
Overlapping Domain Cover for Scalable and Accurate Regression Kernel Machines

Mohamed Elhoseiny
m.elhoseiny@cs.rutgers.edu

Ahmed Elgammal
elgammal@cs.rutgers.edu

Computer Science Department
Rutgers University
New Jersey, USA

Table 1: Contrast against most relevant methods
[5] FIC/PIC [7] NN [1] ODC (ours)

Accurate
No for high

input dimension
Limited Yes Yes

Efficient No Yes No Yes
Scalable to arbitrary

input dimension
No (2D) Yes Yes Yes

Consistent on Boundaries Yes No Yes Yes
supported kernel machines GPR GPR TGP GPR, TGP, IWTGP and others
Easy to parallelize No No Yes Yes

Motivation. Recent advances in structure regression encouraged re-
searchers to adopt it for formulating various problems with high dimen-
sional output spaces, such as segmentation, detection, and image recon-
struction, as regression problems. However, the computational complex-
ity of the state-of-the-art regression algorithms limits their applicability
for big data. In particular, kernel-based regression algorithms such as
Ridge Regression [3], Gaussian Process Regression (GPR) [6], and the
Twin Gaussian Processes (TGP) [1] require inversion of kernel matrices
(O(N3), where N is the number of the training points), which limits their
applicability for big data. We refer to these non-scalable versions of GPR
and TGP as full-GPR and full-TGP, respectively.

The problems of the existing approximation approaches, detailed and
justified in the paper, motivated us to develop an approach that satisfies the
properties listed in table 1. The table also shows which of these proper-
ties are satisfied for the relevant methods. Khandekar et. al. [4] discussed
properties and benefits of overlapping clusters for minimizing the conduc-
tance from spectral perspective. These properties of overlapping clusters
also motivate studying scalable local prediction based on overlapping ker-
nel machines; see figure 1.
Our Contribution. In summary, the main question, we address in
this paper, is how local kernel machines with overlapping training data
could help speedup the computations and gain accurate predictions. We
achieved considerable speedup and good performance on GPR, TGP, and
IWTGP (Importance Weighted TGP) applied to 3D pose estimation datasets.
To the best of our knowledge, our framework is the first to achieve quadratic
prediction complexity for TGP. The ODC concept is also novel in the con-
text of kernel machines and is shown here to be successfully applicable to
multiple kernel-machines. We also theoretically justified the idea behind
our method and build on it to propose an ODC framework that reduces the
complexity of TGP regression from cubic to quadratic. As a part of the
framework, we proposed Assign&Balance K-Means algorithm, a version
of K-means clustering that generates equal size clusters and we showed
that it better than RPC used previously for GPR; see details in the main
paper. We validated and analyzed our method on three human pose esti-
mation datasets and interesting findings are discussed.
ODC Framework Overview We define the ODC as a collection of over-
lapping subsets of the training points, denoted by subdomains, such that
they are as spatially coherent as possible. During training, an ODC is
computed such that each subdomain overlaps with the neighboring sub-
domains. Then, a local prediction model (kernel machine) is created for
each subdomain and the computations that does not depend on the test
data are factored out and precomputed (e.g. inversion of matrices). The
nature of the ODC generation makes these kernel machines consistent in
the overlapped regions, which are the boundaries since we constraint the
subdomains to be coherent. On prediction, the output is calculated as a

Figure 1: 24 points, Left: 3 disjoint kernel machines of 8 points, Right: 5 Over-
lapping kernel machines of 8 points. fi(x∗) is the ith kernel machine prediction for
x∗ test point.

