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Abstract

Domain adaptation (DA) methods attempt to solve the domain mismatch problem
between source and target data. In this paper, we propose an incremental dictionary
learning method where some target data called supportive samples are selected to assist
adaptation. Supportive samples are close to the source domain and have two properties:
first, their predicted class labels are reliable and can be used for building more discrimi-
native classification models; second, they act as a bridge to connect the two domains and
reduce the domain mismatch. Theoretical analysis shows that both properties are impor-
tant for adaptation, enabling the idea of adding supportive samples to the source domain.
A stopping criterion is designed to guarantee that the domain mismatch decreases mono-
tonically during adaptation. Experimental results on several widely used visual datasets
show that the proposed approach performs better than many state-of-the-art methods.

1 Introduction
Classification tasks often assume that the training and testing data are drawn from the same
distribution. However, this assumption is often challenged by real applications where test-
ing data may have large intra-class variances compared to the training data. For example,
face recognition models trained on frontal faces with good resolution may be called upon to
classify non-frontal or blurred faces. This domain shift has resulted in a large drop in clas-
sification performance and many DA methods have been developed to address this problem
[1, 3, 6, 7, 9]. There are two main settings for DA: semi-supervised DA allows a few class
labels in the target domain and in the case of unsupervised DA, target labels are not available.
In this paper, we mainly focus on the more difficult unsupervised setting.

One class of unsupervised methods discover a domain-adaptive subspace for both do-
mains. They learn a transformation and project samples from both domains into a common
subspace, in which the distribution divergence between the two domain becomes smaller
[1, 6, 7, 9]. Others attempt to reduce the domain mismatch by reweighting or selecting some
source samples [8, 13]. Although, some of them take advantage of the source sample labels,
most of these approaches fail to fully use the discriminative information in the target domain.
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Figure 1: Scheme of the incremental dictionary learning for domain adaptation. The original
source data is colored in blue and the target data is colored in red. Different shapes represent
different classes. The red samples with shadow indicate the previously selected supportive
samples that have been added to the source domain. The red samples with black border
represent the supportive samples selected in the current iteration.

Since the distributions in both domains are different, exploiting only the source labels does
not necessarily preserve the discriminative information in the target domain.

In contrast, some bootstrapping-based DA methods [3, 12, 19, 21] use the source classi-
fier to predict some target labels and then add them to the source domain to adapt the initial
classifier. However, a major limitation of these methods is that they need some heuristic
threshold to determine when to stop the adaptation and they do not explicitly show whether
the adaptation can reduce the domain mismatch in each iteration [3, 21]. As shown in
[2, 16], the divergence between the two domains is the key factor that affects the classifica-
tion performance. So it is desirable to guarantee that the dissimilarity decreases monotoni-
cally.

Dictionary learning has shown good performance in classification [22, 23] and domain
adaptation [17]. In this paper, we propose an incremental dictionary learning-based method
which explicitly reduces the domain divergence, and simultaneously performs the adapta-
tion and classification. Specifically, we iteratively find some supportive samples in the target
domain and add them to the source domain. These supportive samples have two nice prop-
erties. First, the predicted labels of the supportive samples are reliable. So they are used to
train a more powerful classification model. Second, the supportive samples are close to the
source domain. So they reduce the domain divergence. As stated in [2], both properties are
important for domain adaptation.

In addition, a good stopping criterion is crucial for efficient adaptation. We introduce a
domain similarity measure and only conduct adaptation when the domain similarity value
increases after each iteration. In this way, we automatically guarantee that our adaptation
will monotonically reduce the domain mismatch. Both theoretical analysis and experimental
results show the effectiveness of the stopping criterion.

The rest of the paper is organized as follows. A brief review of related works is presented
in section 2. In section 3, we describe the proposed incremental DA approach and provide
a theoretical analysis of the algorithm. Experimental results on object recognition and face
recognition datasets are reported in section 4, with some more analysis on supportive sample
selection and stopping criterion of adaptation. We conclude in section 5.
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2 Related Work

Recently, domain adaptation has drawn great attention in vision community. One class of
DA approaches closely related to our method is bootstrapping-based methods [3, 12, 19, 21].
Basically, they first train the source classifier which is used to predict the labels of target data.
Then some of the highly confident labeled target samples are added to the source domain to
retrain the classifier. This procedure is repeated iteratively until convergence. In [3, 12, 21],
some samples close to the classifier margins are chosen as candidates to be added to the
source. However, the predicted labels are not reliable enough and may mislead the classifier.
To overcome this problem, [19] added a regularizer to the classifier. But they need to tune
many heuristic thresholds which makes it difficult to generalize. In addition, for all these
methods the domain mismatch may not decrease consistently.

