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Abstract

The real-time localization of a camera in an unknown or partially known environ-
ment is a problem addressed by Structure From Motion algorithms and more particularly
CSLAM algorithms (Constrained Simultaneous Localization And Mapping). In this pa-
per, we propose a new algorithm, named MCSLAM (Multiple Constrained SLAM ),
designed to dynamically adapt each optimization to the variable number of parameters
families and heterogeneous constraints. An automatic method is used to generate a ded-
icated optimization algorithm, from an exhaustive list of constraints. To our knowledge,
this is the only implementation that combines flexibility and performance. Known ob-
jects are used to constrain the 3D structure of the reconstruction and a continuous-time
representation of the trajectory is used to deal with motion constraints. A continuous
trajectory provides a simple way to add heterogeneous constraints into the optimization
framework like other unsynchronised sensors or an evolution model. Several experi-
ments show the effectiveness of our approach in terms of accuracy and execution time
compared to the state of the art on several public benchmarks of varying complexity.

1 Introduction
Monocular visual SLAM algorithms compute at the same time the 3D pose of the cam-
era and features from the environment using a sequence of temporally ordered images. It
is very useful for applications like mobile robot automatic guidance or augmented reality.
Constrained SLAM (CSLAM) have been introduced to inject prior like known 3D object
models or motion constraints within the optimisation process (see figure 1). Although many
CSLAM contributions have been published in the last decade, there is no real-time imple-
mentation that deals dynamically with both a variable number of parameters families (sensor
pose, roughly known objects poses and dimensions, delay between sensors, ...) and het-
erogeneous constraints (reprojection error, distance from points or edges to object surface,
acceleration...).

We propose a new algorithm, named MCSLAM (Multiple Constrained SLAM ), de-
signed to dynamically adapt each optimization to the variable number of parameters families
and heterogeneous constraints. This algorithm is based on three contributions: 1) a new
Levenberg-Marquardt optimizer C++ library named LMA 2) an architecture allowing a high
level of flexibility and performances 3) a real-time usage of a temporal spline curve as the
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Figure 1: The presented MCSLAM algorithm is designed to be easily customizable. It
manages different configurations involving different constraints. For example, a depth sensor
could easily be added in the process.

parametric trajectory model that provides an efficient way to add heterogeneous constraints
within the optimization. LMA is based on a compile-time algorithm designed to generate a
mean least-square solver specialized to a given problem. Using meta-programming technics,
LMA offers better run-time performances using a similar API to the state of the art optimiza-
tion libraries. The design of the MCSLAM allows to easily add or remove some constraints
coming from heterogeneous observations on the system motion or the 3D structure of the
environment. This design allows us to include a spline curve constraint adapted from the
Lovegrove et .al work [23] to be usable into a real-time key-frame based SLAM.

Section 2 relates the works on bundle adjustment libraries and CSLAM. Section 3 is
a presentation of the proposed LMA library. Then the proposed MCSLAM algorithm is
detailed in section 4. Optimization results are shown through a benchmark in 5.1 and MC-
SLAM is evaluated in terms of precision on real data in 5.2.

2 Related Work
This section reports recent works published around visual CSLAM algorithm and open-
source available libraries used to solve bundle adjustment (BA) problems. SLAM algorithms
are generally classified in two main categories: probabilistic methods based on a recursive
Bayesian filter [6], and optimization methods based on bundle adjustment [34]. In this paper,
we focus on sparse bundle adjustment (BA) methods that offer a good trade-off between
accuracy and execution time as shown by Strasdat et al. [31].

2.1 Optimization libraries for bundle adjustment
BA is an algorithm based on the minimization of a cost function corresponding, most of the
time, to the reprojection error. Lourakis et al. [22] present a tutorial about BA applied to
camera poses and 3D points. They detailed the internal structure of the hessian matrix (ap-
proximated by JT J) and the normal equations resolution using the problem sparsity. They
show that it’s possible to avoid every zero value and see the hessian like a set of little block
matrices in order to save memory space and avoid useless computations. They also detail
how to use the Schur complement trick to reduce the complexity of little to medium size
problem. However, the Schur complement is the result of a product matrix by matrix which
is very time consuming on big size problems. To solve some problems involving thousands
of camera and millions of 3D features in the benchmark [2], Agarwal et al. exploit the inex-
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act Newton method, whose convergence has been demonstrated by Wright et al. [36]. This
method solves approximatively the normal equations using only few iterations of the pre-
conditioned conjugated gradient (PCG). And the Schur complement is evaluated implicitly
using only matrix by vector product.