Table 2: Error & Time on Poser and Human Eva datasets (Intel core-i7 2.6GHZ),
M = 800

Poser HumanEva
Error (deg) Training Time Prediction Time Error (mm) Training Time Prediction Time

TGP NN [1] 5.43 - 188.99 sec 38.1 - 6364 sec
ODC (p = 0.9, t = 1,K′ = 1)-Ekmeans 5.40 (3.7 +25.1 ) sec 16.5 sec 38.9 (2001 + 45.4) sec 298 sec
ODC (p = 0, t = 1,K′ = 1)-Ekmeans 7.60 (3.9 + 1.33) sec 14.8 sec 41.87 (240 + 4.9 ) sec 257 sec
ODC (p = 0.9, t = 1,K′ = 1)-RPC 5.60 (0.23 +41.6 ) sec 15.8 sec 39.9 ( 0.45 + 49.1) sec 277 sec
ODC (p = 0, t = 1,K′ = 1)-RPC 7.70 (0.15 + 1.7) sec 13.89 sec 42.32 (0.19 + 5.2) sec 242 sec

GPR NN 6.77 - 24 sec 54.8 - 618 sec
ODC (p = 0.9, t = 1,K′ = 1)-Ekmeans 6.27 (3.7 +11.1 ) sec 0.56 sec 49.3 (2001 + 42.85)sec 79 sec
ODC(p = 0.0, t = 1,K′ = 1)-Ekmeans 7.54 ( 3.9 + 1.38 sec) 0.35 sec 49.6 (240 + 6.4) sec 48 sec
ODC (p = 0.9, t = 1,K′ = 1)-RPC 6.45 (0.23 +17.3 ) sec 0.52 sec 52.8 (0.49 + 46.06) sec 64 sec
ODC (p = 0.0, t = 1,K′ = 1)-RPC = [2] 7.46 (0.15 + 1.5) sec 0.27 sec 54.6 (0.26 + 4.6 ) sec 44 sec
FIC [7] 7.63 (- + 20.63) 0.3106 68.36 - 102 sec

reduction function of the predictions on the closed subdomain(s).
Given a set of input data X = {x1, · · · ,xN}, our prediction frame-

work firstly generates a set of non-overlapping equal-size partitions, C =
{C1, · · · ,CK}, such that ∪iCi = X , |Ci| = N/K. Then, the ODC is de-
fined based on them as D = {D1, · · · ,DK}, such that |Di| = M∀i, Di =
Ci ∪Oi,∀i. Oi a the set of points that overlaps with the other partitions,
i.e., Oi = {x : x ∈ {∪ j 6=iC j}}, such that |Oi| = p ·M, |Ci| = (1− p) ·M,
0 ≤ p ≤ 1 is the ratio of points in each overlapping subdomain, Di, that
belongs to/overlaps with partitions, other than its own, Ci.

An ODC could be specified by two parameters, M and p, which are
the number of points in each subdomain and the ratio of overlap respec-
tively; this is since K = N/(1− p)M. As p goes to 0, the generated ODC
reduces to the set of non-overlapping clusters. Similarly, as p approaches
1−1/M, the ODC reduces to generating a cluster at each point with max-
imum overlap with other clusters, i.e., K = N, |Ci|= 1, and |Oi|= M−1.
Our main claim is two fold. First, precomputing local kernel machines
(e.g. GPR, TGP, IWTGP) during training on the ODC significantly in-
crease the speedup on prediction time. Second, given a fixed M and N,
as p increases, local prediction performance increases, theoretically sup-
ported by Lemma 4.1. Detailed about training and prediction could be
found in the main paper.
Lemma 4.1. Under ODC notion, as the overlap p increases, the closer
the nearest model to an arbitrary test point and the more likely that model
get trained on a big neighborhood of the test point; see the proof in the
Supplementary Materials (SM).
Experiments. We validated our framework on Poser, HumanEva, and
Human3.6M datasets for human pose estimation task. Table 2 shows com-
parison between our method and the baseline approximation methods on
Poser and HumanEva datasets; details could be found in the paper. We
also tried full TGP and GPR on Poser and Human Eva Datasets. Full
TGP error is 5.35 for Poser and 40.3 for Human Eva. Full GPR error is
6.10 for Poser and 59.62 for Human Eva. The results indicate that ODC
achieves either better or competitive to the full models. Based on our com-
prehensive experiments on HumanEva and Poser datasets, we conducted
an experiment on Human3.6M dataset with TGP kernel machine, where
M = 1390, t = 1, p = 0.6,K′ = 1, Ekmeans for clustering. We achieved
a speedup of 41.7X on prediction time using our ODC framework com-
pared with NN-scheme, i.e., 7 days if NN-scheme is used versus 4.03
hours in our case. More experiments and details are in the paper.
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