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Abstract

In this work, we study a real-time human detection method for mobile devices using
window proposals. We find that the normed gradients, designed for generic objectness
estimation, are also able to rapidly generate high quality object windows for a single-
category object. We also notice that fusing the normed gradients with additional color
feature improves the performance of objectness estimation for the single-category object.
Based on these observations, we propose an efficient method, which we call personness
estimation, to produce candidate windows that are highly likely to contain a person. The
produced candidate windows are used to search over feature maps of an image so that
a human detection method can achieve high detection performance within a short pe-
riod of time. We further present how personness estimation can be efficiently combined
into part-based human detection. Our experiments indicate that the proposed method is
directly applicable to mobile devices, and allows real-time human detection.

1 Introduction

Human detection has been extensively researched under various names such as pedestrian
detection [6], people detection [11, 18], and head-shoulder detection [17] in recent years.
Human detection for mobile devices also plays an important role in various applications such
as human computer interaction, automatic human focusing, and surveillance. Among many
human detection algorithms, deformable part model (DPM) has become one of the most
popular human detection methods [3] since Felzenszwalb et al. proposed the discriminatively
trained part-based model [9]. However, it is difficult to see a practical application of DPM
human detection on mobile devices due to its computational overhead.

The DPM method constructs a feature pyramid composed of multiscale feature maps,
and takes the sliding window approach for each feature map. The DPM method also needs
several mixture models describing various human poses. Each mixture model has one root
filter capturing the overall body shape in lower resolution and several part filters capturing
detailed body parts. Thanks to these sophisticated techniques and procedures, it becomes
possible to detect humans with good detection rate. But a system running the algorithms
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(b)

Figure 1: An example of human detection based on personness estimation: (a) The best
matched windows generated by personness estimation: Total 723 candidate windows are
generated, and 6th, 14th, and 17th windows are matched. (b) Human bounding boxes (BB)
detected with the aid of candidate windows.

needs huge computational power when computing filter scores by performing convolutions
between the filters and feature maps with the sliding window approach. Take, for example,
the case of DPM human detection on a 375x500 image, OpenCV implementation constructs
33 scale levels of feature pyramid, and performs 1,786,962 convolution operations between
14 filters and the feature pyramid [13]. According to the sample profiling report of Microsoft
Visual Studio 2012 [12], the convolution operation dominates the total detection time (which
is about 1.4 seconds) with 53.47% for the 375 x500 image.

Many object/human detection papers try to improve detection speed by optimizing each
procedure of DPM with better algorithms, strong CPUs (plus SIMD instructions), and many
GPUs on a desktop PC [2, 16, 19]. But, when software is developed and submitted to some
application stores, one cannot assume what kinds of device our algorithm runs on. To make
things worse, processors in mobile devices are much slower than desktop CPUs, and do not
have enough GPU cores to boost the algorithm speed. Therefore, optimizing each procedure
of DPM and making it several times faster are not enough for mobile devices. DPM should
be able to search for humans from the most promising windows in mobile devices. Detection
algorithms for mobile devices work under time constraints. Heavy detection algorithms that
are not responding for a long time can affect system performance or cause inconvenience
to users. Moreover, DPM detection for mobile devices needs several mixture models, since
various poses and partially occluded shapes are frequently captured. Considering hardware
limitations and captured high resolution images of mobile devices, an exhaustive search for
DPM human detection is not a practical approach.

On the other hand, objectness (a.k.a. detection proposals) measure methods have gained
popularity recently [10]. An objectness measure generates object windows that are likely
to contain generic objects, and allows avoiding an exhaustive search. Its intention to im-
prove detection speed seems to be perfectly matched with real-time detection in mobile
devices. However, when our DPM implementation based on [13] spends about 200 mil-
liseconds searching over all multiscale feature maps, existing objectness measure methods
reviewed and evaluated in [10] spend more than 250 milliseconds. Since spending more than
250 milliseconds only for generating candidate windows is not well suited for real-time de-
tection, it is difficult to adopt current measure methods except for BING which takes about
15 milliseconds on our platform. An objectness measure method needs to be reasonably
faster than an exhaustive search in real-time detection.
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For this reason, we propose a more efficient and accurate method for estimating human
windows in an image in order to enhance detection rate within a short period of time. In this
study, we are interested in humans, not generic objects. So we name objectness estimation
[1] for humans simply as personness estimation.

