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Abstract

Estimation of human body poses from video is an important problem in computer vi-
sion with many applications. Most existing methods for video pose estimation are offline
in nature, where all frames in the video are used in the process to estimate the body pose
in each frame. In this work, we describe a fast online video upper body pose estima-
tion method (CDBN-MODEC) that is based on a conditional dynamic Bayesian network
model, which predicts upper body pose in a frame without using information from fu-
ture frames. Our method combines fast single image based pose estimation methods
with the temporal correlation of poses between frames. We collect a new high frame
rate upper body pose dataset that better reflects practical scenarios calling for fast online
video pose estimation. When evaluated on this dataset and the VideoPose2 benchmark
dataset, CDBN-MODEC achieves improvements in both performance and running effi-
ciency over several state-of-art online video pose estimation methods.

1 Introduction
Estimation of human body poses, represented as the ensemble of joint locations, is an im-
portant problem in computer vision. As the basis for understanding human actions and be-
haviors from visual imagery, it has many applications, including gesture recognition, human
computer interaction, gaming, sign language recognition, and the study of affective states
and social behaviors. With the ubiquity of inexpensive video cameras on mobile devices and
laptop computers, it has become increasingly easy to capture live feed videos, from which
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(a) (b)

Figure 1: (Left) The CDBN model structure and (Right) an example of the CDBN-MODEC model
applied to online video pose estimation. Variable xt corresponds to observations at time t, i.e., image
features in individual video frames; yt corresponds to poses, i.e., joint locations, and zt is the latent
pose modes. See text for detailed explanations.

human poses can be estimated as a continuous time series for further processing. Many
practical applications require online pose estimation, where the results are obtained from
incoming frames without using information from future frames.

With the maturity of efficient single image based human body pose estimation methods
[5, 7, 11, 16, 17, 19, 21], one simple solution is to apply such methods to individual frames
of a video as if they are independent images. This approach works to certain extent, however,
temporal correlations of postures in consecutive frames and the assumption of smooth action
in video frames provide strong cues for robust estimations of poses through tracking and
prediction. So treating individual frames without considering such temporal correlations
usually leads to inefficient algorithm and inaccurate estimations, due to ambiguities and
occlusions in a single frame. In contrast, estimating poses from multiple frames in a video
provides a better means to handle occlusions and improve robustness of the estimation.

Pose estimation from videos (and particularly the one focusing on upper body postures)
has advanced significantly in recent years e.g. [3, 8, 9, 15, 18, 20, 22]. However, the majority
of these methods are offline in nature, i.e., body poses in a frame are inferred from both its
past and future frames. Furthermore, the performance of these methods in estimating poses
usually comes at the price of complicated inference procedures, which significantly reduce
running efficiency. As such, they are not applicable in tasks requiring fast online video
processing.

In this work, we describe a fast online method for upper body pose estimation from
videos. 1 We aim to extend existing single frame methods for online use, where latent
pose modes (or “poselets”) can be directly leveraged to improve motion consistency, in a
paradigm similar to detect-and-track for object tracking. Our method is based on a gen-
eral conditional dynamic Bayesian network (CDBN) model, which is a combination of two
widely used probabilistic graphical models, namely the dynamic Bayesian network (DBN)
[14] and conditional random field (CRF) [12]. The DBN aspect of our model captures the
temporal correlations between variables in a sequence, and the CRF aspect incorporates the
complex relations between the observations and latent variables. Fast online estimation are
achieved with an efficient particle filtering implementation of the inference.

A key characteristic of the CDBN model is that it is an “open architecture”, as it can
incorporate different underlying CRF models (including future ones) into the DBN structure.
When applying to online video pose estimation, this becomes an advantage, as it allows the
resulting algorithm to incorporate effective single frame pose estimation method into the
dynamic framework that models intra-frame correlations. In this work, we adopt part of
the efficient CRF pipeline from the MODEC single pose estimation of Sapp and Taskar

1Note that our approach is generic to handle full body, if the underlying per frame detection is full body.
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[16] as the CRF model in our CDBN framework. We term our method CDBN-MODEC
for video pose estimation. Fig.1 illustrates the structure of CDBN as a graphical model.
To better evaluate online pose estimation from practical video streams, we also create a
new high frame rate labeled dataset that calls for run time efficiency. When evaluated on
this dataset and the VideoPose2 benchmark dataset, CDBN-MODEC achieves considerable
improvements in both performance and efficiency over several state-of-the-art online video
pose estimation methods.