Dictionary learning has also been widely used for domain adaptation. [17] built a smooth
path of intermediate dictionaries from the source to the target domain by minimizing the
reconstruction error and explicitly reducing the domain mismatch. However, labels are not
used during adaptation. In [20], authors learned two domain-specific projections and a
common dictionary to embed data into a low-dimensional space. They also considered the
source labels to improve the discriminative ability of the dictionaries. There is no guarantee,
however, that the low-dimensional space can reduce domain dissimilarity. In addition, none
of these approaches exploit the target discriminative information.

3 Proposed Approach

In this section, we first present the proposed incremental dictionary learning-based DA
method. We will then introduce a domain similarity measure and give some theoretical
analysis to prove the effectiveness of the proposed method. We begin with describing some
notations used in the paper.

We use X s = X (0) = {xs
i} ∈ Rd×Ns , X t = {xt

i} ∈ Rd×Nt to denote the data from source
and target domains where Ns , Nt denote the number of samples respectively, and d is the
dimension of data. Let L= {1, ..,C} represent the existing label set. Let D(0) = [D(0)

1 |...|D
(0)
C ]

denote the original dictionary trained on source domain where D(0)
j ∈ Rd×K denote the sub-

dictionary that corresponds to class j, and K represents the number of atoms in each class-
specific sub-dictionary. Let P ∈ RNt×C denote the confidence matrix with each element
pi j ∈ [0,1] representing the probability that target sample xt

i belongs to the class j. Let
W ∈ RNt×C denote the binary selection matrix with each element wi j ∈ {0,1} indicating
whether the target sample xt

i is selected as supportive samples for class j. X (k), D(k), P(k),
W (k) denote the augmented source domain, dictionary, confidence and selecting matrix in
the kth iteration.

3.1 Incremental Dictionary Learning for DA

Given the dictionary D(k), we want to select a subset of target samples as supportive sam-
ples. We have two constraints on this selection. First, the supportive samples selected in
the previous iterations should be excluded as we want to add new data for adaptation. Sec-
ond, we select equal number of supportive samples for each class to ensure class balance
during adaptation [8]. With these two constraints, we select the most confident samples

Citation
Citation
{Bruzzone and Marconcini} 2010

Citation
Citation
{Habrard, Peyrache, and Sebban} 2013

Citation
Citation
{Seah, Ong, and Tsang} 2013

Citation
Citation
{Tommasi and Caputo} 2013

Citation
Citation
{Bruzzone and Marconcini} 2010

Citation
Citation
{Habrard, Peyrache, and Sebban} 2013

Citation
Citation
{Tommasi and Caputo} 2013

Citation
Citation
{Seah, Ong, and Tsang} 2013

Citation
Citation
{Ni, Qiu, and Chellappa} 2013

Citation
Citation
{Shekhar, Patel, Nguyen, and Chellappa} 2013

Citation
Citation
{Gong, Grauman, and Sha} 2013



4 LU, CHELLAPPA, NASRABADI: UNSUPERVISED DOMAIN ADAPTATION

that minimize the reconstruction error when represented by D(k). Then we update the aug-
mented source domain by adding supportive samples and retrain the dictionary. After that,
the stopping criterion is checked to see whether adding new supportive samples will reduce
the domain dissimilarity. The proposed approach is shown in Fig. 1.

Confidence Matrix Update: In the (k + 1)th iteration, we update the confidence matrix
P(k+1) using the current class-specific dictionaries D(k) = [D(k)

1 |...|D
(k)
C ]:

p(k+1)
i j =



1√
2σ2

exp(−
e(k+1)
i j
2σ2 )

C
∑

l=1

1√
2σ2

exp(−
e(k+1)
il
2σ2 )

if j = argmax
l

p(k+1)
il

0 otherwise

(1)

where σ2 is a normalization parameter and ei j denotes the reconstruction error of target
sample xt

i using D(k)
j :

e(k+1)
i j = ||xt

i−D(k)
j ·Z

(k+1)
i j ||22 (2)

where Z(k+1)
i j is the sparse code. Here p(k+1)

i j 6= 0 only when j is the most likely class that
sample i belongs to. This constraint guarantees that a sample cannot be selected as the sup-
portive sample for multiple classes.