Our contributions are as follows:

1. We show that our DPM human detection method based on personness estima-
tion is efficient as demonstrated in section 3. In our experiments, personness esti-
mation makes the DPM human detector obtain more than 70 percent of its original
performance with only 10ms window search that includes generating windows and
performing convolutions. When a detector looks for a single-category object in real
time, too many candidate windows for all possible objects make the detector rather
slow. We show how to avoid generating too many windows based on the linear sup-
port vector machine (SVM). We also show how to use additional color feature for the
single-category object using the SVM framework.

2. We show how a DPM detector can make better use of objectness estimation. Our
DPM design efficiently computes filter responses using provided candidate windows
under time constraints. The DPM implementation also considers two important fac-
tors (aspect-ratio threshold and patch size for pinpoint explained in subsection 2.3) to
achieve better detection performance using window proposals.

3. We introduce the recall-time metric to evaluate objectness measure methods for
real-time DPM detection. Speed is very important in comparing objectness measure
methods for real-time detection, and should be involved in the metric. To our best
knowledge, there has been no previous metric that consider both the speed and the
quality of objectness measure method. Our metric imposes importance on speed of an
objectness measure, and evaluates the measure based on the detector performance it
supports. We make all code related to our experiments publicly available to facilitate

the study of real-time object estimation'.

2 The proposed method

We choose the following two features to take the discriminative approach on PASCAL VOC
datasets [7].

Edge As one can see from the success of HOG [5], there are various strong edges (oriented
gradients) in and around humans. To get the edge information, we adopt the normed
gradients (NG) feature [4].

Color We use a wide range of skin colors for color feature. But we take into account of
only small region around head, since skin colors can be also shown in background and
clothes.

To rapidly determine the priority order of each feature vector with a supervised approach,
we make use of the fast NG feature [4]. BING is the approximated version of the NG feature
[4]. For the convenience, we call the objectness measure method using BING or NG feature
Bing. In this section, we describe the NG feature first, and then explain our proposed method
in detail.

Thttp://q1kim.github.io/personness/
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(2 (b) (d
Figure 2: NG features and a 8 x 8 downsampled example: (a) Objectness filter w generated
with the original implementation [4]. (b) Personness filter w,, for human detection. (c)
A 128%256 human window. (d) The 8 x 8 downsampled image of (c). The yellow box
emphasizes the head part in (c).

2.1 Normed gradients and objectness estimation

An NG feature is a 64 dimensional vector describing the magnitude (a.k.a. norm) of the
gradients of an 8 x 8 downsampled image. The authors of [4] found that one can efficiently
estimate whether an image window contains an object or not by examining the NG feature
of the window. As shown in Fig. 2(a), the learned 64 dimensional linear model w € R8x8
obtained by using the first stage linear SVM [8] on VOC 2007 dataset [7] shows a distinctive
gradients roughly similar to a circle. This center-surrounded pattern implies that generic
objects have well-defined closed boundaries [4]. To examine every image window for the
objectness measure, a magnitude map of gradients is resized to 36 predefined quantized
shapes (or quantized sizes in [4]). The results are called NG maps. By calculating the
correlation values between the NG maps and w € R8>8 we can obtain a filter score for
each window. Because each quantized shape has information about the original scale and
aspect ratio, we can bring back the original window shape for the greatest filter score. It is
also important to note that, in the public code > of [4], a quantized shape is ignored in the
predicting stage if the quantized shape has less than or equal to 50 positive samples in the
training stage. The final objectness score is calculated as follows:

0i = Vi S(ixy) i 1

where v;,1; € R and s(; ;) are learned coefficient, a bias term and the filter score at position
(x,y) of each quantized shape i. s; ) is obtained using the first stage linear SVM, and v;
and #; are obtained using the second stage linear SVM. We refer the reader to [4] for more
details.