2 Related Works

Pose Estimation from a Single Image. There is an extensive literature on pose estimation
from single images (e.g. [2, 5, 7, 11, 16, 17, 19, 21]). Yang and Ramanan [21] introduced
a Flexible Mixture-of-Parts model for human pose recognition. This method allows parts
to be selected from several types and jointly learns the Deformable Parts Model (DPM) [6]
parameters in a tree-based structured model. Sapp and Taskar’s multimodal decomposable
models (MODEC) [16] introduced multimodality at the coarse-body and fine-part (shoulder,
elbow and wrist) granularities. They divide the upper body pose into two half-side bodies,
and for each side estimate pose modes, which can guide the tracking of arm and joint loca-
tions (similar to the DPM scheme) in a single-path tree structure. Such decomposable model
achieves improvements on both accuracy and speed. Given a torso bounding box as an input,
shoulder positions are estimated more accurately than the elbows and wrists.

Offline Video Pose Estimation. Significant efforts have been invested on the estimation of
human pose from videos [3, 8, 9, 15, 18, 20, 22], rather than single images. Motion flow
cues and features are key in this category of methods [3, 9, 22]. Many works exploit optical
flow for pose estimation. Ferrari et.al. [9] first use segmentation to aid the detection of body
pose in each frame, and then calculate the motion of lower limbs across frames. The “flow
puppets” of Zuffi et.al. [22] use a 2D upper-body shape model to track articulated motions,
where motion cues are integrated jointly with pose inference. Cherian et.al.’s offline method
[3] consists of two parts. The first part extends the work of [21] by adding motion flow
links at the pose inference step between consecutive frames. Across-frame links between
elbows and wrists introduce loops in the inference, thus loopy belief propagation (BP) is
introduced as a solver. Secondly, candidate poses are decomposed into the modeling of
individual limbs, where these limbs are recomposed after temporal smoothing. This method
achieves high accuracy among offline pose estimation methods (see Fig.2 and 4). However
its computation remains burdensome due to the extensive use of dense optical flow and loopy
belief propagation inference.

Online Video Pose Estimation. There are relatively fewer works addressing the problem of
continuous pose estimation from online video streams. Lim et.al. [13] proposed an online al-
gorithm to jointly segment a person from the background and estimate the upper body pose
from a video. Weiss et.al. [20] presented a Dynamic Structured Model Selection method
based on their MODEC model that uses meta features in structured learning to automatically
determine models to choose for inference. Jain et.al. [10] used a convolutional neural net-
work to incorporate both color and motion features for video pose estimation. In general,
existing methods in this category have difficulties processing real-time video streams due to
the extensive use of features such as dense optical flow. To our best knowledge, the devel-
opment of real-time online video pose estimation method is still an open problem, and the
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demand of such development continuous to grow.

3 Method
We first describe the CDBN model (§3.1) and its inference (§3.2), where the framework
is general and not limited to pose estimation. We then combine CDBN with the MODEC
method for online video pose estimation (§3.3).

3.1 The CDBN Model
We consider the following dynamic model that involves three time series variables: (1) an
input sequence of observation variables x0:t , (2) an output temporal sequence of latent state
variables y0:t , and (3) the sequence of latent mode selection variables z0:t with zt ∈{1, · · · ,M}
indicating one of the M input/output relation modes is active at time t. The CDBN model
represents the dependencies of these variables with a dynamic probabilistic model, which
corresponds to a factorization of probability distribution p(z0:t ,y0:t |x0:t) according to the
graphical structure in Fig.1(a), as:

p(z0:t ,y0:t |x0:t) = p(z0|x0)∏
t
τ=0 p(yτ |zτ ,xτ)×∏

t−1
τ=0 p(zτ+1|zτ ,yτ ,xτ+1). (1)

The joint model in Eq.(1) can be used for dynamic Bayesian inference. But to further simply
the model, we make the following assumption

p(zt+1|zt ,yt ,xt+1) ∝ p(zt+1|xt+1) · p(zt+1|zt) · p(zt+1|yt). (2)

Note that this condition is different from the typical assumption in DBN that xt+1 and (yt ,zt)
is conditionally independent given zt+1

2, but it makes the subsequent computations much
easier.

