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Abstract

This paper proposes a novel framework for generating lingual descriptions of indoor
scenes. Whereas substantial efforts have been made to tackle this problem, previous ap-
proaches focusing primarily on generating a single sentence for each image, which is not
sufficient for describing complex scenes. We attempt to go beyond this, by generating co-
herent descriptions with multiple sentences. Our approach is distinguished from conven-
tional ones in several aspects: (1) a 3D visual parsing system that jointly infers objects,
attributes, and relations; (2) a generative grammar learned automatically from training
text; and (3) a text generation algorithm that takes into account coherence among sen-
tences. Experiments on the NYU-v2 dataset show that our framework is able to generate
natural multi-sentence descriptions, outperforming those produced by a baseline.

1 Introduction
Image understanding has been the central goal of computer vision. Whereas a majority of
work on image understanding focuses on class-based annotation, we believe, however, that
describing an image using natural language is still the best way to show one’s understanding.
The task of automatically generating textual descriptions for images has received increasing
attention from both the computer vision and natural language processing communities. This
is an important problem, as an effective solution to this problem can enable many exciting
real-world applications, such as human robot interaction, image/video synopsis, and auto-
matic caption generation.

While this task has been explored in previous work, existing methods mostly rely on pre-
defined templates [1, 15], which often result in tedious descriptions. Another line of work
solves the description generation problem via retrieval, where a description for an image is
borrowed from semantically most similar image from the training set [8, 27]. This setting
is, however, less applicable to complex scenes composed of a large set of objects in diverse
configurations, such as for example indoor environments.
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Figure 1: Our method visually parses an
RGB-D image to get a scene graph that rep-
resents objects, their attributes and relations
between objects. Based on the scene graph we
then generate a multi-sentence textual descrip-
tion via a learned grammar. The description
generation takes into account co-reference and
saliency of how people describe scenes.

Recently, the field has witnessed a boom in generating image descriptions via deep neu-
ral networks [4, 12, 13] which are able to both, learn a weak language model as well as
generalize description to unseen images. These approaches typically represent the image
and words/sentences with vectors and reason in a joint embedding space. The results have
been impressive, perhaps partly due to powerful representation on the image side [16]. This
line of work mainly generates a single sentence for each image, which typically focus on one
or two objects and typically contain very few prepositional relations between objects.

In this paper, we are interested in generating multi-sentence descriptions of cluttered
indoor scenes, which is particularly relevant for indoor robotics. Complex, multi-sentence
output requires us to deal with challenging problems such as consistent co-referrals to visual
entities across sentences. Furthermore, the sequence of sentences needs to be as natural
as possible, mimicking how humans describe the scene. This is particularly important for
example in the context of social robotics to enable realistic communications.

Towards this goal, we develop a framework with three major components: (1) a holistic
visual parser based on [21] that couples the inference of objects, attributes, and relations to
produce a semantic representation of a 3D scene (Fig. 1); (2) a generative grammar automat-
ically learned from training text; and (3) a text generation algorithm that takes into account
subtle dependencies across sentences, such as logical order, diversity, saliency of objects,
and co-reference resolution.

To test the effectiveness of our approach, we construct an augmented dataset based on
NYU-RGBD [35], where each scene is associated with up to 5 natural language descrip-
tions from human annotators. This allows us to learn a language model to describe images
the way that humans do. Experiments show that our method produces natural descriptions,
significantly improving the F-measures of ROUGE scores over the baseline.

2 Related Work
A large body of existing work deals with images and text in one form or the other. The domi-
nant subfield exploits text in the form of tags or short sentences as weak labels to learn visual
models [10, 20, 29, 36], as well as attributes [25, 34]. This type of approaches have also been
explored in videos to learn visual action models from textual summaries of videos [30], or
learning visual concepts from videos described with short sentences [41]. Another direction
is to exploit short sentences associated with images in order to improve visual recognition
tasks [9, 14]. Just recently, an interested problem domain was introduced in [23] with the
aim to learn how to answer questions about images from Q&A examples. In [22], the authors
address visual search with complex natural lingual queries.