Supportive Samples Selection: We select new supportive samples using W (k+1) by solving
the following optimization problem:

W (k+1)
j = argmax

W j

tr(WjP
(k+1)
j )

s.t. W (k+1)
j ·

k

∑
l=1

W (l)
j = 0, ||W (k+1)

j ||0 = Q, j = 1, ...,C
(3)

where Wj ∈ RNt×Nt are diagonal matrices containing the jth column of W on the diagonal,
e.g., Wj = diag{w1 j,w2 j...} and similarly Pj = diag{p1 j, p2 j...}. Q is the number of sup-
portive samples for each class.

This objective function (3) maximizes the confidence of the selected supportive samples.
The first constraint requires that the supportive samples in the (k+1)th iteration are disjoint
from the previously chosen ones which ensures that we keep adding new supportive samples
to the source domain. The second constraint ensures that the number of supportive samples
for each class is balanced.

The solution to (3) is to find the corresponding Q supportive samples that maximize the
confidence with the constraint that old supportive samples are excluded.

Augmented Source Domain Update: After selecting the supportive samples, we update the
augmented source data by adding weighted supportive samples to the previous source data:

X (k+1)
j = [X (k)

j |X
tW (k+1)

j P(k+1)
j ] j = 1, ...,C (4)

Since the labels of the supportive samples may have error, each selected supportive sample
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is weighted by its confidence. The weights indicate the reliability of the labels of the sup-
portive samples and highly confident supportive samples will contribute more to the model.

Dictionary Update: The dictionary is updated by solving the following optimization prob-
lem:

D(k+1)
j = argmin

D j ,Z j

||X (k+1)
j −D j ·Z j||2F +λ ||Z j||1 j = 1, ...,C. (5)

We solve ( 5) using the online dictionary learning method [15]. The dictionary obtained
in the previous iteration is used as the initial dictionary in the next iteration. In this way, the
computational cost is relatively low.

Stopping criterion: One trivial stopping criterion is to stop when there are no new support-
ive samples for one of the classes. But our goal is to guarantee that the adaptation process
monotonically reduces the domain divergence. In this way, the classification error bound in
target domain will decrease as stated in [2]. So we design in the next section a domain sim-
ilarity measure and we only perform adaptation when the domain similarity increases after
each iteration. The proposed approach is summarized in Algorithm 1.

Algorithm 1 Incremental dictionary learning for unsupervised DA

Input: Initial dictionary D(0) = [D(0)
1 |...|D

(0)
C ] learned from the source data, the target do-

main data X t , similarity measure of two domains ρ(X s,X t), number of supportive samples
Q per class, parameters λ .

Output: Class labels for target data X t .
k = 0
repeat

1. Confidence update: For each input data xt
i , compute the reconstruction error on each

D(k)
j using ( 2). Update each element of the confidence matrix P(k+1) using ( 1)

2. Supportive sample selection: For each class j, select the supportive samples using
W (k+1)

j by maximizing ( 3).

3. Augmented source domain update: Update the augmented source domain X (k+1)
j

by adding the new supportive samples:

X (k+1)
j = [X (k)

j |X
tW (k+1)

j P(k)
j ] j = 1, ...,C (6)

4. Dictionary update: Update each class-specific dictionary D(k+1)
j by minimizing ( 5)

.
5. k← k+1.

until no supportive samples is selected or ρ(X (k+1),X t)<= ρ(X (k),X t)
classify X t using the final dictionary.

3.2 Theoretical Analysis
In this section, we first introduce the domain similarity measure used for determining the
stopping criterion. In order to quantify the domain similarity, several methods have been
proposed [6, 17]. However, they need to design the dictionary or do PCA for both domains,
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which may be time consuming when the data size is large. We introduce a simple domain

similarity measure for X s and X t : ρ(X s,X t) =
√

1
NsNt

∑
i

∑
j
(xs

i
T xt

j)
2 =

√
tr((Xs)T X t (X t )T Xs)

NsNt
.