CDBN can be regarded as a conditional random field (CRF), but the output and latent
mode variables yt and zt are conditioned on the input observation xt from a dynamic Bayesian
network (DBN). As such, it is specified with the following conditional distributions given the
observations, as in Eqs.(1) and (2), which corresponds to the four arcs in Fig.1(a):

• state estimation p(yt |zt ,xt): conditional probability distribution of current state given
current observation and mode;

• observation-mode estimation p(zt |xt): conditional probability distribution of current
mode given current observable;

• mode-mode transition estimation p(zt+1|zt): conditional probability distribution of
next mode given current mode;

• state-mode estimation p(zt+1|yt): conditional probability distribution of next mode
given current state.

The four conditional distributions can be grouped into two categories. Conditional distribu-
tions p(yt |zt ,xt) and p(zt |xt) concern inference using variables of the same time index, as
such they form the inference module. On the other hand, conditional distributions p(zt+1|zt)
and p(zt+1|yt) describe correlations of variables in consecutive time steps, and they form the
dynamic module in the CDBN model.

2Such will be equivalent to p(zt ,yt ,xt+1|zt+1) = p(xt+1|zt+1)p(zt |zt+1)p(yt |zt+1), which cannot be deduced
from Eq.(2).
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3.2 Inference of the CDBN Model
Inference in the CDBN model corresponds to the computation of posterior distribution of the
output given the input p(yt+1|x0:t+1), which is obtained as

p(yt+1|x0:t+1) = ∑
M
zt+1=1 p(zt+1,yt+1|x0:t+1). (3)

We can further expand p(zt+1,yt+1|x0:t+1) using the joint distribution given in Eq.(1), as

p(zt+1,yt+1|x0:t+1) = p(yt+1|zt+1,xt+1)p(zt+1|x0:t+1), (4)

where the Markovian properties assumed in the joint model are used. The first term in Eq.(4)
corresponds to the estimation of the output variable given the current input xt+1 and latent
variable zt+1. The second term is mode estimation from the input x0:t+1, which can be further
expanded using Eq.(2), as:

p(zt+1|x0:t) = ∑zt

∫
yt

p(zt+1,zt ,yt |x0:t)dyt = ∑zt

∫
yt

p(zt+1|zt ,yt ,xt+1)p(zt ,yt |x0:t)dyt .

= p(zt+1|xt+1)︸ ︷︷ ︸
observation-mode est.

·∑zt p(zt+1|zt)︸ ︷︷ ︸
mode-mode est.

·
∫

yt
p(zt+1|yt)︸ ︷︷ ︸
pose-mode est.

· p(zt ,yt |x0:t)︸ ︷︷ ︸
previous posterior

dyt . (5)

Eqs.(4)-(5) provide the recursive Chapman-Kolmogorov update of the posterior distribution
p(zt+1,yt+1|x0:t+1), from which we can build the dynamic inference algorithm for CDBN.
However, a straightforward implementation of the dynamic update of CDBN is challenging
due to the need to integrate over the space of output variable yt in Eq.(5). This step usually
does not afford a closed form efficient numerical procedure. Instead, we solve this by adopt-
ing a particle filter approach, where the posterior distribution of p(zt ,yt |x0:t) is approximated
with weighted samples of yt (i.e., the particles).

In principle, we should use multiple particles from p(zt ,yt |x0:t). But in this work, we use
a simpler particle generation scheme to achieve maximum running efficiency. Specifically,
we use only one particle φ(zt) to represent the continuous output variable yt for each value
of the latent mode zt with unnormalized weight ψ(zt):

φ(zt) = argmaxyt
p(zt ,yt |x0:t) = argmaxyt

p(yt |zt ,xt), (6)
ψ(zt) = maxyt p(zt ,yt |x0:t) = p(zt ,φ(zt)|x0:t). (7)

That is to say, for each possible value of the mode variable zt , we represent the posterior
distribution p(yt |zt ,x0:t) with a particle-weight pair as (φ(zt),ψ(zt)) corresponding to the
mode of p(yt |zt ,x0:t). Using the particle filter approach, Eq.(5) is approximately computed
with

p(zt+1|x0:t+1)≈ p(zt+1|xt+1)∑zt p(zt+1|zt)p(zt+1|φ(zt))
ψ(zt )

∑z′ ψ(z′) , (8)

which is then combined with Eq.(4) to recursively find φ(zt+1) and ψ(zt+1). From the pos-
terior distribution, we use argmaxyt+1

p(yt+1|x0:t+1) to obtain the optimal estimation of the
output variable. The dynamic inference algorithm for CDBN is summarized as:

• Compute p(zt+1|x0:t+1) from Eq.(8) using particles with weights at time step t.
• For each pose mode zt+1, generate a new particle with a weight using Eqs.(6)-(7).
• Compute p(yt+1|zt+1,xt+1) for the output state yt+1.
• Move on to the next frame t← t +1.
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3.3 CDBN-MODEC for Online Video Pose Estimation

We apply CDBN to online video pose estimation, where the observation variable xt and
the latent state variable yt correspond to image features and the locations of joints (i.e.,
shoulder, elbow and wrist) of a person in each frame of the video, respectively. The latent
variable zt corresponds to the “pose mode” or “poselet” [1] that clusters similar poses into
groups, Fig.1(b). To implement a CDBN based online video pose estimation method, we
need to specify the inference module, i.e., conditional distributions p(yt |zt ,xt) and p(zt |xt),
and the dynamic module, i.e., conditional distributions p(zt+1|zt) and p(zt+1|yt). Because
the inference module only relies on variables from a single frame, in principle, we can use
any single image pose estimation method that also clusters poses into explicit “modes”. In
this work, we choose the MODEC model [16] as the basis for the inference module, where
p(zt |xt) is computed from matching HOG pyramid features, and p(yt |zt ,xt) comes from
pose estimation using the CRF of the MODEC method. The two conditional distributions
p(zt+1|zt) and p(zt+1|yt) in the dynamic module are determined from a machine learning
approach using labeled training data.

Revisit MODEC Pose Estimation. To estimate upper body pose from an input image,
MODEC first runs torso detection [1] to determine the locations of the upper body of a person
in the video. In practice, we found that it is more effective to locate torso by first using a
standard face detector and then scale the bounding box of the detected face to determine
the bounding box of the person’s torso. After that, MODEC computes two sets of HOG
feature pyramids in order to employs two cascaded classification steps. In the first step, pose
mode (or cluster) probabilities are estimated based on the coarse HOG pyramid (i.e. the side
model) [4] of the image. For running efficiency, MODEC only models poses of the left half
of human upper body, and right body poses are obtained by mirroring the image and treated
as left body poses. From training images, MODEC clusters left body poses into 32 pose
modes, and chooses the best pose mode as the one with the highest likelihood to represent
the coarse HOG side model features. With the mode determined, the second step of MODEC
is to estimate the actual poses of the left half body (i.e., locations of limbs and joints) using
the other fine-grained HOG feature pyramid (i.e. the parts model). The inference using a
single-path tree-based CRF is efficient and allows for fast and parallel implementations. 3

Both steps of the original MODEC method need modifications in order to be incorporated
into our CDBN framework. First, instead of only retaining the most likely mode in the
first step, we keep all modes with likelihood score above a threshold θ1, which is a fixed
parameter in the original MODEC but can be dynamically adjusted in our method. The
likelihood scores of these modes, after normalization to sum to one, model the conditional
distribution for the observation-mode estimation, i.e., p(zt |xt). For the second step, instead of
just returning the most likely pose, we use the CRF score after normalization to construct the
conditional distribution for pose estimation, i.e. p(yt |zt ,xt) in CDBN. These modifications
better ensure motion consistency of the estimations in our framework.

Dynamic Mode Prediction. The two conditional distributions p(zt+1|zt) and p(zt+1|yt) of
the dynamic module are obtained from a learning approach using labeled videos. While
ground truth poses are obtained by manual labeling in each frame, we define ground truth
modes as the most likely mode interpreting the labeled poses. The ground truth modes can
be derived automatically using MODEC mode selection. Specifically, for each frame with

3All parameters in the MODEC method are taken as their default value from the publicly available MATLAB
code http://vision.grasp.upenn.edu/cgi-bin/index.php?n=VideoLearning.MODEC.
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labeled pose ŷt , we first apply MODEC to obtain the optimal poses corresponding to each of
the 32 pose modes, which we denote as ỹ(i) for i = 1, · · · ,32. Then the ground truth mode
for frame t is given as ẑt = argmini ‖ỹt − ŷ(i)‖2, where ‖.‖2 denotes the `2 norm. From the
estimated pose modes, we obtain p(zt+1|zt) as the frequencies of mode transitions across all
labeled frames as: p(zt+1 = i|zt = j) = #(ẑt+1=i,ẑt= j)

#(zt= j) , i, j = 1, · · · ,32. In practice, p(zt+1|zt)

is stored as an M×M matrix.
We learn p(zt+1 = i|yt) with a simple voting scheme. Specifically, for each mode j at

time t, we consider only modes i such that p(zt+1 = i|zt = j) > 0. We again use MODEC
to generate pose ỹ for each such mode i. The value of p(zt+1 = i|yt) is the normalized
product of three zero mean Gaussian distributions: (1) the `2 distance between ỹ and yt ,
(2) the difference between the scales of ỹ and yt as come from the resulting layers from
the MODEC fine-grained HOG pyramid, and (3) the difference between the joint angles of
ỹ and yt . Parameters of the CDBN-MODEC include the standard deviations of the above
three Gaussian distributions, θ2 = 50 pixels, θ3 = 2, and θ4 = 40◦, which are fixed in the
experiments reported in the next section.