There has been substantial work in automatically generating a caption for an image. The
most popular approach has been to retrieve a sentence from a large corpus based on visual
similarity [8, 18, 27, 32, 40]. This line of work bypasses having to deal with language tem-

Citation
Citation
{Chen and Zitnick} 2014

Citation
Citation
{Karpathy and Fei-Fei} 2014

Citation
Citation
{Kiros, Salakhutdinov, and Zemel} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Lin, Fidler, and Urtasun} 2013

Citation
Citation
{Silberman, Kohli, Hoiem, and Fergus} 2012

Citation
Citation
{Gupta and Davis} 2008

Citation
Citation
{Li, Socher, and Fei-Fei} 2009

Citation
Citation
{Quattoni, Collins, and Darrell} 2007

Citation
Citation
{Socher and Fei-Fei} 2010

Citation
Citation
{Matuszek, FitzGerald, Zettlemoyer, Bo, and Fox} 2012

Citation
Citation
{Silberer, Ferrari, and Lapata} 2013

Citation
Citation
{Ramanathan, Liang, and Fei-Fei} 2013

Citation
Citation
{Yu and Siskind} 2013

Citation
Citation
{Fidler, Sharma, and Urtasun} 2013

Citation
Citation
{Kong, Lin, Bansal, Urtasun, and Fidler} 2014

Citation
Citation
{Malinowski and Fritz} 2014

Citation
Citation
{Lin, Fidler, Kong, and Urtasun} 2014

Citation
Citation
{Farhadi, Hejrati, Sadeghi, Young, Rashtchian, Hockenmaier, and Forsyth} 2010

Citation
Citation
{Kuznetsova, Ordonez, Berg, Berg, and Choi} 2012

Citation
Citation
{Ordonez, Kulkarni, and Berg} 2011

Citation
Citation
{Rohrbach, Qiu, Titov, Thater, Pinkal, and Schiele} 2013

Citation
Citation
{Yang, Teo, Daum{é}, and Aloimonos} 2011



LIN, FIDLER, KONG, URTASUN: GENERATING MULTI-SENTENCE DESCRIPTIONS 3

Generative
Grammar

Semantic
Trees

Parse
Graphs

Training
Descriptions

New
Image

Scene
Graph

Semantic
Trees

Generated
Description

Vision
Models

Training
Images

above — {1} is above {2}
        Above {2} is {1}
below - {1} is below {2}
        Below {2} is {1}
det   - the {1}
indet - a {1}
...

above(indet(microwave), 
      det(table))

a microwave is above the table.

Figure 2: The overall framework for description generation. The task consists of the training and the
testing phase. In training, the vision models and the generative grammar are respectively learned from
a set of RGB-D images and their descriptions. In testing, given a new image, it constructs a scene
graph taking into account objects, their attributes and relationships between objects, and transforms it
to a series of semantic trees. The learned grammar then generates textual descriptions for these trees.

plate specification or template learning. However, typically such approaches adopt a limited
representation such as triplets action-object-scene [8]. This makes a restrictive setting, as
neither the image representation nor the retrieved sentence can faithfully model a truly com-
plex scene. In [19] the authors go further by only learning phrases from related images.

Parallel to our work, a popular approach has been to generate captions with deep net-
works [4, 6, 7, 12, 13, 24, 38]. These methods encode the image as well as a sentence with
a vector representation and learn a joint embedding between the two modalities. The output
is typically a short sentence. In contrast, our goal here is to generate multiple dependent
sentences that describe the salient objects in the scene, their properties and spatial relations.