Several open-source efficient implementations already exist. sba, developed by Lourakis
(2004) is one of the first popular library for solving BA problem. g2o is a C++ framework
develop by Kummerle et al. [16] to optimize graph-based non-linear error functions and that
uses a sparse structure. pba [37] is the most optimized and specialized library for large BA
problem (exploit parallel computer architecture using SIMD, multi-thread and GPU). Ceres
[1] is the most advanced open source library for general non least squares optimization based
on highly optimized sparse library, supported by Google.

The optimization algorithm must fit dynamically to a variable constrained configuration.
The two state of the art libraries usable to solve this optimization problem are Ceres1 and
g2o 2. They are able to manage many kind of constraints but they need the data structure of
the problem to be rewritten to fit a certain format. Moreover, the genericity of these frame-
works is based on the inheritance of the C++ language which negatively impacts the perfor-
mances. To overcome this limitation, we propose a new optimization library named LMA,
opensource, written in C++, and based on the automatic generation of code at compile-time.
LMA generates a specialized code to solve a non-linear least squares problem of Levenberg-
Marquardt type.

2.2 Constrained-SLAM

Usually, a SLAM algorithm [13, 26] minimizes the reprojection error corresponding to the
distance in pixels between the 3D point projected in a camera frame and the observed feature.
Some approaches use 3D edges instead of 3D points [8] in slightly textured environments, or
in complement with 3D points [14] to improve the robustness of the localization system dur-
ing rapid camera motion. Recently, Mur-Artal et al. [27] propose a robust real-time SLAM
framework evaluated on many datasets. They improve the accuracy of classical SLAM us-
ing ORB descriptor and by defining additional criteria on the 3D points tracking, key-frames
selections, and optimized parameters selections. However, monocular methods will always
suffer from the scale factor drift and the error accumulation. To tackle these limitations,
constrained SLAM (CSLAM) methods based on monocular vision use some additional in-
formations (known or partially known object, evolution model, additional sensors, ...) to
constrain the reconstruction and to increase the accuracy of the localization. Two categories
of constraints can be used to improve the accuracy of SLAM reconstructions:1) motion con-
straints (evolution model, spline, odometer, GPS, IMU, ...) and 2) structure constraints (3D
object, 3D points cloud, depth sensors, ...).

Many works propose to include inertial measurement unit (IMU) and GPS data to con-
strain the bundle adjustment [9, 11, 15, 17, 19, 21, 23, 25]. Whereas Lhuillier [21] proposes
a new minimization algorithm to deal with heterogeneous measurements, Kume and Mi-
chot [15, 25] minimize a weighted sum of sensors measurements and reprojection errors. In
[19], Leutenegger et al. use an IMU to constrain the poses of a key-frame based SLAM. This
approach linearly interpolates the key-frame poses at the time of the IMU data to apply a mo-
tion constraint. A similar problem is tackle by Furgale et al. in [9] using a continuous-time

1http://ceres-solver.org/
2https://github.com/RainerKuemmerle/g2o
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representation of the trajectory to avoid data interpolation. Using a b-spline parametrization
of the sensors motion, they demonstrate the possibility of estimating the rigid transformation
between camera and IMU, and the IMU bias. The same problem is solved by Lovegrove et
al. in [23] using a cumulative b-spline to define the trajectory of a rolling shutter camera and
an IMU. Whereas Furgale et al. represent the motion by a spline of position and a spline of
rotation (using Cayley-Gibbs-Rodrigues formulation), Lovegrove et al. use the Lie Algebra
se3 of the matrix group SE3 to parametrize both position and rotation with one spline.