4 Experimental Results
We evaluate CDBN-MODEC and compare its performance and efficiency with several state-
of-the-art video pose estimation approaches, including both online and offline methods. In
general, offline methods perform better than online ones, as they can use information in all
available video frames. In comparison, online methods generally run faster because they
only process incoming frames as they are captured.

Dataset. We evaluate the performance of CDBN-MODEC using two video pose datasets. 4

• VideoPose2 [17] consists of video clips from popular TV shows Friends and Lost.
Every other frames of the original video sequences are selected in this dataset, result-
ing in videos with an average frame rate of 10 FPS. There are 44 clips of 2-3 seconds
in length, with a total of 1,286 frames. To be able to compare with existing works as
in [20], we use 26 clips to train the mode transition model (Section 3.3), and report
performance on the remaining 18 clips.

• HFR. We collect a new high frame rate (HFR) upper-body pose dataset using Mi-
crosoft Kinect camera. 5 This dataset consists of subjects performing a class of ac-
tions (e.g., hand-on-hip, touching face, arm crossing) that are suitable for behavior
recognition. There are 18 clips of 30 FPS with per-frame poses manually labeled as
the position of head, shoulder, elbow, and wrist. We use 12 clips to train the mode
transition model (Section 3.3) and report performance on the remaining 6 clips.

Evaluation Metric. We use percentage of predicted parts (PCP) [16] to evaluate the accu-
racy of pose estimation. PCP measures of the percentage of N frames that have estimated
poses close to the labeled poses, which is defined as:

PCPi(r) =
100
N

n

∑
t=1

1
(
‖ỹt

i−yt
i‖2

ht/100
≤ r
)
. (9)

4We omit the evaluation on the Pose-in-the-Wild dataset published in [3], due to its low frame rate and the miss-
ing training set for evaluating the method of [3] on it. See the comparison of [3] to our method in the experiments.

5We will make public the HFR dataset and results with this paper. Depth information is available however not
used in this paper.
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Figure 2: (Left) Comparison of CDBN-MODEC with several state-of-the-art of online pose estimation
methods on the VideoPose2 dataset including Ensemble [18], MODEC [16], MODEC+S [20], Yang &
Ramanan [21] and a state-of-the-art offline approach from Cherian et al. [3]. (Right) Comparison of
CDBN-MODEC with MODEC [16] and Cherian et al. [3] on the HFR dataset.

In PCP, index i indicates joints, i.e. elbow and wrist; ỹt
i is the location of the corresponding

joints of labeled poses at frame t; yt
i is the estimated locations of the joints. The error between

ground truth and estimated poses, ‖ỹt
i−yt

i‖2 is normalized by the height of the bounding box
of the detected torso ht , and then rescaled to 100 pixels. We increase the count at a frame if
the normalized error is less than r, using the indicator function 1(∗).

On the VideoPose2 dataset, we compare CDBN-MODEC with mainstream pose estima-
tion methods in all categories: (1) single image pose estimation methods including MODEC
[16] and Yang & Ramanan [21], (2) online video pose methods including MODEC+S [20],
and (3) offline method including the Ensemble [18] and Cherian et.al. [3].

On the HFR dataset, we compare CDBN-MODEC with (1) MODEC [16] applied to
individual frames of the video and (2) the offline method of Cherian et.al. [3]. The two
methods with public available code are selected because MODEC represents best running
efficiency of existing methods, and Cherian et.al. [3] is the state-of-art offline method.

Results. To provide a more comprehensive performance metric, we report the PCPi(r) for
all experiments with r varying from 15 to 30 presented as a plotting curve in Fig.2. The area
under this curve (AUC) is reported as a measure of overall performance of each method.
On the VideoPose2 dataset, CDBN-MODEC outperforms all other online and single image
methods [16, 18, 20, 21], and is slightly inferior to the offline method of Cherian et.al. To
ensure fair comparison, we use the same training/testing dataset as in [20], where 26 clips
are used for training and the remaining 18 clips for testing. The scores for four of these
methods [16, 18, 20, 21] reported in [20] are used for comparison. For the offline method of
Cherian et.al. [3], we report the score using their publicly available code 6 on the VideoPose2
dataset. Our performance gain is due to the effective modeling of both the between-frame
and mode-to-mode temporal correlations.

