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Abstract
This paper introduces a new visibility model for 3-D point-clouds, such as those obtained
from multiple time-of-flight or lidar scans. The scene is represented by a set of random
particles, statistically distributed around the available surface-samples. Visibility is de-
fined as the appropriate conjunction of occupancy and vacancy probabilities, along any
visual ray. These probabilities are subsequently derived, in relation to the statistical scene
structure. The resulting model can be used to assign probabilistic visibilities to any col-
lection of scene-points, with respect to any camera position. Moreover, these values can
be compared between different rays, and treated as functions of the camera and scene pa-
rameters. No surface mesh or volumetric discretization is required. The model is tested
by decimating 3-D point-clouds, and estimating the visibility of randomly selected tar-
gets. These estimates are compared to reference values, computed by standard methods,
from the original full-resolution point-clouds. Applications of the new visibility model
to multi-view stereo are discussed.

1 Introduction
Visibility is a fundamental problem in multi-view scene understanding and reconstruction.
Simple hidden-surface removal, in the projection of a known 3-D model, can be solved by
Z-buffering and related procedures from computer graphics [2, 3, 5, 28, 34]. For more com-
plicated tasks, such as multi-view reconstruction of an unknown scene, the representation
of visibility remains problematic [29]. There are essentially three approaches, as follows.
Firstly, the estimated scene can be represented by a surface mesh, and geometric methods
can be used [8, 11, 26]. However, there are many scene-types that cannot be practically
reconstructed as meshes (e.g. dense foliage). Secondly, the scene can be represented by a
dense voxel grid [1, 7, 20, 32], and visibility can be resolved by labelling the free-space be-
tween cameras and surfaces. This approach does not scale easily to large or dynamic scenes
(e.g. whole city reconstructions). A third approach is to maintain view-based visibility maps,
associated with each camera [18, 30, 31]. The difficulty here is to ensure that all multi-view
relationships are consistently represented (e.g. not just the pairwise relationships). A final
class of ‘direct’ methods [19, 24] compute visibility via a dual convex hull, but this repre-
sentation has yet to be adopted in computer vision applications.

This paper proposes a new approach, which assigns a continuous visibility score to all
points along each ray. There is a general analogy to voxel-based methods, but without requir-
ing an explicit volumetric representation. In particular, the model proposed here is related to
that of Gargallo et al. [12], because both approaches define visibility in relation to a conjunc-
tion of ‘vacancies’ between the camera centre and the scene-point. However, the derivation
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and representation of these models is completely different; in particular, the present model
emerges naturally from an inhomogeneous Poisson process, which is used to model the oc-
cupancy of points along each ray. Furthermore, Gargallo et al. use a discrete volumetric rep-
resentation, whereas the present method works directly from a 3-D point cloud. The tests in
section 4 are based on depth-camera data, but future work will consider sparse point-clouds
from multi-view keypoint matching. It would then be possible to incorporate photometric
visibility information [16, 32] obtained by comparing the 2-D images.

The model developed here has some connections to computer graphics research. Blinn [4]
described a scene model consisting of ‘blobs’, somewhat analogous to the Gaussian compo-
nents used in section 3.1. Lokovic & Veach [23] modelled light penetration, in complex
materials such as hair, using an attenuation function similar to that used in section 3.2. Nei-
ther of these works were, however, intended to model point-cloud visibility.

1.1 Contributions

The present definition of continuous stochastic visibility, in relation to clearly-defined occu-
pancy and vacancy probabilities, is new. In addition, the following specific contributions are
made: §3.1 The probabilistic ‘intersection’ of a visual ray with a Gaussian-mixture scene
model is derived. §3.2 A data-adaptive generalization of the Poisson visibility model, for in-
homogeneous scenes, is is developed. §4.2 A new approach to the evaluation of probabilistic
visibility, based on ROC curves, is introduced. §4.3 The performance of the new model is
demonstrated, on real data. More generally, this paper is one of the first applications of
stochastic geometry to a real 3-D computer vision problem.