Generating descriptions has also been explored in the video domain. [1, 15] output a
video description in the form of subject-action-object. In [5], “concept detectors” are formed,
which are detectors for combined object and action or scene in a particular chunk of a video.
Via lingual templates the concept detectors of particular types then produce cohesive video
descriptions. Due to a limited set of concepts and templates the final descriptions do not
seem very natural. [32] predicts semantic representations from low-level video features and
uses machine translation techniques to generate a sentence.

The closest to our work is [17, 19, 26] which, like us, is able to describe objects, their
modifiers, and prepositions between objects. However, our paper differs from [17, 26] in
several important ways. We reason in 3D as opposed to 2D giving us more natural physical
interpretations. We aim to describe rich indoor scenes that contain many objects of various
classes and appear in various arrangements. In such a setting, describing every detectable
object and all relations between them as in [17] would generate prohibitively long and un-
natural descriptions. Our model tries to mimic what and how people describe such complex
3D scenes, thus taking into account visual saliency at the level of objects, attributes and re-
lations, as well as the ordering and coherence of sentences. Another important aspect is that
instead of using a few hand-crafted templates, we learn the grammar from training text.

3 Framework Overview
Our framework for generating descriptions for indoor scenes is based on a key rationale:
images and their corresponding descriptions are two different ways to express the underlying
common semantics shared by both. As shown in Fig. 2, given an image, it first recovers the
semantics through holistic visual analysis [21], which results in a scene graph that captures
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detected objects and the spatial relations between them (e.g. on-top-of and near, etc).
The semantics embodied by a visual scene usually has multiple aspects. When describing

such a complex scene, humans often use a paragraph comprised of multiple sentences, each
focusing on a specific aspect. To imitate this behavior, this framework transforms the scene
graph into a sequence of semantic trees, and yields multiple sentences, each from a semantic
tree. To make the results as natural as possible, we adopt two strategies: (1) Instead of
prescribing templates in advance, we learn the grammar from a training set – a set of RGB-
D scenes with descriptions provided by humans. (2) We take into account dependencies
among sentences, including logical order, saliency, coreference and diversity.

4 From RGB-D Images to Semantics
Given an RGB-D image, we extract semantics via holistic visual parsing. We first parse the
image to obtain the objects of interest, their attributes, and their physical relations, and then
construct a scene graph, which provides a coherent summary of these aspects.

4.1 Holistic Visual Parsing
To parse the visual scene we use a recently proposed approach for 3D object detection in
RGB-D data [21]. We briefly summarize this approach here. First, a set of “objectness”
regions are generated following [2], which are encouraged to respect intensity as well as
occlusion boundaries in 3D. These regions are projected to 3D via depth and then cuboids
are fit tightly around them, under the constraint that they are parallel to the ground floor.

A holistic CRF model is then constructed to jointly reason about the classes of the
cuboids as well as the class of the scene (e.g., kitchen, bathroom). The CRF thus has a
random variable for each cuboid representing its class, and a variable for the scene. To have
the possibility to remove a bad, non-object cuboid, we have an additional background state
for each cuboid. The model exploits various geometric and semantic relations by incorpo-
rating them into the CRF formulation as potentials, which are summarized below:

Scene Appearance. To incorporate global information, a unary potential over the scene
label is computed by means of a logistic on top of the scene classification score [39].

Cuboid class potential. Appearance-based classifiers, including CPMC-o2 [3], super-
pixel scores [31] are used to classify cuboids into a pre-defined set of object classes. In this
paper, we additionally use CNN [16] features for classification. The classification scores for
each cuboid are used as different unary potentials in the CRF.

Object geometry. Cuboids are also classified based on geometric features (e.g. height,
aspect ratio, etc) with SVM, and the classification scores used as another unary potential.

Semantic context. Two co-occurrence relationships are used: scene-object and object-
object. The potential values are estimated from the training set by counting the co-occurences.

Geometric context. Two potentials are used to exploit the spatial relations between
cuboids in 3D, encoding close-to and on-top-of relations. The potentials are defined to be
the empirical co-occurrence frequencies for each type of relation.