The simple framework allows high computational efficiency. However, Bing is not con-
sidered to be well designed for detection tasks by Hosang et al. and Qiyang et al. [10, 14].
It is because Bing is optimized for an intersection over union (IoU) of 0.5 [10, 14]. Using
Bing-based personness estimation, we show that this weakness can be compensated for by
modifying a DPM detector to calculate additional filter responses around the target location.

Zhttp://mmcheng.net/bing/
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2.2 From objectness to personness

Even though SVM training on various object categories makes the original linear model w €
R8*® work for generic objects, it degrades the performance of the SVM classifier for hu-
man detection, since, for example, a person and a chair have huge difference in shape. And
in many images of VOC 2007 dataset, head is not shown for the ground truth region of a
person. These difficult person images in the VOC dataset also impair the classifier’s per-
formance. Therefore, we generate the new linear model w, € R3*® shown in Fig. 2(b) by
training the linear SVM only on humans that our DPM detector can detect. This restricted
training technique also reduces the number of quantized shapes to consider. Here, our DPM
implementation has two mixture models, one is for full-body and the other is for upper body.
Fig. 2(b) illustrates that w,, € R8>8 surprisingly places more confidence in the shoulder and
head regions. Therefore, our personness estimation can be understood in the same context
of edgelet [18] and edge pattern [17] that are trying to capture the strong edges of humans
to enhance the detection performance.

Skin color is another important feature to measure the personness. After training the
linear SVM on VOC 2007 dataset, we choose four points (3,1),(3,2),(4,1),(4,2) to extract
skin color information. Head and neck are usually located in these four points as shown in
the Fig. 2(d). Even though the personness score of a silhouette or a back of a person where
skin is not shown is decreased, it is obvious that people with skin exposed are more likely
to be captured. Because we want to search for humans from the most promising windows,
making use of skin color of the face part generates better candidate windows.

When function skin(x,y) returns a binary value indicating whether the point (x,y) is skin
color according to the skin color model in [15], the skin score at position (x,y) is

4
Clixy) = % 'Zl kzs Skin(x + kvy + ]) )
j=lk=

And the new personness score is as follows:
Pi = Vir S(ixy) T Ui~ Cixy) THi 3)

where u; € R is learned coefficient for skin score using the second stage linear SVM. Even
though we use additional skin information, the personness measure is faster than the object-
ness measure with the NG feature because of the reduced number of quantized shapes.

2.3 Combining DPM and personness

We divide DPM into three stages: setup, detection and evaluation. In the setup stage, DPM
builds a feature pyramid, and initializes three pyramids: filter response pyramid, probe flag
pyramid and convolution flag pyramid. Because our DPM does not perform convolutions
from left-top to right-bottom, we make sure that duplicated computations do not arise by
adopting the two flag pyramids (probe and convolution). probe implies a trial of performing
selective convolutions triggered by a given window. In the detection stage, filter responses
are computed between root/part filters and some selected feature vectors. Given a candidate
window, how can we effectively select feature vectors in the feature pyramid?

In the estimation stage, personness estimation just produces many candidate windows,
sorted in descending order according to their personness scores. In detection stage, on the
other hand, DPM needs to know not only scale level / of the filter response pyramid to iden-
tify a filter response map, but also location (%, 7) of the filter response map to select feature
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Algorithm 1 Converting a window to pinpoints

Input: threshold - aspect-ratio threshold
window - a candidate window

rootFilter - a root filter i
probePyramid - the probe flag pyramid level [ +1
Output: pinPoints - (1,%,y) vector (4 % y) — .

1: ratio <— compare-aspect-ratio(window, rootFilter)

2. if ratio > threshold then

3:  Throw away window

4: else

5. level [:= level-search(window, rootFilter)

6: forl<[—1toi+1do )

7: (%,7) + center(window)/scale(l) Figure 3: T"hree. > x > P atc.hes
8: if probePyramid(l,x,y) # true then around the p 1np.01nts (in red) in a
o: Add (1,%,7) to pinPoints response pyramid of a root filter.
10: probePyramid(l,x,y) < true

11: end if

12:  end for

13: end if

vectors to be convolved. With width w, height A, and center position (x+w/2,y+h/2) of a
window, we can pick the corresponding (I, %, 7). We call the exact response-map coordinates
(1,%,y), which correspond to a given window, pinpoints. The more detailed procedure of the
window-pinpoints conversion is described in Algorithm 1. At this conversion from windows
to pinpoints, one should keep in mind that a window for personness was quantized, so it
might not be completely fitted to a real human window. Therefore, two important factors are
additionally considered for the window-pinpoints conversion.