2 Scene model

The scene S is modelled, conceptually, by small particles that are distributed in N ellipsoidal
patches Sk. Let the indicator notation 1p mean that point p = (x,y,z)> is occupied by a
scene-particle. In probabilistic terms, the scene is a simple mixture model:

S =

{
1p : p∼ 1

N

N

∑
k
Sk

}
(1)

where each component Sk of the mixture has a location qk and shape Qk, to be defined
below (2). Note that the data (e.g. samples from a range scanner) correspond to the points qk;
the surrounding particles in are inferred from these. The scene model (1) is an abstraction;
it is not necessary to actually generate any particles from it, in order to estimate visibility.
Nonetheless, it can be useful to do so, for visualization purposes.

2.1 Patch geometry

Each component Sk in (1) is defined by a position qk = (xk,yk,zk)
>, and a 3×3 covariance

matrix Qk. The covariance matrix has standard deviations ρ and ε in the tangent-plane and
normal direction, respectively. Explicitly, the covariance matrix is a sum of outer-products,

Qk = ρ
2(lkl>k+mkm>k

)
+ ε

2 nkn>k where Qk =
{

qk, Qk
}

(2)
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contains the location and shape parameters.1 Each surface normal nk can be represented
in spherical coordinates, nk = (sinθk cosφk,sinθk sinφk,cosθk)

>, while mk can be any per-
pendicular unit vector. Then lk ' mk×nk to complete the axes of Qk. The ‘radius’ ρ and
‘thickness’ ε parameters can be set globally, so the total dimensionality of the scene model,
including the position and orientation of the N patches, is 2+N(3+2).

2.2 Viewing geometry
Any view of the scene is modelled as collection of rays,Ri j, each defined by the i-th optical
centre ci, and the j-th target-point in the scene. Hence a given ray comprises the points

p(t) = ci + tui j where Ri j = {ci,ui j} (3)

and ui j ' p j− ci is a unit-vector. The parameter t > 0 is the distance from ci to p(t). Note
that the geometric point p(t) may or may not be occupied by a particle from the scene-
model (1) described above. The viewing model (3) is sufficient for the theoretical work in
this paper. It can readily be adapted to real cameras, by setting ui j ' A−1

i p j, where Ai is the
left 3× 3 block of the i-th camera matrix, and p j ' (x j,y j,1)

> are pixel coordinates in the
corresponding image [15].

2.5 3 3.5 4 4.5
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Λ* = 1

2.5 3 3.5 4 4.5

Distance from camera

●

Λ* = 1

Figure 1: The visibility density pr
(
( t |R,S

)
from (6 & 19) shown in green, for two rays

in the evaluation. The target-point of each ray is indicated by a dot, colour-coded by its
true state; blue means occluded, and red means visible. Orange curves show the occupancy
density pr

(
1t |R,S

)
from (5 & 13), while the blue polygon indicates the attenuating va-

cancy density pr
(
∅t |R,S

)
from (4 & 16). Vertical lines indicate global maxima along each

ray. Top: the distant occluded target generates the occupancy maximum (orange), but not
the visibility maximum (green). Bottom: the nearby visible target generates the visibility
maximum (green), but not the occupancy maximum (orange).

3 Visibility model
It is essential to make the right definition of visibility, for point-sampled scenes. In particular,
the event that point p(t) = c + tu is visible will be denoted (( t |R), where the dot is
intended to suggest the end of a visual ray. Visibility will now be defined as the conjunction
of two events. Firstly, the ray segment c+ r u, where 0 ≤ r < t, should be vacant, i.e. free

1Calligraphic-type is used for sets of parameters, which are identified with the objects that they represent,
e.g.R= {p,u} is a visual ray, which passes though point p, in direction u.
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Figure 2: The visibility process (green) tends to emphasize closer points, as the density pa-
rameter Λ? is increased (compare fig. 1). Top: the visibility maximum has jumped forward.
Bottom: the visibility maximum has become biased.

of occluders. Secondly, the point c+ tu should be occupied. The following notation will be
used for these events:(

∅t |R
)
⇔ The ray-segment from c to c+ tu is vacant (4)(

1t |R
)
⇔ The point p = c+ tu is occupied (5)