The CRF weights to combine the potentials are learned with a primal dual learning frame-
work [11], and inference of class labels is done with an approximated algorithm [33].

4.2 Scene Graphs
Based on the extracted visual information, we construct a scene graph that captures objects,
their attributes, such as color and size, and the relations between them. In particular, a scene
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graph uses nodes to represent objects and their attributes, and edges to represent relations
between nodes. Here, we consider three kinds of edges: attribute edges that link objects to
their attributes, position edges that represent the positions of objects relative to the scene,
(e.g. corner-of-room), and pairwise edges that characterize the relative positions between
objects (e.g. on-top-of and next-to).

Given an image, a set of objects (with class labels) and the scene class are obtained
through visual parsing as explained in the previous Section. However, to form a scene graph,
we still need further analysis to extract attributes and relations. For each object we also
compute saliency, i.e. how likely an object will be described. We next describe how we
obtain such information.

Object attributes: For each object, we use RGB histograms and C-SIFT, and cluster them
to obtain a visual word representation. We train classifiers for nine colors that are most
mentioned in the training set, as well as two material properties (wooden and bright). We
also train classifiers for four different sizes (wide, tall, large, and small) using geometric
features. To encode the correlations between size and the object class, we augment the
feature with a class indicator vector.

Object saliency: The dataset of [14] contains alignment between the nouns in a sentence
and the visual objects in the scene. We make use of this information to train a classifier
predicting whether an object in the scene is likely to be mentioned in text. We train an
SVM classifier using class-based features (classification scores for each cuboid), geometric
relations (volume, distance to camera), and color features.

Object relations: We consider six types of object locations (corner-of-room, front-of-
camera, far-away-from-camera, center-of-room, left-of-room, right-of-room), and eight types
of pairwise relations (next-to, near, top-of, above, in-front-of, behind, to-left-of, and to-right-
of ). We manually specify a few rules for deciding whether a relation is present or not.

5 Generating Lingual Descriptions
Given a scene graph, we generate a descriptive paragraph in two steps. First, we transform
the scene graph into a sequence of semantic trees, each focusing on a certain semantic aspect.
Then, we produce sentences, one from each semantic tree, following a generative grammar.

5.1 Semantic Trees
A semantic tree captures information such as what entities are being described and what are
the relationships between them. Specifically, a semantic tree contains a set of terminal nodes
corresponding to individual entities or their attributes and relational nodes that express rela-
tions among them. Consider a sentence “A red box is on top of a table". The corresponding
semantic tree can be expressed as

on-top-of(indet(color(box, red)), indet(table))

This tree has three terminals: “box", “table", and “red". The relation node “color(box,
red)" describes the relation between “box" and “red", namely, “red" specifying the color
of the “box". The relation “indet" qualifies the cardinality of its child; while “on-top-of"
characterizes the spatial relation between its children.
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5.2 Dependencies among Sentences

In human descriptions, sentences are put together in a way that makes the resultant para-
graphs coherent. In particular, the dependencies among sentences, as outlined below, play a
crucial role in preserving the coherence a descriptive paragraph:

Logical order. When describing a scene, people present things in certain orders. The
leading sentence often mentions the type of the entire scene and one of the most salient
object, e.g. “There is a table in the dining room."

Diversity. People generally avoid using the same prepositional relation in multiple sen-
tences. Also, when an object is mentioned in multiple sentences, it usually plays a different
role, e.g. “There is a table near the wall. On top of the table is a microwave oven.” Here,
“table” respectively serves as a source and a target in these two sentences1.

Saliency. Saliency influences the order of sentences. The statistics in [14] shows that
bigger objects are often mentioned earlier on in a description and co-referred across sen-
tences, e.g. one would say “This room has a dining table with a mug on top. Next to the
table is a chair.” and not “There is a mug on a table. Next to the mug is a chair.” Saliency
also depends on context, e.g. for bathrooms, toilets are often mentioned.