On the HFR dataset, our CDBN-MODEC as an online method slightly outperforms the
offline state-of-the-art method of Cherian et.al. [3], where our method gains considerable
acceleration in running time (see Fig.4). This is mainly because the HFR dataset include
videos of high frame rates. There are frames which are roughly identical, which is not the
case in VideoPose2, where only keyframes with significant motions are retained. As the
method of [3] relies on optical flow in inference, these static frames poses problems as they
lead to weak optical flows. On the other hand, CDBN-MODEC does not directly use optical
flow. This explains both of its robustness and improvements in running time.

Some qualitative results on the HFR dataset are presented in Fig.3. The three rows corre-
sponding to pose estimation from two video frames of two different videos using frame-wise

6https://lear.inrialpes.fr/research/posesinthewild/
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Estimated upper body poses from frames of two videos in the HFR (a,b,c) and VideoPose2
(d,e,f) datasets using the MODEC method [16] applied to individual frame (a,d), the method of Cherian
et.al. [3] (b,e), and CDBN-MODEC (c,f). Details are given in the text.
MODEC, the offline video pose estimation method of [3], and CDBN-MODEC, respectively.
These results demonstrate differences in effectiveness of these methods. MODEC applied to
individual frames cannot take advantage of temporal correlations between frames. As such,
there are gross errors in the examples. The offline pose estimation method of [3] is more
robust, because it detects the whole upper body (i.e., head, torso, and arms) as well as the
pose as they are fitted in a single model. In contrast, our CDBN-MODEC achieves more
reliable estimations using accurate modes.
Running Time. In Fig.4 we compare the running time versus accuracy of MODEC [16],
MODEC+S [20], CDBN-MODEC, and Cherian et.al. [3]. 7 We compare two implementa-
tions of our CDBN-MODEC: one in MATLAB and the other in C++. The C++ implemen-
tation contains further optimization using (1) multi-thread programming and (2) adapting
levels of HOG pyramids in the inference. Our C++ implementation generally takes 320ms
for a pose estimation after parallelization, where the computation of HOG pyramids from
[6] takes about 200ms, and the rest of the steps including feature convolution in the refined

7The comparison against Ensemble [18] and Yang & Ramanan [21] is omitted, since these two methods run
slower than MODEC [16] with inferior performance.
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VideoPose2
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Figure 4: Comparison of running time versus accuracy. See text for details.

HOG layers, inference, back tracking, and the CDBN filtering take only about 120ms. All
reported running time of methods that we have source code (i.e., CDBN-MODEC, MODEC,
and Cherian et.al.) are based on a machine with a 3.4GHz processor with 8 cores and 8GB
memory. The running time of other methods are taken from [20], which is based on a ma-
chine with a 3.0GHz processor with 16 cores. The accuracy is measured with the average
AUC values of elbow and wrist curve on each of the two test datasets. Note that the C++
implementation of CDBN-MODEC achieves a 10-fold acceleration in running time with
no performance loss comparing to the MATLAB implementation, while the MATLAB im-
plementation is already in general significantly faster than other compared methods, with
improved or comparable estimation accuracy.

5 Conclusion
In this work, we describe a fast online pose estimation method based on the CDBN-MODEC
model. The proposed algorithm presents outstanding pose estimation performance on both
accuracy and running speed by two complementary system of Conditional Dynamic Bayesian
Network and Multimodal Decomposable Model. We collect a new high frame rate upper
body pose dataset that better reflects practical scenarios calling for fast online video pose es-
timation. When evaluated on this dataset and the VideoPose2 benchmark dataset, our method
outperforms the state-of-the-art online methods on VideoPose2 datasets and show compara-
ble performance to the state-of-the-art offline methods on the HFR dataset with significant
running time acceleration.

There are a few directions we would like to further improve the current work. First, we
can further take advantage of the flexibility of the CDBN model and combine it with more
effective single image pose estimation method, such as those based on deep neural networks
[2, 19]. Second, in our current method, we separate the effect of pose yt and mode zt in the
pose mode prediction. We believe more accurate prediction can be obtained by considering
them jointly and use a learned predictor from labeled data.
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