposed method, three complex ac-
tions from UCF11, UCF50 datasets and Olympic Sport dataset are considered: High-Jump,
Basket-ball and Base-ball. Figure 7 shows some trajectories for each activity class.

Figure 7: Examples of activity trajectories: High-Jump activity, Base-ball activity, and
Basket-ball activity.
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Activities in these datasets are performed with different points of view, speed and some
visual variations (see Figure 8).

(a) (b)
Figure 8: Example of two Base-ball video sequences with different points of view sharing
globally the same shape on the manifold.

Four elementary actions are used Wave, Jump, Run and Walk (setting L = 5 for taking
into account the Standing class). We set the temporal window size to N = 6, and 10 videos
for each class are considered.
The first step consists in up-sampling each trajectory to obtain the same number of points for
all of them. The Fourier cumulative curvature descriptor is then used to characterize each
trajectory. Only 50% of initial Fourier coefficients is kept in the final descriptor.

5.1 Classification results
We perform a Leave-One-Out cross-validation test using a SVM with a RBF kernel. The
goal is to evaluate the performance of the method and to assess the interest of characterizing
trajectories in the simplex with the Fourier-shape descriptor. A recognition rate of 96.6%
is obtained. Table 3 exposes results of the cross-validation test for each activity class. It
illustrates the fact that Fourier shape descriptor provides a good characterization of activ-
ity trajectories on the semantic hypersphere. Trajectories of the same activities commonly
share the same shape and the same sequence of elementary actions. Describing trajecto-
ries by Fourier coefficients enables a robust and compact characterization of the shape in
the frequency domain. In fact, results remains the same until a removal up to 80% of the
coefficients. Figure 5 shows that the global trajectory shape is maintained with only 10%
of Fourier coefficients. Moreover, the use of spherical coordinates allows to encode in the
descriptor information about elementary actions variation over time, which is a crucial point
here.

Activities High jump Basketball BaseBall

High jump 100% 0% 0%

Basketball 0 100% 0%

Baseball 10% 0 90%

Table 3: Confusion matrix when a SVM classifier is trained on activity trajectory features from our method.
(High-Jump, Basket-ball and Base-ball). Recognition rate is 96.6%.

The recognition rate obtained with a Leave-one-out cross-validation test emphasizes the
discriminative power of this representation. Considering trajectories on the simplex allows
to take into account the temporal order of elementary actions for each activity class. In
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comparison, we have applied the STIP method provided by [11] on videos used in our ex-
periments. The confusion matrix is presented in Table 4. The global recognition rate for the
STIP on this set is 86.6%, to be compared with the 96.6% reached by the proposed method.
The semantic aspect of our method also allows a better generalization of human activities.

Activities High jump Basketball BaseBall

High jump 100% 0% 0%

Basketball 0 80% 20%

Baseball 0% 20 80%

Table 4: Confusion matrix when a SVM classifier is trained with the STIP method from Laptev [11]. Recognition
rate is 86.6%.

6 Conclusion
We develop in this paper an original approach for human activity recognition. The method
characterizes human activities as a sequence over time of elementary actions probabilities.
These sequences are then projected as trajectories on a semantic simplex to be character-
ized using the total curvature Fourier descriptor. The frequency domain allows to encode
shape information on trajectories and permits to discriminate between different human ac-
tivity classes. Unlike generative probabilistic model, the elementary actions which compose
human activities are statistically learned with a robust action recognition method trained on
a cross-dataset.
Considering human actions as trajectories on the semantic manifold opens the way to differ-
ent applications, such as video summary by computing a mean shape on the manifold.
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