Co-reference. When an object is mentioned for the second time following its debut, a
pronoun is often used to make the sentence concise.

Richness vs. Conciseness. When talking about an object for the first time, describing
its color/size makes the sentence interesting and informative. However, this is generally
unnecessary the next time the object is mentioned.

5.3 From Scene Graphs to Semantic Trees

Motivated by these considerations, we devise a method below that transforms a scene graph
into a sequence of semantic trees, each for a sentence.

First of all, we initialize ws
i =wt

i = si ·ci. Here, ws
i and wt

i are the weights that respectively
control how likely the i-th object will be chosen as a source or a target in the next sentence; si
is a positive value measuring the saliency of the i-th object, while ci is given by the classifier
to indicate its confidence as to whether it makes a correct prediction of the object’s class.
These weights are updated as the generation proceeds.

To generate the leading sentence, we first draw a source i with a probability proportional
to ws

i , and create a semantic tree by choosing a relation, say “in”, which would lead to a
sentence like “There is a table in the dining room." Once the i-th object is chosen to be a
source, ws

i will be set to 0, precluding it from being chosen as a source again. However, wt
i

remains unchanged, as it remains fine for it to serve as a target later.
For each subsequent sentence, we draw a source i, a target j, and a relation r between i

and j, with probability proportional to ws
i w

t
jρr, where ρr is the prior weight of the relation r.

At each iteration, one may also choose to terminate without generating a new sentence, with
a probability proportional to a positive value τ . These choices together result in a semantic
tree in the form of “r(make_tree(i), make_tree(j))". Here, “make_tree(i)" creates a sub-tree
describing the object i, which may be “indet(color(table, black))" when the color is known.

After the generation of this semantic tree, the weights ws
i , wt

j, and ρr will be set to zero
to prevent the objects i and j from being used again for the same role, and the relation r

1Each relation is considered as an edge. For example, in phrases “A on-top-of B" and “A near B", “A" is
considered as the source, while “B" considered as the target.
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Figure 3: Deriving templates by matching se-
mantic nodes to parts of sentence. Starting
from root node, our learning algorithm identi-
fies ranges of words corresponding to the child
nodes, and replaces them with a placeholder to
obtain a template. This proceeds downward re-
cursively until all relation nodes are processed.

from being chosen next time. Our algorithm also takes care of co-references – if an object is
selected again in the next sentence, it will be replaced by a pronoun.

5.4 Grammar and Derivation
Given a semantic tree, our approach produces a sentence via a generative grammar, i.e. a
map from each semantic relation to a set of templates (derivation rules), as illustrated below:

indet --> a {1}
color --> {2} {1}
on-top-of --> {1} is on top of {2}

On top of {2} is {1}
There is {1} on top of {2}

Each template has a weight set to its frequency in the training set. Generating a sentence
from a semantic tree proceeds from the root downward, recursively to the terminals. For each
relation node, a template is chosen, with a probability proportional to the associated weight.
Below is an example showing how a sentence is derived following the grammar above.

{on-top-of(indet(color(box, red)), indet(table))}
=> {indet(color(box, red))} is on top of {indet(table)}
=> a {color(box, red)} is on top of a table
=> a red box is on top of a table

As the choices of templates for relational nodes are randomized, different sentences can
be derived for the same tree, with different probabilities.

5.5 Learning the Grammar
The grammar for generating sentences are often specified manually in previous work [1, 5].
This way, however, is time consuming, unreliable, and tends to oversimplify the language.
In this work, we explore a new approach, that is, to learn the grammar from data. The basic
idea is to construct a semantic tree from each sentence through linguistic parsing, and then
derive the templates by matching nodes of the semantic tree to parts of the sentence.

First, we use the Stanford parser [37] to obtain a parse tree for each sentence, which is
then simplified through a series of filtering operations. For example, we merge noun phrases
(e.g. “fire distinguisher") into a single node and compress common prepositional phrases
(e.g. “in the left of") into a single link.