Concerning structure constraints, Rodriguez et al. [29] use a structureless approach
(without 3D points) by constraining the camera motion with the epipolar geometry. For
augmented reality applications, Tamaazousti et al. [33] use observations provided by an ac-
curate model of the observed object. These observations are added into the BA introduced
in [26] to constrain the 3D points of the object. Even if the result of the method is very
accurate, it doesn’t fit with an application involving many coarsely initialized and modeled
objects because the pose and the shape of an object aren’t optimised during the CSLAM.
Similarly to our approach, Galvez et al. [10] optimized the parameters of 3D objects de-
tected in real-time in the environment. Their objects detection is based on a exhaustive bags
of words dictionary and use the ORB detector. Larnaout et al. [18] use some constraints
from a terrain elevation model and an approximative city model to constrain the reconstruc-
tion in urban environment. The terrain elevation model applies a constraint on the altitude of
the trajectory, and the city model applies a constraint on the reconstructed 3D points. Other
works involving objects use multi-view stereo system [3] or depth sensors [4, 30, 32, 35] to
reconstruct 3D shapes. In [5], Dame et al. use a dense SLAM to build a depth-map using 3D
shape priors. However, this solution requires a lot of extra computations compared to sparse
approaches.

3 LMA: A new implementation of the
Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm [20][24] is a very popular non-linear least squares
method to solve computer vision problems. The main idea of our implementation of this
algorithm is to provide a simple interface with a non-intrusive mechanism of adaptation to a
problem while maintaining good performances. Instead of adapting a problem to the speci-
ficities of a solver, LMA adapts itself to the problem. LMA works as a meta-program (a
program writing another) using C++ template to analyse at compile-time (CT) the problem
to optimize from a list of C++ functors (a functor represents a constraint in C++ language).
The parameters are deduced from the functors arguments and the degree of freedom (dof )
of each parameter is defined by the user. Then LMA generates a data structure to store the
functors and the parameters in heterogeneous container (also known as tuple) according to
the number of parameters families and constraints. The resolution of the normal equations
is written efficiently using a sparse representation constructed with a set of small matrices
of static sizes (ie. known at CT). The size of each small matrix depends of the dof. of the
corresponding parameters. Storing matrices of different static sizes is possible using tuple.
In [28], Polok et al. show that implementing the normal equations using only matrices of
static sizes offers better runtime performance for least squares problems compared to other
sparse approaches used in Ceres. Using tuple, LMA never needs inheritance and polymor-
phism which allows the compiler to generate an efficient program. Moreover, LMA detects
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at CT the cross derivatives which are never used by analysing the link between parameters
involved in every functor. In a same way, it detects at CT if a part of the hessian is symmetric
diagonal in order to use adequate storage and inversion strategy. The LMA library solves the
normal equations using dense Cholesky (from Eigen3) or a sparse PCG specially designed to
manage little matrices of static size. It also implements the classical optimization tricks (like
the Schur Complement, or the Implicit Schur method) to be effective on little, medium, and
big size problems. At run time, the solver is filled with the constraints using the observations
and the corresponding parameters. The minimization policy is managed by the Levenberg-
Marquardt algorithm which updates every problem parameters when the global error de-
creases. Note that LMA also implements common features as automatic differentiation
(which outperforms Ceres Jet implementation using template expressions) and robust cost
functions. LMA is available freely available on git.univ-bpclermont.fr/datta.ramadasan/lma.

4 MCSLAM

This section presents how we designed the MCSLAM algorithm to add motion and struc-
ture constraints. Our approach is fully generic on every parameters and constraints. The
continuous-time representation of the trajectory is used to deal with constraints on the mo-
tion. This allows to mix data from many unsynchronised sensors and evolution model. To
apply constraints on the 3D structure of the environment, 3D models of coarsely knowns
shapes are used. This approach has been tested with different constraints: reprojection be-
tween poses and 3D features (3D points and edges), 3D distance between the 3D objects
and the 3D features, constant velocity model and IMU gyrometer and accelerometer on the
trajectory. Each parameters family has its own parametrization. Every orientation (for cam-
era, 3D edges, 3D objects and knots) is parametrized using the exponential map [13]. The
functioning of the MCSLAM is based on an exhaustive list of constraints and of parameters
organized in a graph of dependencies. Each constraint corresponding are created, associ-
ated to some parameters, and removed according to the classical scheme of the incremental
reconstruction described by Mouragnon [26]. This is described with more details below.

