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This work introduces a new statistical model of visibility in point-sampled
scenes, such as those constructed from multiple lidar or depth-camera
scans. A visibility density is defined along each optical ray, which gives
the probability that a non-occluded scene-point exists at any particular
location, with respect to a given camera. The new approach avoids any
commitment to a surface-mesh, in order to develop a more data-driven
probabilistic model. Furthermore, this approach naturally allows for the
existence of gaps and uncertainty in the point-cloud (see fig. 2).

The new model has potential applications to multi-view stereo prob-
lems, in which visibility is an essential component of the photometric re-
projection error [3]. There are other potential applications to the graphical
rendering of point-cloud data [2].
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Figure 1: The visibility density (3 & 7) shown in green, for two rays in
the evaluation data-set. The target-point of each ray is indicated by a dot,
colour-coded by its true state; blue means occluded, and red means visi-
ble. Orange curves show the occupancy density (2 & 4), while the blue
polygon indicates the attenuating vacancy density (1 & 5). Vertical lines
indicate global maxima along each ray. Top: the distant occluded target
generates the occupancy maximum (orange), but not the visibility maxi-
mum (green). Bottom: the nearby visible target generates the visibility
maximum (green), but not the occupancy maximum (orange).

It is essential to make a careful definition of visibility, for point-sampled
scenes. Let c be the camera-centre, and let u be the direction of visual
ray R. Then the event that point p(t) = c+ t u is visible will be denoted
(( t |R), where the dot is intended to suggest the end of a visual ray.
Visibility will now be defined as the conjunction of two events. Firstly,
the ray segment c+ r u, where 0 ≤ r < t, should be vacant, i.e. free of
occluders. Secondly, the point c+ t u should be occupied. The following
notation will be used for these events:(

∅t |R
)
⇔ The ray-segment from c to c+ t u is vacant (1)(

1t |R
)
⇔ The point p = c+ t u is occupied (2)

Hence the probability of the point p(t) = c+ t u on ray R being visible in
scene S is the product of the vacancy and occupancy probabilities:
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This density, which is a function of distance t, can now be developed in
relation to the point-sampled scene model.

The scene S is represented as a mixture of N Gaussian surface-patches,
the positions and orientations of which are readily estimated from the
data. The ‘intersection’ of ray R with 3-D patch k defines a 1-D Gaus-
sian, and so the occupancy density (2) is a 1-D mixture, corresponding
to the orange curves in fig. 1:
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Here G(x) = (2π)−
1
2 exp(−x/2), and the parameters (µk,σk) and weights

wk can all be computed directly from the known geometry.

Figure 2: A typical 3-D point-cloud, constructed from multi-view RGB-D
scans [1], as used in the experimental evaluation.

If the scene consisted of randomly distributed particles, of radius ε , then
it could be modelled as a volumetric Poisson distribution. It would follow
that the probability of point p(t) being non-occluded would be pr(∅C) ∝

exp(−λ |C|), where |C|= πε2t is the volume of a cylinder, which must be
empty, between p(t) and the optical centre. This can be generalized to the
case of non-uniformly distributed points, leading to a vacancy density
corresponding to (1) and the blue polygons in fig. 1:

pr
(
∅t |R,S

)
= exp

(
−ηΛ(t)

)
(5)

where η is a free parameter, and Λ(t) is a generalized volume, which
increases in dense regions of the point cloud. This can be defined as:

Λ(t) =
∫ t

0
pr
(
1r
∣∣R,S

)
dr. (6)

It can be shown that Λ(t) is a product of generalized step-functions. These
steps are probabilistic representations of potential occluders, lying be-
tween p(t) and the optical centre.

Substituting (4) and (5) into (3) gives the final visibility density, cor-
responding to the green curves in fig. 1, along ray R:
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The scalar |R∩S| is a normalizing constant, representing the ‘total in-
tersection’ of the ray with the probabilistic scene-model, which can be
computed numerically.

The model was evaluated by computing reference visibilities in high-
resolution point-clouds [2], then decimating these clouds, and re-estimating
the visibility of a large number of test-points. An ROC analysis was
performed on the estimated vs. true states (visible/occluded) of the test
points. The results indicate that the new model outperforms naive visibil-
ity tests, in addition to the theoretical contributions outlined here.
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