A semantic tree can then be derived by recursively translating the simplified trees. This
is straightforward. For example, a noun “box" with an adjective “red" will be translated into
“color(box, red)"; a noun with a definite or indefinite article will be translated into an det
and indet relation node; two nouns or noun phrases “A" and “B" linked by a prepositional
link “above" will be translated into “above(A, B)".

With a sentence and a semantic tree constructed, we can derive the template through
recursive matching, where matched children are replaced by a placeholder, while other words

Citation
Citation
{Barbu, Bridge, Burchill, Coroian, Dickinson, Fidler, Michaux, Mussman, Narayanaswamy, Salvi, Schmidt, Shangguan, Siskind, Waggoner, Wang, Wei, Yin, and Zhang} 2012

Citation
Citation
{Das, Xu, Doell, and Corso} 2013

Citation
Citation
{Toutanova, Klein, and Manning} 2003



8 LIN, FIDLER, KONG, URTASUN: GENERATING MULTI-SENTENCE DESCRIPTIONS

objects config ROUGE1 ROUGE2 ROUGES
R P F R P F R P F

baseline 0.3000 0.2947 0.2968 0.0667 0.0657 0.0661 0.1026 0.1006 0.1014
GT L0 0.3332 0.3249 0.3281 0.0786 0.0765 0.0773 0.1372 0.1334 0.1348
GT L1 0.3378 0.3294 0.3327 0.0838 0.0816 0.0824 0.1397 0.1359 0.1373
GT L2 0.3392 0.3308 0.3340 0.0849 0.0827 0.0835 0.1409 0.1370 0.1385
GT L3 0.3770 0.3676 0.3712 0.1092 0.1067 0.1076 0.1629 0.1584 0.1601
GT L4 0.3775 0.3680 0.3716 0.1064 0.1040 0.1049 0.1598 0.1554 0.1570
GT L5 0.3755 0.3658 0.3695 0.1008 0.0984 0.0993 0.1563 0.1519 0.1536

Real L0 0.3243 0.3161 0.3192 0.0752 0.0735 0.0742 0.1306 0.1270 0.1283
Real L1 0.3347 0.3266 0.3296 0.0814 0.0795 0.0802 0.1362 0.1325 0.1338
Real L2 0.3338 0.3256 0.3286 0.0816 0.0796 0.0803 0.1356 0.1319 0.1332
Real L3 0.3641 0.3541 0.3580 0.1045 0.1019 0.1029 0.1546 0.1499 0.1517
Real L4 0.3663 0.3560 0.3600 0.1039 0.1011 0.1022 0.1534 0.1486 0.1504
Real L5 0.3675 0.3570 0.3611 0.1021 0.0994 0.1004 0.1526 0.1478 0.1496

Table 1: ROGUE scores for the baseline and our approach under different configurations. “GT” and
“Real” refer to results obtained based on GT objects and detections [21], respectively. For each metric,
we report recall (R), precision (P), and F-scores (F) averaged over all scenes and 10 randomized runs.

are preserved literally in the template. Fig. 3 illustrates this procedure. We collect templates
for each relation, and set the weight of each template to its frequency. Empirically, we
observed a long tailed distribution – a small number of templates occur many times, while a
dominant portion of templates are used sporadically. To improve the reliability, we discard
all templates that occur less than 5 times and all relations whose total weight is less than 20.

6 Experimental Evaluation

We test the proposed framework on the NYU-v2 dataset [35] augmented with an additional
set of textual descriptions, one for each image. Particularly, we focus on assessing both the
relevance and quality of the generated descriptions.

