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Figure 1: Correspondence errors of 2D (red) and 3D (green) facial contour
landmarks w.r.t. yaw angles of (a) 0°, (b) 10°, (c) 20° and (d) 30°.

Motivation Direct reconstruction of 3D face shape—solely based on a
sparse set of 2D feature points localized by a facial landmark detector—
offers an automatic, efficient and illumination-invariant alternative to the
widely known analysis-by-synthesis framework, which is extremely time-
consuming considering the enormous parameter space for both shape and
photometric properties. Given 2D landmarks y and their correspondence
on the 3D Morphable Model (3DMM), the 3D shape can be recovered by
minimizing the distance between 2D and the projected 3D landmarks

α̂ = argmin
α

E(α) = argmin
α

‖Qα−y‖2
2 +η ‖α‖2

2 , (1)

where α is the target 3DMM shape parameter. Q is a simplification of
the projected 3D landmarks Q = ΠΦSdiag(σ) containing the affine cam-
era projection matrix Π, sparse landmark selection Φ, as well as 3DMM
eigenvectors S and eigenvalues σ . The term η ‖α‖2

2 prevents overfitting
and regulates the plausibility of the reconstructed faces.

The empirical assumption of a fixed mapping between 2D and 3D
landmarks gives rise to a major flaw of the landmark-based methods.
Fig. 1 demonstrates that with increasing yaw angle, remarkable devia-
tion in the self-occluded face half can be observed. Moreover, we argue
that not only the invisible contour landmarks, but also the visible ones are
susceptible to 2D–3D correspondence discrepancy. Even in frontal view,
a tight correspondence cannot be necessarily guaranteed (see Fig. 1a). In
this paper, we propose a novel algorithm to address these two problems.

Fast Detection of Silhouette Vertices Due to the fact that 2D contour
landmarks are always located on the face silhouette, the tangent planes
of such 3D vertices are perpendicular to the image plane, meaning that
their normal vectors projected onto the z-axis are close to zero. It is then
an intuitive idea to treat those with the absolute z-projection values of the
normals |nz|< t as silhouette points (see Fig. 2d). However, a universally
valid threshold t is hard to find and the spatial distribution is uncontrol-
lable, too. Instead, we impose geometric constraints by labeling extended
vertices starting from the original 3D contour landmarks on the 3DMM
towards the center of the face (see Fig. 2a). During fitting, the ones with
the smallest |nz| on each line are chosen (see Figs. 2b and 2c). The number
of the evaluated normals is thereby reduced by two orders of magnitude,
allowing for fast and robust online update during the iterations.
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Figure 2: Fast detection of silhouette vertices using (a) annotated candi-
dates. (b) and (c) show our result compared to (d) the direct approach.
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Figure 3: (a) Improved 2D features with connected contour lines, (b) their
Distance Transform and its derivatives in (c) x and (d) y directions.

Fitting To facilitate flexible fitting of 3D contour vertices, the continu-
ous curve formed by the corresponding discrete 2D landmarks is exploited
when reconstructing the shape (see Fig. 3a). Separating all landmarks into
two disjoint subsets of fixed and contour ones in Eq. (1) leads to

E(α) =

∥∥∥∥[Qcontour
Qfixed

]
α−

[
ycontour
yfixed

]∥∥∥∥2

2
+η ‖α‖2

2 . (2)

An unknown mapping denoted φ(i) = j which selects, for each 3D con-
tour vertex i, the corresponding 2D contour pixel j, is now also a part of
the minimization process

E(α,φ) = ∑
i

∥∥∥Qiα−yφ(i)

∥∥∥2

2
+‖Qfixedα−yfixed‖2

2 +η ‖α‖2
2 . (3)

Estimation of α is then a “minimization of minimization” problem

α̂ = argmin
α

∑
i

min
j

∥∥Qiα−y j
∥∥2

2 +‖Qfixedα−yfixed‖2
2 +η ‖α‖2

2 . (4)

The trick to circumvent this difficulty is to apply Distance Transform
(DT) to the discrete 2D features with the Levenberg-Marquardt Iterative
Closest Point (LM-ICP) algorithm. On the 2D image raster x, DT assigns
each image pixel with the distance to its closest point on the contour lines
D(x) = min j

∥∥x−y j
∥∥

2, which is reusable for the entire reconstruction
procedure by virtue of its independence of the model parameter α (see
Fig. 3b). The merit of DT lies in that the mapping function φ(i), or the
minimization over j in the contour cost of Eq. (3), then vanishes and is
thereby simply replaced with D(Qiα) = min j

∥∥Qiα−y j
∥∥

2. Integrating
DT into Eq. (3) and vectorizing over all contour vertices i yields

E(α) = ‖D(Qcontourα)‖2
2 +‖Qfixedα−yfixed‖2

2 +η ‖α‖2
2 . (5)

Rather than the sum of squares, LM-ICP demands the vector of residuals

e(α) =

 D(Qcontourα)
Qfixedα−yfixed√

ηα

 . (6)

Differentiating Eq. (6) analytically subject to the shape parameter α is
possible when the chain rule ∂Di

∂α j
= ∂D

∂x fi ·
∂ fx

i
∂α j

+ ∂D
∂y fi ·

∂ fy
i

∂α j
and the pre-

computed gradient images in x and y directions (Figs. 3c and 3d) are
applied to calculate the derivatives of the contour cost ∇α D(Qcontourα).
The target Jacobian matrix Ji j =

∂ei
∂α j

is then

J =

Dx(Qcontourα) ·Qx
contour +Dy(Qcontourα) ·Qy

contour
Qfixed√

ηI

 . (7)

Results On the Basel Face Model (BFM), promising results outper-
forming state-of-the-art methods demonstrate the robustness of the pro-
posed 3D shape reconstruction framework against pose variation. The
effectiveness and efficiency justify our theoretical and practical advances.