4.1 Motion constraints : Spline

To represent the motion, we use the uniform cumulative b-spline described by Lovegrove et
al. [23] but we separate position and orientation in two different splines. We use the Ro-
driguez formula to compute the exponential and the logarithm of SO3 group on the rotation
needed to evaluate the spline, its derivative and second derivative. This provides better run-
time performances compared to a generalist exponential or logarithm implementation on the
4× 4 matrix of the SE3 group. The evaluation of the spline at time t needs four consecu-
tive knots (controls points) [p0, p1, p2, p3] with respective time [t0, t1, t2, t3]. Those knots are
selected such as t1 ≤ t < t2. The time t is normalized between p1 and p2 (note that using
uniform b-spline, (t2− t1) is constant): u = (t − t1)/(t2− t1). Kim et al. [12] proposed a
cumulative form of the b-spline basis function from the Cox-De Boor formula [7]. Using
this representation, the coefficient of the spline for a normalized time u are:

{B1(u),B2(u),B3(u)}= {(u3−3u2 +3u+5)/6,(−2u3 +3u2 +3u+1)/6,u3/6} (1)

3eigen.tuxfamily.org
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The position S, velocity Ṡ and acceleration S̈ of the spline at the normalized time u are
computed using the following formulas:

S(u) = p0 +
2

∑
i=0

(pi+1− pi)Bi+1(u) (2)

Ṡ(u) =
2

∑
i=0

(pi+1− pi)Ḃi+1(u) (3)

S̈(u) =
2

∑
i=0

(pi+1− pi)B̈i+1(u) (4)

with Ḃ and B̈ the trivial first and second derivative of B according to u. All the details
about the evaluation of the orientation spline are accessible in [23]. Moreover, we adapt
the key-frame based SLAM to deal with the spline: a constraint is added in the solver to
minimise the difference (in position and orientation) between each optimized key-frame and
the spline at the key-frame time. We also use every inter-key-frame poses computed by the
localization process to apply a weak constraint on the spline. A temporal sliding window
of 3 seconds is used to select, from the SLAM and the IMU, the more recent data used to
constrain the spline. And identically to Lovegrove et al., we use a constant velocity model to
apply a physical constraint to the spline: this constraint minimizes the variation of velocity
(in position and orientation) between every consecutive optimized knots of the spline.

4.2 Structure constraints : 3D Objects
4.2.1 Create and remove 3D objects

When a 3D object is observed, a constraint between the object and its 3D features is created
and added to the optimization process. The position, orientation, scale factor and shape
of the new 3D object are coarsely initialized (in a semi-automatic manner)4 and optimized
on-line during the MCSLAM . The initialization consists in fitting, approximatively, the 3D
model of an object with a subset of 3D features provided by the reconstruction. During the
MCSLAM , the user uses the interface to click a convex hull in the image around the object.
Then, the 2D features inside the convex hull are used to initialize the object according to the
2D−3D associations. Each class of object (from the exhaustive list of parameters) is tested
and the class giving the best fit is kept. When none of the 3D features are associated to the
3D object, it is no longer constrained so it is removed from the optimization process.

4.2.2 3D objects and features association

MCSLAM dynamically integrates, in the optimization process, the constraints coming from
the objects partially known from the environment (i.e whose geometric model is approxi-
matively known). However, the reconstructed 3D features may correspond either to the un-
known part of the environment, or to the partially known objects. To ensure the MCSLAM
convergence, a step of association between 3D features and the corresponding objects is re-
quired at each optimization. In this work, a 3D feature P is associated to an object π if the
distance dP between P and the nearest surface of the object π is lower than a threshold σπ .

4Classical 2D image detection algorithms could be used to achieved a fully automatic initialization.
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Figure 2: Dependencies graph of MCSLAM .