NYU-v2 has 1449 RGB-D images of indoor scenes (e.g. dining rooms, kitchens, etc). We
follow the train/test partition used in [21] with 795 training scenes, while the test set contains
the remaining 654. We use descriptions from [14] which were collected by asking MTurkers
to provide detailed descriptions of scenes. The number of sentences per description ranges
from 1 to 10 with an average of 3. There are on average 40 words per description.

We learn the generative grammar using the algorithm described in Section 5.5 from the
training set of descriptions. We also train the CRF for visual analysis and apply it to de-
tect objects and predict their attributes and relations, following the procedure described in
Section 4.1. These models are then used to produce textual descriptions for each test scene.

6.1 Performance Metrics

To evaluate our method, we look at metrics typically used in machine translation, which
include BLEU [28] and ROUGE metrics. BLEU measures precision on n-grams, and is
thus less suitable for our goal of image description, as already noted in [5, 26]. On the
other hand, ROUGE is an n-gram recall oriented measures which evaluates the information
coverage between summaries produced by the human annotators and those automatically
produced by systems. ROUGE-1 (unigram) recall is the best option to use for comparing
descriptions based only on predicted keywords [5]. ROUGE-2 (bigram) and ROUGE-SU4
(skip-4 bigram) are best to evaluate summaries with respect to coherence and fluency. We
use ROUGE metrics following [5] who uses it to evaluate video summarization.
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Figure 4: Examples of descriptions generated using our framework. In the top row, the method builds
on the GT cuboids, while the bottom row shows results using the visual parser. Note that in the case of
GT, the input is the full set of GT objects for the image, thus the method still needs to take into account
the saliency of what to talk about. We color-code object cuboids and nouns referring to them in text.

6.2 Comparison of Results

The proposed text generation method has five optional switches, controlling whether the fol-
lowing features are used during generation: (1) diversity: encourage diversity of the sen-
tences by suppressing the entities and relations that have been mentioned; (2) saliency:
draw salient objects with higher probability; (3) scene: leading sentence mentions the class
of the scene; (4) attributes: use colors and sizes to describe objects when they are avail-
able; (5) coreference: use a pronoun to refer to an object when it is mentioned in the
previous sentence. We test the approach with six feature-levels, level-0 to level-5, where the
level-k configuration uses the first k features when generating the sentences. In particular,
level-0 uses none of the above features, and thus each sentence is generated independently
using the grammar; level-5 uses all of these features.

We compare our method to an intelligent baseline which follows a conventional approach
in description generation. The baseline describes an image by retrieving visually the most
similar image from the training set, and simply uses its description. To compute our baseline,
we use a battery of visual features such as spatial pyramids of SIFT, HOG, LBP, geometric
context, etc, and kernels with different distances. We use [39] to compute the kernels. Based
on a combined kernel, we simply retrieve the training image with the highest matching score.

Table 1 shows results. We evaluate two settings: using ground-truth objects (denoted
with GT) and using the results obtained via the visual parser (denoted with Real). We can
see that the proposed method outperforms the baseline in all three ROGUE measures. Also,
configurations above level 3 are better than level 1 and 2, which indicates that a special
leading sentence that gives an overview of the scene is important for description generation.
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Figure 4 shows descriptions generated using our approach on a diverse set of scenes.
It can be seen that linguistic issues such as sentence diversity, using attributes to describe
objects, and using pronouns for coreferences have been properly addressed. However, there
remain some problems that need future efforts to address. For example, since the choices of
templates for different sentences are independent, sometimes an unfortunate selection of a
template sequence may make the paragraph slightly unnatural.

7 Conclusion
We presented a new framework for generating natural descriptions of indoor scenes. Our
framework integrates a CRF model for visual parsing, a generative grammar automatically
learned from training text, as well as a transformation algorithm to derive semantic trees from
scene graphs, which takes into account the dependencies across sentences. Our experiments
show better descriptions than those produced by a baseline. This indicates that high qual-
ity description generation requires not only reliable image understanding, but also delicate
attention to linguistic issues, such as diversity, coherence, and logical order of sentences.
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