Since the classification accuracy on supportive samples is good, the main reason that
causes the performance to drop in the target domain is that the source classifier behaves
poorly on the non-supportive samples. It indicates that domain mismatch mainly lies be-
tween the source samples and the non-supportive samples. If the distance between supportive
samples and non-supportive samples is smaller than the distance between the source domain
and the non-supportive samples, selecting supportive samples can help reduce the domain
mismatch and thus help classification as stated in [2]. The following theorem proves this
notion and we present experimental results to validate the theoretical results in Section 4.

Theorem 1. We divide the target samples into two part, supportive samples X f and non-
supportive samples Xn with N f and Nn samples. With the definition of ρ above, and if
ρ(X f ,Xn) > ρ(X s,Xn), then the domain similarity (or mismatch) will increase(or decrease)
when we add some supportive samples to the source domain:

ρ(X s
new,X

t)> ρ(X s
old ,X

t) (7)

where X s
old = X s and X s

new = [X s|X f ].

Proof. Since ρ(X f ,Xn)> ρ(X s,Xn), we have:

ρ
2(X f ,Xn)−ρ

2(X s,Xn)

=
tr(XT

n X f XT
f Xn)

NnN f
− tr(XT

n X sX sT Xn)

NnNs
=

tr((NsX f XT
f −N f X sX sT )XnXT

n )

NnNsN f
> 0.

Then:

ρ
2(X s

new,X
t)−ρ

2(X s
old ,X

t) = tr(X s
new

T X tX t T X s
new)− tr(X s

old
T X tX t T X s

old)

=
tr(([X s|X f ][

XsT

XT
f
][Xn|X f ][

XT
n

XT
f
])

(Ns +N f )(Nh +N f )
−

tr(([Xn|X f ][
XT

n
XT

f
]X sX sT )

Ns(Nh +N f )
> 0

⇔
tr((X sX sT +X f XT

f )(XnXT
n +X f XT

f )

(Ns +N f )
−

tr((XnXT
n +X f XT

f )X
sX sT )

Ns
> 0

⇔ tr((NsX f XT
f −N f X sX sT )XnXT

n )> 0.

4 Experiments
In this section, we evaluate the proposed method for 2D object classification and face recog-
nition. For object classification, we use the standard benchmark dataset Office+Caltech
[10, 18] for domain adaptation. For face recognition, we follow [17] and conduct experi-
ment on the CMU-PIE dataset [11]. We compare our method with several state-of-the-art
unsupervised DA methods. Experimental results show that our method outperforms all other
approaches significantly in most cases.
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4.1 Object Recognition
Office+Caltech contains object images of four domains: Amazon (A), Webcam (W), DSLR
(D), and Caltech (C). This leads to a total of 12 domain pairs for testing. 10 common classes
are selected in all domains. For each class, A, C, D and W have about 100, 100, 15 and
30 images, respectively. We follow the protocol used in [8, 14] to generate the source and
target domain data. DeCAF features [5] are used in our experiment.

We compare two non-adaptation (NA) methods, and five state-of-the-art unsupervised
DA methods: SVM and Dictionary Learning Based Classification (DLC) are the two NA
methods, Subspace Interpolation via Dictionary Learning (SIDL) [17], Geodesic Flow Ker-
nel (GFK) [7], Transfer Joint Matching (TJM) [14], Landmarks [8] and DA-NBNN [21]
are the unsupervised DA methods. DLC is implemented using the online dictionary learning
method as [15] and is also used as the initial dictionary in the proposed approach.

GFK, SIDL and TJM are based on learning domain-invariant subspaces and they are fully
unsupervised. In particular, SIDL share a similar idea with GFS [9], but they use dictionary
as basis. Landmarks reweight and select some source samples to assist adaptation, and they
also utilize source labels to learn a discriminative classifier. DA-NBNN is a bootstrapping
based method and are most closely related to our proposed approach, while our method differ
from DA-NBNN in that we use different sample selection and stopping criteria.

We set λ = 0.05 and σ2 = 0.05. For λ , [24] has shown it is non-sensitive to classifi-
cation . For σ2, we use maximum likelihood estimation to estimate it in a similar way as
suggested in [4] for each domain. In practice, we calculate the mean for all domains and set
a uniform value for simplicity. For A, C, W and D, we set K = 80,80,20 and 8 respectively.
Theoretically, Q can be set uniformly to 1. We can accelerate the convergence speed by
setting Q to a reasonably larger value according to the dataset size. For A,C, W and D we
set Q = 8,8,2 and 1, respectively. Due to the space limitation, we only show the sensitivity
analysis results on K and Q in section 4.