Hence the probability of the point p(t) = c+ tu on ray R being visible in scene S is the
product of the vacancy and occupancy probabilities:

pr
(
( t |R,S

)
= pr

(
∅t |R,S

)
×pr

(
1t |R,S

) /
|R∩S|. (6)

The positive scalar |R∩S| is a normalizing constant, which ensures that something is always
seen along the ray;

∫
∞

0 pr
(
( t |R,S

)
dt ≡ 1. It is natural, as will become clear, to view

pr
(
∅t |R,S

)
as an ‘attenuation’ of pr

(
1t |R,S

)
in (6). Hence the two terms will be treated

in reverse order, in the following subsections. Real examples of the occupancy, vacancy, and
visibility densities are shown in figures 1 and 2.

3.1 Occupancy process
The occupancy 1t from (5) will now be developed, as a stochastic process. The probability
that a point p occurs in the neighbourhood of a known point q is determined by the covariance
matrix Q, and therefore has an elliptically contoured distribution. It will be useful, for later
derivations, to express this in the general form

pr(p | Q) = |Q|−
1
2 G3

(
|p|2Q

)
(7)

where Gd(x) is the density function in d dimensional space, |Q| is proportional to the volume
of the patch, and |p|Q is the Mahalanobis distance from point p to patch Q. The distance is
defined, in relation to the patch centre q and covariance Q, as

|p|2Q = (p−q)>Q−1(p−q). (8)

The density functions will be Gaussian, in order to ensure that the patches are well-localized
by the exponential decrease:

Gd(x) = (2π)−
d
2 exp

(
− 1

2 x
)
. (9)
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This definition is made to be compatible with the probability and distance functions in (7)
and (8), respectively. Note that the mixture components in (1) can be thought of as the
pairing of a density function with a mean and covariance: Sk = {G3(·),Qk}.

The intersection of a ray with a surface-patch is generalized here, to mean the closest
approach of point on the ray to the patch, with respect to the Mahalanobis distance (8). This
implies tangency of the ray R to an iso-contour of the quadric Q−1. The direction u of the
ray must be perpendicular to the normal vector v =Q−1(c+tu−q), at the point of tangency,
where t = µ . This is obtained by solving u>v = 0, which gives

µ =−σ
2u>Q−1(c−q) where σ

2 = 1
/(

u>Q−1u
)
. (10)

These definitions can now be used to develop the Mahalanobis distance |p|2Q in relation to
the point µ , with p constrained to lie on the rayR, as follows.

|p|2Q = (c+ tu−q)>Q−1(c+ tu−q)

= t2u>Q−1u+2tu>Q−1(c−q)+ |c|2Q

= (t−µ)2/
σ

2 + τ
2 where τ

2 = |c|2Q−µ
2/σ

2. (11)

The density (7) can therefore be expressed, via (11), as a 1-D Gaussian function of the ray-
parameter t, for point p(t). It follows from (7) that the occupancy probability is

pr
(
1t | Q,R

)
= |Q|−

1
2 G3

(
|p(t)|2Q

)
= wG1

(
(t−µ)2/

σ
2) where w = G2(τ

2)
/
|Q|

1
2 (12)

is a constant weight for each patch Q, and ray R. Note that the parameters µ , σ and τ are
also obtained from the known patch and ray, via (10) and (11). The complete occupancy
probability, along rayR, is a weighted sum of 1-D Gaussians,

pr
(
1t
∣∣R,S)= 1

N ∑
Q∈S

pr
(
1t
∣∣Q,R)

=
1
N

N

∑
k

wk G1
(
(t−µk)

2/
σ

2
k
) (13)

over all patchesQ in the scene S. This sum will be dominated by patches that are both close
and perpendicular to the ray.

3.2 Vacancy process
It has been shown elsewhere [13, 17, 22] that if the scene consists of randomly distributed
particles, of radius ε , then it can be modelled as a volumetric Poisson distribution. It follows
directly that the probability of point p(t) being non-occluded is

pr(∅C) = exp(−λ |C|) (14)

where |C| = πε2t is the volume of the cylinder between the p and the optical centre. The
intensity parameter λ represents the expected number of points per unit volume. This model
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6 HANSARD: STOCHASTIC VISIBILITY

will now be generalized to the case of non-random scenes, as defined by point-sampled
surfaces.