To choose a value of σπ invariant to the reconstruction scale factor, the dimension Dπ of the
object π is used such as σπ = Dπ ×λ with λ the intensity of the constraint set to 0.005. If
an association is created, the parameters of the 3D features P and the parameters of the cor-
responding object π are optimized in order to minimize the distance dP. So, the optimization
process combines pixelic errors (reprojection errors) and metric errors (3D distance between
features and the objects). The homogenization of these two errors is possible by weighting
the 3D errors with the coefficient σπ .

4.3 MCSLAM implementation

The MCSLAM algorithm is based on the dependencies graph presented by the figure 2. This
graph contains a list of constraints, a list of parameters and a list of dependencies. The MC-
SLAM uses the graph during two important steps. The first step consists of analysing the
problem configuration (list of constraints, list of parameters and links between each of them)
at compile-time to generate a specified LMA solver, whose cost function to minimize is the

sum of the constraints C dynamically added: E = ∑
C
i=0 ∑

Ki
k=0

∥∥∥ρi,k
σi

∥∥∥2
with Ki the number of

observations corresponding to the constraint i, ρi,k the error associated to the observation k
of the constraint i and σi the estimation of the measurement error. The σi value is specific
to each constraint : for 3D objects it’s σπ see section 4.2.2, for the reprojection error it’s the
feature detector error (2 pixels is used), we use 1 for the gyrometer and 50 for the accelerom-
eter. The second step is the skimming of the graph according to the dependencies to feed the
solver with the parameters and the constraints. Each constraint has a list of functors and each
functor corresponds to one error term of the cost function to minimize. Moreover, one func-
tion has to be written for each constraint: this function has two input, the dependencies graph
and the solver. Because the types of those two objects are specific to the graph configuration,
this function is written using generic types (C++ template). Thus, each constraint has a full
access to the graph and any required data in order to fill the solver. To achieve real-time per-
formances, we extend the incremental reconstruction scheme described by [26] to manage
the constraints. It means that the minimization has to deal with constraints involving at the
same time optimized (recent parameters) and non-optimized parameters (deprecated param-
eters). This produces an anchorage of the optimized parameters according to the deprecated
parameters. Consequently, the constraints are applied only on parameters corresponding at
the end of the reconstruction (spatially and temporally).
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5 Experiments
This section presents first an optimization benchmark on a public datasets used in [2]. The
aim of this benchmark is to compare LMA, Ceres and g2o in term of performance and
accuracy on bundle adjustment problems. Then various configurations of MCSLAM are
compared to prove the benefit of using heterogeneous constraints. All the experiments are
run on a desktop computer with a processor i7 3.4GHz.

5.1 LMA evaluation
Three comparatives are performed on problems of different sizes using the solvers g2o,
Ceres-1.10 and LMA (execution time are summarized in table 3(a)) The first comparative
is a basic problem designed to optimize the equation of a circle by minimizing the distance
between 2D observations and the circle. The problem is composed of 3 dof. and 2000 obser-
vations. Each solver iterates 3 times and the computation of the derivatives is numeric and
centred. After 3 iterations, the error is the same for the 3 solvers. The computation times are
2.2 ms for g2o, 2.4 ms for Ceres, and 0.51 ms for LMA. In this experiment, LMA is 4.8 times
faster than Ceres and 4.3 times faster than g2o. The 3 solvers use the same dense algorithm
(from Eigen) to solve the normal equation, so the difference of performance is only made
by the absence of inheritance in LMA. The second experiment is performed on an instance
of the dataset used in the Ceres benchmark [2]. Each solver is limited to 10 iterations of
Levenberg-Marquardt, derivatives are numeric and centred, and the PCG (using the Schur-
Jacobi preconditioning [2]) is limited to 20 iterations when it’s used. The table 3(a) shows
the execution time of each solver on the benchmark instance composed of 16 poses, 22k 3D
points and 83k observations. On this instance, LMA is 2 to 3 times faster than Ceres and
g2o, with a similar accuracy, using the 4 following algorithms: Sparse (sparse PCG without
Schur complement), Dense Schur (dense Cholesky and Schur complement), Sparse Schur
(sparse PCG and Schur complement) and Implicit Schur (sparse PCG and implicit Schur
complement using inexact Newton method). g2o doesn’t implement the sparse resolution
without the Schur complement and the implicit method. The third experiment is performed
on the 35 instances of the dataset [2] with the Implicit Schur method (using the same con-
figuration as before) and shows that LMA is, on average, 2.5 times faster than Ceres, and
more accurate on 21 datasets out of 35. On the biggest dataset(4585 poses and 1.3M of 3D
points), LMA takes 131 seconds and is more accurate than Ceres which takes 298 seconds.
The convergence rate of LMA is equal to g2o because both use the same damping heuristic
to update the lambda parameter of Levenberg-Marquardt. Ceres has a different convergence
rate because of the trust region policy which is better for complexes cost functions.