Method A→C A→D A→W C→A C→D C→W W→A W→D W→C D→A D→C D→W

NA SVM 85.04 87.90 78.98 91.44 89.81 80.00 75.68 99.36 71.95 87.06 78.81 98.64
DLC 85.31 82.17 75.59 91.34 87.90 78.64 78.40 98.72 76.05 88.10 81.56 99.32

DA

GFK [7] 77.29 84.71 81.02 88.52 85.99 80.34 81.84 100 73.91 85.80 75.96 97.29
SIDL [17] 84.51 81.53 74.24 90.92 89.81 78.31 75.05 100 71.15 87.89 80.14 99.32
TJM [14] 80.14 84.71 75.25 89.04 85.35 76.94 84.86 100 78.01 87.37 77.38 98.64

DA-NBNN [21] 83.44 80.89 76.61 89.67 87.90 80.34 88.00 100 82.46 91.34 86.11 97.97
Landmarks [8] 84.68 85.99 82.37 92.38 92.35 84.07 84.03 98.73 71.68 77.04 74.35 95.25

Proposed method 86.73 92.36 88.47 93.31 88.54 95.59 92.80 100 88.69 93.11 89.13 99.32

Table 1: Recognition accuracies on 12 pairs of cross-domain unsupervised object recogni-
tion. A: Amazon, C: Caltech, W: Webcam, D: Dslr

4.1.1 Results on recognition rate:

The recognition rates for all 12 domain pairs are summarized in Table 1. Our proposed
approach outperforms other methods on most pairs. We notice that the difficulty for the 12
adaptation tasks vary a lot. Our method tends to gain more over other approaches on more
difficult pairs, e.g., A→W, W→C, and behaves similar to other methods on the easier pairs,
e.g., D→W. This indicates that the proposed method can boost more on those pairs where
domain dissimilarity is relatively large. The reason is that large domain discrepancy provides
more space for our adaptation process, which means adding the supportive samples can
continuously reduce the domain divergence. In contrast, if the initial domain dissimilarity
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(a) A as source domain (b) C as source domain (c) W as source domain (d) D as source domain

Figure 2: The change in domain similarity when the supportive samples are added to the
source domain. Solid and dotted lines represent the iterations in which the domain similarity
increases and decreases respectively. In our experiments, we only continue our adaptation as
long as the similarity value goes up, which is represented by the solid lines before the slash
symbols. A: Amazon, C: Caltech, W: Webcam, D: Dslr

is small, adding the supportive samples may not reduce the domain distance in a significant
way, and our method is likely to stop early and thus behave similar to other techniques.

We notice that [8] performs better than baselines when A or C acts as the source do-
main. It demonstrates the effectiveness of selecting easier adaptive samples. However, its
performance drops significantly when W or D acts as source domain. This is because when
the source domain is relatively small, the selection of landmarks will further reduce source
domain size and leads to insufficient training data. In addition, the performance of [21] is
good when W or D acts as the source domain. It reveals that it is very important to exploit
the target discriminate information when the source domain is small.

4.1.2 Domain Similarity Evaluation:

In section 3.2, by setting up the stopping criterion, we proved that adding supportive samples
reduce the domain divergence under a mild assumption. In this section, we compute the
similarity of the source and target domains as the supportive samples are gradually added to
the source domain. Results are shown in Fig. 2. Here we set the adaptation iteration number
to be 10 to monitor how the similarity value changes as adaptation is performed. In our
experiments, we only continue our adaptation as long as the similarity value goes up, which
are represented by the solid lines. The dotted lines show that adding more supportive samples
may enhance the domain mismatch after some iterations. In this situation, the adaptation
process should be terminated.

We compare the changes in domain similarity in Fig. 2 with our classification results in
Table 1, and find that we are likely to gain more from our method when the domain similarity
value continues to go up as more supportive samples are added to the source, e.g., A→W. It
indicates that reducing domain dissimilarity indeed helps the classification task.