Aspect-ratio threshold Aspect ratios of candidate windows should be similar to the ones
of root filters. The detection performance significantly increases by ignoring largely
different windows in shape. Conversely, the detection performance decreases if too
many candidate windows are abandoned. Therefore, the parameter threshold shown
on line 2 in Algorithm 1 needs to be carefully decided. From our experiments on VOC
datasets, we found that setting threshold to 1.52—1.55 achieves the best performance
for detection”.

Patch size for pinpoint For each computation of the root filter responses, our DPM method
performs additional convolutions around the pinpoint in the filter response pyramid.
We call the area that we additionally consider patch. In our implementation, additional
two layers of patches are also used for each candidate window as shown in Fig. 3 and
Algorithm 1. The probe flag pyramid prevents duplicated convolutions caused by
the same pinpoint as shown on line 8 in Algorithm 1. The convolution flag pyramid
prevents duplicated convolutions caused by a near pinpoint located in the same patch.
Increasing the patch size allows DPM to detect objects even with slightly overlapping

3The experimental results about the aspect-ratio threshold and the patch size are available in the supplementary
material.
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Figure 4: The flowchart of the proposed method: Our method has four stages (estimation,
setup, detection, evaluation). In the estimation stage, candidate windows are generated by
personness estimation. The setup, detection, and evaluation are performed by the DPM
human detector. The generated windows in the estimation stage are used to perform selective
convolutions in the detection stage. Detection threads check the remaining time at every 3
windows.

candidate windows. Doing so, however, causes a problem of performing unnecessary
convolutions. Another problem of enlarging patch is that detection can exceed its
allowed time budget. Our experiments demonstrate that size 5 x 5 or size 7 x 7 yields

good performance’.

After DPM performs convolutions between the chosen feature vectors and a root filter, it
calculates part filter responses of feature vectors corresponding to the root positions. When
time runs out, the detector finishes computing filter responses, and moves to the evaluation
stage. In the evaluation stage, the detector computes the overall root scores as discussed in
[9]. Fig. 4 illustrates the overall procedure of our method.

3 Experimental results

We evaluate the performance of our personness measure on VOC 2007/2012 datasets [7].
The images of VOC datasets capture realistic scenes that our method exactly aims at. For all
the experiments, we use the same the 1.54 aspect-ratio threshold and 7 x 7 patch size. The
personness measure is compared with Bing, random guess, sliding windows, and RAND-
SCORE [14]. Qiyang et al. proposed RAND-SCORE and, according to them, it also gener-
ates promising windows whose IoU is above 0.5 [14]. We could not evaluate the objectness
measure methods reviewed in [10] except for Bing, since their speeds are slower than the
sliding window approach of our DPM implementation. To fairly compare our method with
other methods, we remove all the ground truth boxes that the DPM with exhaustive search
cannot detect. We evaluate each measure method based on how much it contributes to the
DPM human detector in a given time. We consider a person is detected if oU between a
detector’s BB and a ground truth BB is greater than 0.5.

For the robust linear model w, € R3*% and reliable evaluation, we use 2984 human
windows in 1959 images of VOC 2007 dataset for training, and 6137 human windows 4806
images of VOC 2012 dataset for testing. We make sure that VOC 2007 images in VOC
2012 dataset are excluded from testing. Our method is implemented in C++ using OpenCV
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Figure 5: Log-average miss rate for different time limits

library, and all experiments are carried out with an Intel i7-4470 3.40GHz processor under
Windows 7 64-bit environment without OpenMP.

As a performance measure, we first plot the log-average miss rate (LAMR) against false
positives per image [6] at Sms, 20ms, 35ms, and 50ms time limits as shown in Fig. 5. The
time limits are imposed on the estimation and detection stages that are related to window
search. In the detection stage, our DPM implementation checks the elapsed time at every 3
candidate windows, and if the time limit is exceeded, it finishes computing filter responses.
Fig. 5 indicates that our method has the lowest LAMR at each time limit. This means that
our personness measure provides the best candidate windows for DPM detection in our ex-
periments. We present the illustrative results for the 25ms time limit in Fig. 7.