5.2 MCSLAM evaluation
For these experiments, a global shutter video camera running at 60 fps is used with a reso-
lution of 640× 480. The IMU is a LandMark 40 AHRS running at 100 hertz. The aim of
this experiments is to evaluate the impact of the motion constraints on the accuracy of the
spline reconstruction. Four different configurations of the MCSLAM are tested : 1) SLAM
with a constant velocity model constraint, 2) SLAM with a constant velocity model and IMU
constraints, 3) SLAM with a constant velocity model and IMU constraints and IMU’s bias
optimization, 4) SLAM with spline, constant velocity model, IMU, IMU’s bias optimiza-
tion, and 3D object constraints. The ground truth is an indoor trajectory computed from a
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Circle (2 dof.) g2o Ceres LMA
Dense 2.26 2.49 0.51

BAL1(66k dof.) g2o Ceres LMA
Sparse x 2.63 1.06
Dense Schur 3.60 2.36 1.01
Sparse Schur 3.49 2.42 1.10
Implicit Schur x 2.97 1.12

BAL2 (4M dof.) g2o Ceres LMA
Implicit Schur x 298 131
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Figure 3: (a) LMA compared to Ceres and g2o (results are in seconds). (b) Ground truth of
the second experiment. (c) Image from the sequence of the second experiment. (d) Error in
position of the SLAM using different configuration of constraints. (e,f) IMU’s accelerometer
and gyrometer compared to the spline acceleration and orientation velocity.

structure from motion algorithm. An approximative edge model (which is generated using
the Acute3D software) of a real object of the environment is used to apply the structure
constraints. The orientation and position parameters of the 3D objects are included in the
optimization with others parameters. The real trajectory begins and ends at the exact same
point. This sequence is composed by 3.6k images and contains slow and fast motions. The
ground truth is visible on the figure 3(b) in blue, and the edge model in red and an image from
the camera is shown on the figure 3(c). Each MCSLAM configuration is run in real-time on
the sequence and compared to the ground truth. Moreover, to highlight the robustness of the
system, we artificially stop the camera poses constraints on the the spline during 1 second
every 2 seconds. During this period, the spline is only constrained by the evolution model
and the IMU. The errors in position are shown in the figure 3(d). We observe that the recon-
struction is getting better when the process uses more constraints. For those experiments,
the reconstruction process takes approximatively 0.1 second and is executed in parallel of
the localization process. The localization process is based on vision and takes 1 ms. Figures
3(e) and 3(f) shows the acceleration and the orientation velocity of the SLAM trajectory and
the IMU data using all constraints (motion model, IMU with bias estimation and 3D ob-
ject). This experiment show the importance of using many heterogeneous constraints with
the MCSLAM to increase the accuracy and the robustness of the reconstruction.

6 Conclusion
The proposed MCSLAM approach allows an easy implementation of SLAM problem using
a variable number of parameters families and constraints. The real-time implementation of
MCSLAM is based on the LMA optimization library whose performances outperform the
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state of the art alternative especially on BA problem. Thanks to the generic management
of the constraints, the method can fit many kind of scenario, involving different classes
of 3D objects and constraints on a continuous-time trajectory. The approach allows the
simultaneous usage of motion constraints, geometric constraints and reprojection constraints
on 3D points and edges. Using an important number of constraints of various kind brings a
good accuracy and stability to the reconstruction process. The application of the MCSLAM
to augmented reality using many classes of objects and sensors fusion has illustrated the
accuracy and the performances of the method.
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