It can be observed from Fig. 2 that when the domain similarity, before adaptation, is
high it often means the NA methods can work well with high classification performance.
However, in this case, as we add more supportive samples to the source domain, the do-
main similarity may change very little or even decrease, where the adaptation may bring no
additional benefits or even harm the classification performance. In contrast, if the original
domain similarity value is low, the condition in Theorem 1 is easy to satisfy and the domain
similarity can increase continuously as more supportive samples are added. Therefore, better
results can be achieved as our adaptation process goes on. This explains why the proposed
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(a) dictionary atoms K (b) supportive samples Q (c) dictionary learning time (d) iterations to converge

Figure 3: (a) and (b) show the classification accuracy when K or Q varies. (c) shows the
dictionary training time when K varies. (d) shows the number of iterations needed for con-
vergence when Q varies. A: Amazon, C: Caltech, W: Webcam, D: Dslr

method performs well in hard cases.

4.1.3 Parameter Sensitivity:

We conduct a sensitivity analysis on parameter K and Q and show results on three pairs.
Other pairs behave in a similar way and results are omitted due to space limitation. We can
see from Fig. 3 (a) and (b) that the performance does not depend much on K and Q. However,
a relatively small K makes the dictionary more compact and a relatively large Q accelerates
the rate of convergence, as showed by Fig. 3 (c) and (d). In (c), we use Caltech data to train
the dictionary and it indicates that the dictionary learning time increases almost linearly as
the number of dictionary atoms increase. In (d), W→C is used to run the algorithm and
shows that the number of iterations needed for convergence drops rapidly as Q increases.
This is not surprising since the total number of supportive samples should be almost the
same regardless of the value of Q.

4.2 Face Recognition
Here we show the experimental results for face recognition on the CMU-PIE dataset. We fol-
low the protocol presented in [17] and consider the proposed approach for face recognition
under blur and illumination variations.

4.2.1 Across blur and illumination variance:

We select faces from 34 classes with 21 lighting conditions for each class, in which 11
samples for training and 10 samples for testing. We add Gaussian blur and motion blur to
testing samples to evaluate different situations. 6 situations are considered in our experi-
ments: Gaussian blur with standard deviation of 3, 4, or 5, motion blur with lengths of 9, 11,
or 13. In our experiments, λ is set to be 0.05. σ2 is chosen to be 10. We set K = 10 and
Q = 1. We compare our results with the same baseline methods as in section 4.1.

Results presented in Table 2 show that the proposed method outperforms other approaches
by a large margin. We see that DLC approach gives us a good initial point for adaptation.
It indicates that dictionary-based classification methods are robust to Gaussian blur and mo-
tion blur, as well as illumination changes. We normally gain 5% -10% from the initial point
and similar to object recognition, we tend to gain more when the initial mismatch between
source and target is relatively large. Our method can overcome some blur variations at the
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beginning and then further reduce domain mismatch through adaptation from the source to
target.

We can also interpret the physical meaning of the supportive sample faces. Since the
light condition changes smoothly from source to target, the supportive samples should have
closer illumination conditions with the source domain than other non-supportive samples.
Once the supportive samples are added to the source domain, the rest of the samples in the
target are easier to classify because the supportive samples reduce the illumination mismatch
from the source to the target.

Methods σ = 3 σ = 4 σ = 5 len = 9 len = 11 len = 13
SVM 76.18 71.47 69.71 80.00 74.71 67.06
DLC 88.82 87.35 86.18 91.18 82.06 75.00

GFK [7] 78.53 77.65 74.71 84.41 73.82 64.71
SIDL [17] 80.29 77.94 76.76 85.88 81.18 73.53
TJM [14] 76.18 72.06 70.29 78.24 65.88 53.24

DA-NBNN [21] 62.35 58.53 57.94 65.59 54.12 42.65
Landmarks [8] 80.29 77.94 77.06 82.65 76.18 70.59

Proposed method 94.70 93.24 90.29 96.47 93.24 92.35

Table 2: Recognition accuracies on face recognition under illumination and blur mismatch.

5 Conclusion
In this paper, we propose a novel incremental dictionary learning method for unsupervised
domain adaptation. Supportive samples are iteratively selected to smoothly connect the
source and target domains. We utilize the supportive samples to reduce the domain mis-
match, as well as build a more discriminate classifier, both of which are crucial for classi-
fication performance. We design an efficient stopping criterion to guarantee the adaptation
reduces the domain dissimilarity monotonically. Extensive experiments on both object clas-
sification and face recognition datasets show promising results compared to many state-of-
the-art DA methods.
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