We also measure recall with different time limits from 5Sms to 55ms for six methods
to show the efficiency of our method clearly. Fig. 6 illustrates the recall-time curves. Our
method in red line reaches high recall value in a much shorter time than other methods.
Considering that it takes about 135ms for the conventional sliding window approach to reach
0.9 recall value, the personness measure shows outstanding estimation ability to help the
DPM method achieve about 0.9 recall value within only 30ms. Personness estimation is more
effective especially when a given time budget is very limited. The DPM method achieves


Citation
Citation
{Doll{á}r, Wojek, Schiele, and Perona} 2012


KIM, SOHN: REAL-TIME HUMAN DETECTION BASED ON PERSONNESS ESTIMATION 9

—=— Personness

NG
0.4- —+ BING
—— Random Guess
0.3 —+— Sliding Window|
v RAND-SCORE
0.2 1 1 1 T T
10 20 30 40 50

time (milliseconds)

Figure 6: The recall-time graph

more than 0.5 recall value within Sms with personness estimation. With the 15ms time
limit, the recall value of personness estimation is at least 0.44 greater than other methods.
It is important to note that these experiments are carried out on a desktop PC. So in mobile
devices with less powerful processors, we believe that our method becomes more useful due
to larger performance gap between personness estimation and others.

It is also interesting that the distinctive performance difference between Bing and RAND-
SCORE can be observed with the recall-time graph. The influence of Bing jumps after
20ms because their processing time for estimation is about 15ms. However, the influence
of RAND-SCORE [14] is still minimal. This is a different result from what Qiyang et al.
observed in [14]. They state in [14] that the performance of RAND-SCORE is rather good
or sometimes even better than Bing with the detection-rate/windows-amount metric.

As explained in subsection 2.2, training the linear SVM only on human windows in
VOC 2007 images reduces the number of quantized shapes to 16. This reduced number of
quantized shapes makes our personness measure faster than the objectness measure with the
Bing features as shown in table 1.

Table 1: Average estimation time on VOC 2012 dataset [7]
NG RAND-SCORE BING Personness

Time (milliseconds) 16.06 15.05 14.66 3.69

3.1 Discussion

In [10], Hosang et al. state that the objectness measure methods specialized in IoU of 0.5 are
not effective for object detection. Indeed, if an objectness measure method can generate more
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Figure 7: Personness based human detection with the 25ms time limit on VOC 2012 dataset
[7]: (a) The best matched windows produced by personness estimation. Window indices are
written at the center of each window. The window index starts at 1. As can be seen, low-
index windows are matched well among about 800 candidate windows. (b) Obtained human
BBs with the help of personness estimation. It is worthwhile to note that these results are
obtained with only 25ms window search. That is, the time budget for personness estimation
and convolution computation is 25ms. Because of the limited time budget, a false negative
case is also shown.

accurate windows, the DPM detector does not require larger patches, and therefore inspects
more windows in a given time. However, we believe that IoU of 0.5 is still meaningful to
real-time detection, especially for small number of categories. The problem of lower overlap
(IoU = 0.5) can be overcome by increasing the patch size in DPM. If low-index windows
have more chances to contain objects, good detection rate can be achieved as demonstrated
in this section. Under real-time constraints, instead of consuming much time for accurate
windows, we think that starting searching early with 0.5-IoU windows can be a reasonable
method.

4 Conclusions

In this paper, we proposed personness estimation that generates promising human windows
within a short period of time for real-time human detection. To show the efficiency and
practicality of personness estimation, we designed a real-time DPM human detection that
makes effective use of personness estimation. The experiments on VOC 2007/2012 datasets
[7] indicate that our proposed method allows to use complex detection algorithms even for
real-time human detection. Our personness estimation itself can be orthogonally applied to
other human detection algorithms apart from DPM. In our future work, we would like to
study human detection with convolutional neural network (CNN) on mobile devices and its
personness estimation.
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