Intuitively, if the cylinder C intersects a sampled surface, then its volume should be lo-
cally inflated, in order for (14) to show a strong decrease in the vacancy probability. This
constitutes an inhomogeneous Poisson model [6]. More specifically, the local volume can be
taken proportional to pr

(
1t
∣∣R,S)×dt. Hence a generalized volume of C is obtained by in-

tegrating the Gaussian mixture (13) along the rayR. The integrand is a sum of non-negative
terms, so the integral can be moved inside the sum (Fubini’s theorem), and then performed,
as follows:

Λ(t) =
∫ t

0
pr
(
1r
∣∣R,S)dr

=
1
N

N

∑
k

wk H1
(
(t−µk)/σk

) (15)

where H1(x) is the standard cumulative density of the Gaussian G1(x). The vacancy prob-
ability can now be defined by combining (15) with the Poisson model (14). However, the
argument of the exponential should be obtained from an expected count, rather than from a
probability. Hence a dimensionless scaling η > 0 is introduced, and:

pr
(
∅t |R,S

)
= exp

(
−ηΛ(t)

)
=

1
N

N

∏
k

exp
(
−ηwk H1

(
(t−µk)/σk

))
.

(16)

Observe that the product is over ‘soft’ step-functions H1(·), which test for occluders in front
of t. It is convenient to define η in relation to a more intuitive parameter: the average density
Λ? of scene-points along any ray. If the length of a particular ray is Tj, then

η j = Λ
?
/

Λ(Tj). (17)

The above procedure effectively sets the expectation of the negative log vacancy (i.e. the
effective total occupancy), over all rays:〈

− log pr
(
∅T |R,S

)〉
R|S ≡ Λ

?. (18)

Although, in principle, Tj = ∞ for (17), the density must fall to zero very quickly after a cer-
tain point, assuming that the captured point-cloud is finite. In practice, a good choice for the
limit is a point in the tail of the most distant 1-D Gaussian on the ray, Tj = max j(µ j +3σ j).
There will be no visible points beyond this limit, in practice.

3.3 Visibility process
The probability (6) of seeing point p(t) = c+ tu, given the ray R and scene S, can finally
be expressed as the product of the vacancy and occupancy probabilities:

pr
(
( t

∣∣R,S) ∝ pr
(
∅t
∣∣R,S)×pr

(
1t
∣∣R,S)

=
exp
(
−ηΛ(t)

)
|R∩S|

N

∑
k

wk G1
(
(t−µk)

2/
σ

2
k
)
.

(19)
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The parameter η effectively sets the sensitivity to occluding points, via definition (17); for
example, the simple occupancy model (13) is obtained as η → 0.

Note that the last expression in (19) is normalized by the scalar |R∩S|, which represents
the total ‘intersection’ of the ray with the scene density, and ensures that something is always
seen;

∫ T
0 pr
(
( t |R,S

)
dt ≡ 1. The constant is obtained by integrating along the whole ray:

|R∩S|=
∫ T

0
pr
(
∅t
∣∣R,S) pr

(
1t
∣∣R,S) dt

where T is obtained from the tail of the furthest Gaussian, as in sec. 3.2. In practice |R∩S|
can easily be obtained by numerical integration, given that the integrand is a smooth function.
A standard Gauss-Kronrod routine [25] was used in all experiments reported here.

Note that pr
(
( t

∣∣R,S) in (19) is a probability density, and therefore does not have
a pre-determined range. This means that a hard visible/occluded classification, if required,
cannot be based on an a priori threshold. Nonetheless, a threshold can be determined from
other criteria, as described in 4.2, below.

4 Experiments
It is hypothesized that the model (19) can be used to estimate the visibility of a given target,
based on a point-cloud representation of the scene. In particular, the point-cloud may be
relatively sparse, and may not include the target itself. The hypothesis is tested by first
determining the reference visibilities of a collection of targets in a high resolution point-
cloud, using standard methods [28]. The point-cloud is then decimated, and the estimated
visibilities of the targets, according to the present model, are compared to their reference
values.

4.1 Procedure
There are two essential requirements on the data, as follows. Firstly, the scene must have
been captured from many different viewpoints, in order to be sufficiently challenging; i.e. a
typical ray should intersect the scene many times. Secondly, the visible surfaces must be
densely sampled, in order to simplify the computation of reference visibilities. The present
evaluation is based on the Washington RGB-D Scenes Dataset (V2) [21]. This set contains
dense scans of indoor scenes, based on 3-D registration of RGB-D video. Two different
scenes, A and B (09.ply and 14.ply, shown in fig. 3) were selected. Twelve optical
centres ci were positioned in a ring, at head-height, around the scene (at 30◦ separations, as
in fig. 4). Hence one evaluation of the target-set yields 12×100 = 1200 visibility estimates.

Standard PCL procedures [27] were run on the input data, to remove outlying points,
and to estimate the normal vectors nk for (2). The data were then voxelized to one point per
δ 3, where δ = 1cm. This step ensures that randomly-selected targets are not biased to be
in overlapping scan-regions. A set of 100 target-points was then selected at random, from
each point-cloud. Reference visibilities were computed by a discrete ray-tracing procedure
[9, 28]. Specifically, a point ptarget was labelled occluded if another point was present in the
cylinder of radius δ/2, connecting ptarget to a camera centre. Occluders within 2δ of the
target were ignored, because these are invariably due to noise on the target surface.

The clouds were finally re-voxelized, for testing, to one point per δ 3
sub, where δsub was

chosen to yield only 10% of the original points (not including the targets). This procedure

Citation
Citation
{Piessens, Doncker-Kapenga, and {Ü}berhuber} 1983

Citation
Citation
{Schaufler and Jensen} 2000

Citation
Citation
{Lai, Bo, and Fox} 2014

Citation
Citation
{Rusu and Cousins} 2011

Citation
Citation
{Duguet and Drettakis} 2002

Citation
Citation
{Schaufler and Jensen} 2000



8 HANSARD: STOCHASTIC VISIBILITY

Figure 3: Top-left: Reference point-cloud for scene A, after outlier-removal and voxel-
based re-sampling (to even-out the data). Top-centre: Decimated point-cloud A, containing
16483 points (10% of the original data), used for testing. Top-right: The scene model
obtained by ‘up-sampling’ the decimated cloud, according to the mixture model described in
the paper. Each patch was sampled 100 times, and sample-colours were inherited from the
given centre-points (NB this up-sampled rendering is purely for illustration). Bottom left,
centre, right: the original, decimated, and up-sampled clouds for scene B. The decimated
cloud contains 15189 points, in this case. The original point-clouds are from the Washington
RGB-D Scenes Dataset (V2) [21].

Figure 4: Camera configuration for the experiments in scene A (left), and scene B (right).
Twelve optical centres were positioned in a ring, at head-height, around each scene (at 30◦

separations). The rays for ten targets are shown (100 targets were used for each evaluation).
Green segments are vacant; red segments contain one or more intersections.

left 16483 points in scene A, and 15189 points in scene B. The patch radius and thickness
parameters (2) were set to ρ = δsub/2 and ε = ρ/4, respectively.

4.2 Criteria
Visibility errors may be false positives (accepted occluded points) or false negatives (rejected
visible points), and the underlying ratio of visible / occluded points will depend on the nature
of the scene. Furthermore, as mentioned in 3.3, there is no a priori threshold for the density
pr
(
( t

∣∣R,S) in (19). These issues can be addressed by the analysis of ROC visibility
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HANSARD: STOCHASTIC VISIBILITY 9

plots, which show the result of all possible thresholds. The area under the curve (AUC)
gives a convenient numerical summary of the performance, corresponding to the probability
of mis-classifying a random target as visible / occluded. This measure is also invariant to
the underlying ratio of instances [10], which makes it possible to compare across different
scenes (and viewpoints).

4.3 Results

The results of the ROC analysis, for 12000 = 2×5×1200 visibility estimates, are shown in
fig. 5. It is clear that the pure occupancy model, obtained by setting Λ? = 0 in (17), already
performs quite well (orange curves). The area under the orange curve in fig. 5 is 0.81 for
scene A, and 0.80 for scene B. This result can be understood by noting that occupancy is a
necessary condition for visibility. Furthermore, weak occupancy is correlated with occlusion,
because the normalization

∫
pr(( t

∣∣R,S)dt ≡ 1 implies strong occupancy elsewhere on the
ray (but perhaps behind the target).

0.0 0.5 1.0

0.
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1.
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T
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AUC 0.85
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AUC 0.86

0.0 0.5 1.0

FPR
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AUC 0.8

Figure 5: Top row: ROC plots of visibility classification in scene A. Green curves show the
consequences of making 1200 visible (+) or occluded (−) decisions, by applying a variable
threshold to pr

(
( t

∣∣R,S) in (19). All points are classified as occluded at the start of each
curve, and visible at the end of each curve. Results for four density values Λ? are shown in
relation to the orange occupancy curve for Λ? = 0. Performance is summarized by the area
under the curve (AUC) in each case. Bottom row: Similar results are obtained for scene B.

It is also apparent from the results in fig. 5 that incorporating the vacancy process (16)
leads to a significant improvement in performance. In particular, for Λ? = 4, AUC values
greater than 0.9 are obtained for both scenes. This result gives strong support to the visibility
model presented here.

As Λ?→ 0, it is clear that the visibility model reduces to the occupancy model, as sug-
gested by the Λ? = 0.1 curves on the left. More interesting behaviour can be seen at the other
extreme, which corresponds to suppressing all but the closest point on each ray. Classifying
the remaining points as visible is a reasonable strategy, as can be seen in the top-right of the
Λ? = 100 curves. However, the lower parts of these curves have worse performance than the
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10 HANSARD: STOCHASTIC VISIBILITY

pure occupancy model (i.e. the green curve is below the orange curve). Indeed, the corre-
sponding strategy does not make sense: take only the closest points, but then require very
strong occupancy, in order to classify them as visible.
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Figure 6: Top: Kernel density (bandwidth = 2) estimates of class-conditional visibility
probabilities, in scene A. The vertical line represents an optimal threshold, obtained from the
ROC analysis. A good separation (AUC 0.92) is obtained with density parameter Λ? = 4, as
in fig. 5. Bottom row: Similar results are obtained for scene B, for which Λ? = 4 also gives
a good separation (AUC 0.91).

The corresponding visibility score distributions are shown in fig. 6. It is clear from these
plots that increasing the density parameter Λ? has the effect of down-weighting the occluded
points (blue curves). It is interesting to see how similar the distributions are, between the
two different scenes.

5 Discussion
A new model of visibility and occlusion has been developed, and evaluated on 3-D point-
cloud data. Some possible applications, in multi-view stereo, were suggested in the intro-
duction. This direction seems particularly promising, because the visibility densities are
already parameterized by the scene and camera variables. One approach would be to use
sparse keypoint-matches to define the visibility model, and then to augment the point cloud
via photo-consistency maximization with respect to the images [20, 31, 33].

The current model will be tested, in future, on a wider variety of lidar / depth-camera
point clouds, including those representing outdoor scenes. It will also be interesting to con-
sider locally-defined patch sizes and shapes, rather than using global radius and thickness pa-
rameters in (2). The experiments reported here were based on brute-force algorithms, which
would not scale to much bigger scenes. It will therefore be necessary to develop a more
efficient implementation, using established data-structures from computer graphics [14]. In
particular, it should be possible to use the known adjacency of neighbouring rays, in each
lidar or depth camera scan, in order to develop more efficient algorithms.

In summary, the model presented here goes beyond Z-buffering and depth-sorting, to-
wards a proper statistical understanding of visibility and occlusion. These ideas, in conjunc-
tion with existing models of colour and surface variation, might also contribute to future
theories of natural image-generation.
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